organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1039-o1040

Crystal structure of (E)-2-[(4-chloro-2H-chromen-3-yl)methyl­­idene]-N-cyclo­hexyl­hydrazinecarbo­thio­amide

aDepartment of Physics, Ethiraj College for Women (Autonomous), Chennai 600 008, India, bDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 August 2014; accepted 14 August 2014; online 23 August 2014)

In the title compound, C17H20ClN3OS, the mean plane of the central thio­urea core makes dihedral angles of 26.56 (9) and 47.62 (12)° with the mean planes of the chromene moiety and the cyclo­hexyl ring, respectively. The cyclo­hexyl ring adopts a chair conformation. The N–H atoms of the thio­urea unit adopt an anti conformation. The chromene group is positioned trans, whereas the cyclo­hexyl ring lies in the cis position to the thione S atom, with respect to the thio­urea C—N bond. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, forming inversion dimers enclosing R22(8) ring motifs. The dimers are linked by C—H⋯Cl hydrogen bonds, enclosing R66(44) ring motifs, forming sheets lying parallel to (010).

1. Related literature

For the biological properties of thio­semicarbazones, see: Prabhakaran et al. (2007[Prabhakaran, R., Huang, R., Karvembu, R., Jayabalakrishnan, C. & Natarajan, K. (2007). Inorg. Chim. Acta, 360, 691-694.]); Kelly et al. (1996[Kelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1996). J. Chem. Soc. Dalton Trans. pp. 53-59.]); West et al. (1993[West, D. X., Liberta, A. E., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yerande, R. G. (1993). Coord. Chem. Rev. 123, 49-71.]); Pérez et al. (1999[Pérez, J. M., Matesanz, A. I., Martín-Ambite, A., Navarro, P., Alonso, C. & Souza, P. (1999). J. Inorg. Biochem. 75, 255-261.]). For their optical properties and applications, see: Tian et al. (1997[Tian, Y., Duan, C., Zhao, C. & You, X. (1997). Inorg. Chem. 36, 1247-1252.]); Uesugi et al. (1994[Uesugi, K., Sik, L. J., Nishioka, H., Kumagai, T. & Nagahiro, T. (1994). Microchem. J. 50, 88-93.]). For a related structure, see: Jayakumar et al. (2011[Jayakumar, K., Sithambaresan, M. & Prathapachandra Kurup, M. R. (2011). Acta Cryst. E67, o3195.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H20ClN3OS

  • Mr = 349.87

  • Orthorhombic, P b c a

  • a = 12.2857 (12) Å

  • b = 15.3082 (16) Å

  • c = 18.5241 (18) Å

  • V = 3483.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]) Tmin = 0.901, Tmax = 0.933

  • 18568 measured reflections

  • 4291 independent reflections

  • 2762 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.152

  • S = 1.02

  • 4291 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.86 2.73 3.507 (2) 151
C12—H12⋯Cl1ii 0.98 2.83 3.689 (2) 147
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the biological properties of thiosemicarbazones, see: Prabhakaran et al. (2007); Kelly et al. (1996); West et al. (1993); Pérez et al. (1999). For their optical properties and applications, see: Tian et al. (1997); Uesugi et al. (1994). For a related structure, see: Jayakumar et al. (2011).

Experimental top

An ethanol solution of N-cyclohexylhydrazinecarbothioamide (1.736 g, 0.01 mole) was added to a ethanol solution (50 cm3) of 4-chloro-2H-chromene-3-carbaldehyde (1.94 g, 0.01 mole). The mixture was refluxed for 2 h during which time a yellow precipitate separated out. The reaction mixture was then cooled to room temperature and the precipitate was filtered off. It was then washed with ethanol and dried under vacuum (Yield: 85%). Crystals of the title compound were obtained by slow evaporation of a solution in ethanol.

Refinement top

The positions of the H atoms were localized from difference electron density maps and they were refined as riding atoms: N-H = 0.86 Å, C-H = 0.93 - 0.98 Å, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
(E)-2-[(4-Chloro-2H-chromen-3-yl)methylidene]-N-cyclohexylhydrazine carbothioamide top
Crystal data top
C17H20ClN3OSF(000) = 1472
Mr = 349.87Dx = 1.334 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2762 reflections
a = 12.2857 (12) Åθ = 2.2–28.3°
b = 15.3082 (16) ŵ = 0.35 mm1
c = 18.5241 (18) ÅT = 296 K
V = 3483.9 (6) Å3Block, colourless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4291 independent reflections
Radiation source: fine-focus sealed tube2762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1516
Tmin = 0.901, Tmax = 0.933k = 1919
18568 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.9377P]
where P = (Fo2 + 2Fc2)/3
4291 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H20ClN3OSV = 3483.9 (6) Å3
Mr = 349.87Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.2857 (12) ŵ = 0.35 mm1
b = 15.3082 (16) ÅT = 296 K
c = 18.5241 (18) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4291 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2762 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.933Rint = 0.033
18568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
4291 reflectionsΔρmin = 0.31 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1410 (2)0.0421 (2)0.35313 (15)0.0735 (8)
H11.11340.01050.31440.088*
C21.2530 (2)0.0541 (2)0.36038 (19)0.0835 (10)
H21.29970.03060.32590.100*
C31.2948 (2)0.0990 (2)0.41635 (19)0.0824 (9)
H31.36980.10570.42050.099*
C41.2276 (2)0.1348 (2)0.46699 (17)0.0790 (8)
H41.25680.16620.50540.095*
C51.11588 (18)0.12440 (18)0.46109 (13)0.0600 (6)
C61.07055 (17)0.07780 (15)0.40441 (12)0.0514 (5)
C70.95198 (17)0.06950 (15)0.40340 (11)0.0485 (5)
C80.88960 (16)0.10411 (14)0.45507 (10)0.0438 (5)
C90.94477 (19)0.1572 (2)0.51200 (14)0.0712 (8)
H9A0.91700.21640.50850.085*
H9B0.92220.13450.55850.085*
C100.77399 (16)0.08929 (15)0.46230 (10)0.0453 (5)
H100.73640.05790.42730.054*
C110.56710 (15)0.10953 (15)0.58999 (10)0.0444 (5)
C120.59224 (15)0.17836 (15)0.71073 (10)0.0423 (5)
H120.56650.12400.73270.051*
C130.50398 (19)0.24676 (16)0.71814 (12)0.0563 (6)
H13A0.43750.22550.69600.068*
H13B0.52590.29950.69300.068*
C140.4829 (2)0.2677 (2)0.79728 (14)0.0729 (8)
H14A0.42790.31290.80070.087*
H14B0.45550.21600.82150.087*
C150.5855 (2)0.2981 (2)0.83439 (14)0.0733 (8)
H15A0.60930.35270.81300.088*
H15B0.57040.30870.88500.088*
C160.6747 (2)0.2314 (2)0.82767 (13)0.0713 (8)
H16A0.65470.17940.85460.086*
H16B0.74100.25460.84860.086*
C170.69562 (17)0.2068 (2)0.74917 (12)0.0645 (7)
H17A0.72660.25660.72410.077*
H17B0.74830.15970.74740.077*
N10.72378 (13)0.11972 (13)0.51739 (8)0.0456 (4)
N20.61712 (13)0.09549 (13)0.52482 (8)0.0481 (4)
H2A0.58230.07210.48950.058*
N30.62011 (13)0.16098 (12)0.63520 (9)0.0486 (4)
H3A0.67690.18700.61850.058*
Cl10.89480 (7)0.01105 (6)0.33357 (4)0.0936 (3)
O11.05307 (15)0.16182 (18)0.51223 (12)0.1067 (9)
S10.44825 (4)0.05982 (5)0.60746 (3)0.0645 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0760 (17)0.0745 (19)0.0699 (15)0.0181 (15)0.0253 (13)0.0081 (14)
C20.0698 (17)0.086 (2)0.095 (2)0.0314 (16)0.0410 (16)0.0311 (19)
C30.0520 (14)0.089 (2)0.106 (2)0.0117 (15)0.0193 (15)0.039 (2)
C40.0504 (13)0.093 (2)0.0933 (19)0.0055 (14)0.0029 (13)0.0141 (18)
C50.0483 (12)0.0669 (16)0.0649 (13)0.0009 (12)0.0085 (10)0.0079 (13)
C60.0532 (11)0.0488 (13)0.0523 (11)0.0072 (10)0.0149 (9)0.0133 (10)
C70.0581 (12)0.0446 (12)0.0429 (10)0.0022 (10)0.0071 (9)0.0021 (9)
C80.0481 (10)0.0453 (12)0.0381 (9)0.0035 (9)0.0032 (8)0.0006 (9)
C90.0466 (12)0.100 (2)0.0675 (15)0.0087 (13)0.0033 (10)0.0310 (15)
C100.0467 (10)0.0522 (13)0.0370 (9)0.0054 (10)0.0004 (8)0.0019 (9)
C110.0390 (9)0.0516 (13)0.0425 (9)0.0002 (9)0.0007 (7)0.0016 (10)
C120.0405 (9)0.0481 (12)0.0385 (9)0.0048 (9)0.0027 (7)0.0014 (9)
C130.0556 (13)0.0614 (16)0.0519 (11)0.0092 (12)0.0019 (9)0.0019 (11)
C140.0633 (15)0.092 (2)0.0634 (14)0.0143 (15)0.0081 (12)0.0221 (15)
C150.0829 (18)0.0764 (19)0.0608 (14)0.0063 (16)0.0083 (13)0.0251 (14)
C160.0611 (14)0.097 (2)0.0556 (13)0.0050 (15)0.0097 (11)0.0245 (14)
C170.0412 (11)0.0898 (19)0.0625 (13)0.0023 (12)0.0016 (10)0.0232 (14)
N10.0417 (8)0.0540 (11)0.0412 (8)0.0050 (8)0.0034 (6)0.0009 (8)
N20.0396 (8)0.0637 (12)0.0410 (8)0.0071 (8)0.0016 (6)0.0058 (8)
N30.0423 (8)0.0598 (12)0.0436 (8)0.0144 (8)0.0096 (7)0.0081 (8)
Cl10.0938 (6)0.1186 (7)0.0683 (4)0.0167 (5)0.0133 (3)0.0505 (4)
O10.0485 (10)0.173 (3)0.0992 (15)0.0152 (12)0.0062 (9)0.0721 (16)
S10.0446 (3)0.0870 (5)0.0621 (4)0.0208 (3)0.0102 (2)0.0205 (3)
Geometric parameters (Å, º) top
C1—C21.395 (4)C11—S11.678 (2)
C1—C61.397 (3)C12—N31.465 (2)
C1—H10.9300C12—C131.514 (3)
C2—C31.346 (5)C12—C171.520 (3)
C2—H20.9300C12—H120.9800
C3—C41.364 (4)C13—C141.523 (3)
C3—H30.9300C13—H13A0.9700
C4—C51.387 (3)C13—H13B0.9700
C4—H40.9300C14—C151.510 (4)
C5—O11.349 (3)C14—H14A0.9700
C5—C61.386 (3)C14—H14B0.9700
C6—C71.462 (3)C15—C161.503 (4)
C7—C81.336 (3)C15—H15A0.9700
C7—Cl11.723 (2)C15—H15B0.9700
C8—C101.445 (3)C16—C171.524 (3)
C8—C91.494 (3)C16—H16A0.9700
C9—O11.332 (3)C16—H16B0.9700
C9—H9A0.9700C17—H17A0.9700
C9—H9B0.9700C17—H17B0.9700
C10—N11.280 (3)N1—N21.369 (2)
C10—H100.9300N2—H2A0.8600
C11—N31.321 (3)N3—H3A0.8600
C11—N21.372 (2)
C2—C1—C6119.7 (3)C13—C12—H12108.6
C2—C1—H1120.2C17—C12—H12108.6
C6—C1—H1120.2C12—C13—C14110.75 (19)
C3—C2—C1121.2 (3)C12—C13—H13A109.5
C3—C2—H2119.4C14—C13—H13A109.5
C1—C2—H2119.4C12—C13—H13B109.5
C2—C3—C4120.3 (3)C14—C13—H13B109.5
C2—C3—H3119.9H13A—C13—H13B108.1
C4—C3—H3119.9C15—C14—C13111.2 (2)
C3—C4—C5119.9 (3)C15—C14—H14A109.4
C3—C4—H4120.0C13—C14—H14A109.4
C5—C4—H4120.0C15—C14—H14B109.4
O1—C5—C6121.4 (2)C13—C14—H14B109.4
O1—C5—C4117.5 (3)H14A—C14—H14B108.0
C6—C5—C4121.1 (2)C16—C15—C14111.2 (2)
C5—C6—C1117.9 (2)C16—C15—H15A109.4
C5—C6—C7117.04 (19)C14—C15—H15A109.4
C1—C6—C7125.1 (2)C16—C15—H15B109.4
C8—C7—C6121.9 (2)C14—C15—H15B109.4
C8—C7—Cl1120.68 (17)H15A—C15—H15B108.0
C6—C7—Cl1117.45 (16)C15—C16—C17111.7 (2)
C7—C8—C10124.63 (19)C15—C16—H16A109.3
C7—C8—C9117.47 (19)C17—C16—H16A109.3
C10—C8—C9117.78 (18)C15—C16—H16B109.3
O1—C9—C8119.0 (2)C17—C16—H16B109.3
O1—C9—H9A107.6H16A—C16—H16B107.9
C8—C9—H9A107.6C12—C17—C16112.15 (18)
O1—C9—H9B107.6C12—C17—H17A109.2
C8—C9—H9B107.6C16—C17—H17A109.2
H9A—C9—H9B107.0C12—C17—H17B109.2
N1—C10—C8119.37 (18)C16—C17—H17B109.2
N1—C10—H10120.3H17A—C17—H17B107.9
C8—C10—H10120.3C10—N1—N2116.28 (17)
N3—C11—N2115.49 (17)N1—N2—C11118.36 (16)
N3—C11—S1125.24 (15)N1—N2—H2A120.8
N2—C11—S1119.25 (15)C11—N2—H2A120.8
N3—C12—C13112.32 (17)C11—N3—C12126.76 (17)
N3—C12—C17107.71 (16)C11—N3—H3A116.6
C13—C12—C17110.98 (19)C12—N3—H3A116.6
N3—C12—H12108.6C9—O1—C5123.1 (2)
C6—C1—C2—C30.5 (4)C7—C8—C10—N1174.1 (2)
C1—C2—C3—C40.7 (5)C9—C8—C10—N11.8 (3)
C2—C3—C4—C50.4 (5)N3—C12—C13—C14176.0 (2)
C3—C4—C5—O1179.4 (3)C17—C12—C13—C1455.4 (3)
C3—C4—C5—C60.1 (4)C12—C13—C14—C1557.3 (3)
O1—C5—C6—C1179.1 (3)C13—C14—C15—C1656.7 (3)
C4—C5—C6—C10.4 (4)C14—C15—C16—C1754.5 (3)
O1—C5—C6—C71.3 (4)N3—C12—C17—C16176.9 (2)
C4—C5—C6—C7179.3 (2)C13—C12—C17—C1653.6 (3)
C2—C1—C6—C50.1 (4)C15—C16—C17—C1253.2 (3)
C2—C1—C6—C7179.5 (2)C8—C10—N1—N2173.26 (19)
C5—C6—C7—C80.8 (3)C10—N1—N2—C11165.58 (19)
C1—C6—C7—C8178.8 (2)N3—C11—N2—N113.0 (3)
C5—C6—C7—Cl1179.54 (18)S1—C11—N2—N1165.46 (16)
C1—C6—C7—Cl10.1 (3)N2—C11—N3—C12172.13 (19)
C6—C7—C8—C10171.9 (2)S1—C11—N3—C126.2 (3)
Cl1—C7—C8—C106.7 (3)C13—C12—N3—C1181.4 (3)
C6—C7—C8—C94.0 (3)C17—C12—N3—C11156.1 (2)
Cl1—C7—C8—C9177.36 (19)C8—C9—O1—C53.6 (5)
C7—C8—C9—O15.4 (4)C6—C5—O1—C90.3 (5)
C10—C8—C9—O1170.8 (3)C4—C5—O1—C9179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.733.507 (2)151
C12—H12···Cl1ii0.982.833.689 (2)147
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.733.507 (2)151
C12—H12···Cl1ii0.982.833.689 (2)147
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y, z+1/2.
 

Acknowledgements

The authors thank Professors D. Velmurugan and T. Srinivasan of the Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayakumar, K., Sithambaresan, M. & Prathapachandra Kurup, M. R. (2011). Acta Cryst. E67, o3195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1996). J. Chem. Soc. Dalton Trans. pp. 53–59.  CSD CrossRef Web of Science Google Scholar
First citationPérez, J. M., Matesanz, A. I., Martín–Ambite, A., Navarro, P., Alonso, C. & Souza, P. (1999). J. Inorg. Biochem. 75, 255–261.  Web of Science PubMed Google Scholar
First citationPrabhakaran, R., Huang, R., Karvembu, R., Jayabalakrishnan, C. & Natarajan, K. (2007). Inorg. Chim. Acta, 360, 691–694.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y., Duan, C., Zhao, C. & You, X. (1997). Inorg. Chem. 36, 1247–1252.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationUesugi, K., Sik, L. J., Nishioka, H., Kumagai, T. & Nagahiro, T. (1994). Microchem. J. 50, 88–93.  CrossRef CAS Web of Science Google Scholar
First citationWest, D. X., Liberta, A. E., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yerande, R. G. (1993). Coord. Chem. Rev. 123, 49–71.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1039-o1040
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds