organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1036-o1037

Crystal structure of 2-amino-4-methyl­pyridin-1-ium (2R,3R)-3-carb­­oxy-2,3-di­hy­droxy­propano­ate monohydrate

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Physics, Loyola College, Chennai-34, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 June 2014; accepted 13 August 2014; online 23 August 2014)

The title mol­ecular salt, C6H9N2+·C4H5O6·H2O, crystallized with two 2-amino-4-methyl­pyridin-1-ium cations, two L-(+)-tartaric acid monoanions [systematic name: (2R,3R)-3-carb­oxy-2,3-di­hydroxy­propano­ate] and two water mol­ecules in the asymmetric unit. In the crystal, the cations, anions and water mol­ecules are linked via a number of O—H⋯O and N—H⋯O hydrogen bonds, and a C—H⋯O hydrogen bond, forming a three-dimensional structure

1. Related literature

For the biological activity of pyridinium derivatives, see: Judge & Bever (2006[Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224-259.]); Schwid et al. (1997[Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.]); Strupp et al. (2004[Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623-1625.]). For the crystal structure of a related mol­ecular salt involving the 2-amino-4-methyl­pyridin-1-ium cation, see: Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2151-o2152.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H9N2+·C4H5O6·H2O

  • Mr = 276.25

  • Triclinic, P 1

  • a = 7.176 (3) Å

  • b = 9.9359 (18) Å

  • c = 10.716 (2) Å

  • α = 117.528 (5)°

  • β = 104.792 (7)°

  • γ = 91.701 (7)°

  • V = 645.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.976

  • 10211 measured reflections

  • 4999 independent reflections

  • 4769 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.08

  • 4999 reflections

  • 410 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2 0.87 (3) 1.86 (3) 2.725 (3) 172 (3)
O1W—H1WB⋯O3i 0.78 (3) 2.39 (4) 3.012 (3) 137 (3)
O1W—H1WB⋯O12 0.78 (3) 2.39 (3) 3.006 (3) 137 (3)
O3—H3⋯O2 0.82 (4) 1.95 (4) 2.562 (2) 131 (4)
O3—H3⋯O7 0.82 (4) 2.51 (4) 3.072 (3) 127 (3)
N2—H2NA⋯O1Wii 0.84 (3) 2.00 (3) 2.819 (3) 164 (3)
N3—H3N⋯O4 0.84 (3) 2.15 (3) 2.939 (3) 157 (3)
N3—H3N⋯O6 0.84 (3) 2.44 (3) 3.047 (3) 130 (3)
N2—H2NB⋯O8iii 0.83 (4) 2.41 (3) 3.032 (3) 132 (3)
N2—H2NB⋯O9iii 0.83 (4) 2.21 (4) 2.942 (3) 147 (3)
O4—H4A⋯O11iv 0.90 (4) 1.88 (4) 2.732 (3) 156 (3)
O2W—H2WA⋯O8i 0.82 (4) 2.00 (4) 2.819 (3) 173 (4)
O5—H5A⋯O1ii 1.16 (4) 1.41 (4) 2.534 (2) 163 (4)
N4—H4NA⋯O3 0.88 (3) 2.12 (3) 2.968 (3) 163 (3)
O7—H7A⋯O12ii 1.09 (4) 1.39 (4) 2.476 (2) 174 (4)
N4—H4NB⋯O2Wii 0.83 (4) 2.32 (4) 3.128 (4) 164 (3)
N4—H4NB⋯O12ii 0.83 (4) 2.60 (4) 2.955 (4) 108 (3)
O9—H9⋯O2W 0.91 (3) 1.81 (3) 2.715 (3) 172 (3)
O10—H10A⋯O6v 0.83 (3) 2.19 (3) 2.912 (3) 145 (3)
O10—H10A⋯O11 0.83 (3) 2.15 (3) 2.648 (3) 119 (3)
N1—H29⋯O10iii 0.78 (3) 2.24 (3) 2.946 (3) 151 (3)
C5—H5⋯O6vi 0.93 2.46 3.158 (3) 132
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x-1, y-1, z-1; (iv) x-1, y-1, z; (v) x+1, y+1, z; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For the biological activity of pyridinium derivatives, see: Judge & Bever (2006); Schwid et al. (1997); Strupp et al. (2004). For the crystal structure of a related molecular salt involving the 2-amino-4-methylpyridin-1-ium cation, see: Hemamalini & Fun (2010).

Experimental top

The title compound was prepared by mixing an equimolar ratio of 4-methylpyridin-2-amine (Aldrich) with L-(+)-tartaric acid (Spectrochem). When the tartaric acid was added to a saturated solution of 4-methylpyridin-2-amine in acetone a pale pink coloured precipitate was formed. The precipitate was collected and allowed to dry and powdered. Suitable crystals of the title salt were prepared by slow evaporation of a solution of the powder in methanol at room temperature.

Refinement top

The water, NH and OH H atoms were located from difference Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93–0.98 Å Uiso(H)= 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
2-Amino-4-methylpyridin-1-ium (2R,3R)-3-carboxy-2,3-dihydroxypropanoate monohydrate top
Crystal data top
C6H9N2+·C4H5O6·H2OZ = 2
Mr = 276.25F(000) = 292
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.176 (3) ÅCell parameters from 8251 reflections
b = 9.9359 (18) Åθ = 2.3–32.6°
c = 10.716 (2) ŵ = 0.12 mm1
α = 117.528 (5)°T = 293 K
β = 104.792 (7)°Block, colourless
γ = 91.701 (7)°0.24 × 0.22 × 0.20 mm
V = 645.3 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4999 independent reflections
Radiation source: fine-focus sealed tube4769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.971, Tmax = 0.976k = 1212
10211 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.1123P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4999 reflectionsΔρmax = 0.27 e Å3
410 parametersΔρmin = 0.17 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.055 (5)
Crystal data top
C6H9N2+·C4H5O6·H2Oγ = 91.701 (7)°
Mr = 276.25V = 645.3 (3) Å3
Triclinic, P1Z = 2
a = 7.176 (3) ÅMo Kα radiation
b = 9.9359 (18) ŵ = 0.12 mm1
c = 10.716 (2) ÅT = 293 K
α = 117.528 (5)°0.24 × 0.22 × 0.20 mm
β = 104.792 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
4999 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4769 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.022
10211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0313 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.27 e Å3
4999 reflectionsΔρmin = 0.17 e Å3
410 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74569 (19)0.24776 (17)0.32479 (15)0.0425 (4)
O20.8383 (2)0.48800 (17)0.51261 (16)0.0434 (4)
O30.4999 (2)0.52134 (16)0.54862 (17)0.0421 (5)
O40.5543 (2)0.25906 (18)0.58628 (16)0.0402 (4)
O50.09901 (19)0.22642 (16)0.33245 (15)0.0385 (4)
O60.1808 (2)0.2985 (2)0.57363 (17)0.0469 (5)
O70.73206 (18)0.84899 (15)0.69807 (16)0.0366 (4)
O80.8096 (2)1.08215 (17)0.89449 (17)0.0443 (4)
O91.1844 (2)1.09612 (17)0.92901 (15)0.0408 (4)
O101.0198 (2)1.08903 (18)0.65507 (18)0.0440 (5)
O111.3678 (3)1.0395 (2)0.6194 (3)0.0676 (8)
O121.38559 (17)0.86225 (14)0.69019 (15)0.0340 (4)
C130.7165 (2)0.3699 (2)0.42355 (19)0.0302 (5)
C140.5072 (3)0.3760 (2)0.4327 (2)0.0299 (5)
C150.4308 (2)0.2468 (2)0.4546 (2)0.0295 (5)
C160.2212 (2)0.25924 (19)0.4604 (2)0.0298 (5)
C170.8533 (2)0.9703 (2)0.80181 (19)0.0286 (5)
C181.0658 (2)0.9648 (2)0.80165 (19)0.0275 (5)
C191.0873 (2)0.95937 (19)0.66195 (19)0.0290 (5)
C201.2990 (2)0.9559 (2)0.65682 (19)0.0300 (5)
N10.0123 (3)0.3863 (2)0.09469 (18)0.0368 (5)
N20.0764 (3)0.3843 (2)0.1268 (2)0.0444 (6)
C10.0410 (3)0.4600 (2)0.0521 (2)0.0316 (5)
C20.0344 (3)0.6200 (2)0.1196 (2)0.0355 (5)
C30.0001 (3)0.6933 (2)0.0375 (2)0.0391 (6)
C40.0325 (3)0.6082 (3)0.1162 (2)0.0417 (7)
C50.0249 (3)0.4564 (2)0.1787 (2)0.0397 (6)
C60.0012 (5)0.8623 (3)0.1096 (3)0.0639 (9)
N30.4969 (3)0.4655 (2)0.8719 (2)0.0450 (6)
N40.4515 (3)0.6816 (3)0.8476 (3)0.0535 (8)
O1W1.1106 (3)0.58916 (19)0.42444 (17)0.0448 (5)
C70.5351 (4)0.3913 (3)0.9520 (3)0.0528 (8)
C80.5627 (4)0.4668 (3)1.0974 (3)0.0529 (8)
C90.5523 (3)0.6239 (3)1.1678 (2)0.0499 (8)
C100.5161 (3)0.6983 (3)1.0861 (2)0.0426 (6)
C110.4877 (3)0.6164 (2)0.9329 (2)0.0367 (6)
C120.5813 (6)0.7111 (5)1.3315 (3)0.0825 (13)
O2W1.5440 (2)1.04131 (19)1.03282 (18)0.0444 (5)
H30.613 (5)0.565 (4)0.575 (4)0.067 (9)*
H4A0.513 (5)0.170 (4)0.582 (3)0.062 (8)*
H5A0.057 (6)0.230 (4)0.344 (4)0.098 (12)*
H140.422600.364700.339600.0360*
H150.431500.147500.371200.0350*
H7A0.582 (5)0.862 (4)0.698 (4)0.082 (10)*
H91.300 (4)1.068 (3)0.959 (3)0.055 (7)*
H10A1.091 (4)1.116 (3)0.618 (3)0.053 (7)*
H181.103500.872100.804800.0330*
H191.003900.865900.576500.0350*
H20.053700.675400.220700.0430*
H2NA0.085 (3)0.429 (3)0.217 (3)0.029 (5)*
H40.058900.656300.173800.0500*
H2NB0.071 (5)0.290 (4)0.081 (3)0.058 (8)*
H50.045400.399500.279900.0480*
H6A0.093300.911800.088000.0960*
H6B0.031400.903200.214600.0960*
H6C0.129000.880700.072900.0960*
H290.015 (4)0.299 (3)0.138 (3)0.047 (7)*
H3N0.481 (4)0.412 (3)0.781 (3)0.048 (7)*
H70.542300.286900.905500.0630*
H4NA0.441 (4)0.624 (3)0.754 (3)0.045 (7)*
H80.588900.415201.151700.0630*
H4NB0.452 (5)0.776 (4)0.890 (4)0.068 (10)*
H100.510300.802901.131800.0510*
H12A0.704700.699401.383400.1240*
H12B0.477700.671101.353300.1240*
H12C0.579800.818301.362100.1240*
H1WA1.033 (4)0.554 (3)0.457 (3)0.052 (7)*
H1WB1.211 (5)0.620 (3)0.487 (3)0.055 (8)*
H2WA1.617 (5)1.059 (4)0.992 (3)0.062 (9)*
H2WB1.591 (4)1.099 (3)1.125 (4)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (6)0.0529 (9)0.0359 (7)0.0069 (6)0.0113 (5)0.0098 (7)
O20.0303 (7)0.0451 (8)0.0468 (8)0.0004 (6)0.0125 (6)0.0160 (7)
O30.0397 (8)0.0312 (7)0.0588 (9)0.0085 (6)0.0267 (7)0.0185 (7)
O40.0343 (7)0.0467 (8)0.0487 (8)0.0063 (6)0.0085 (6)0.0326 (7)
O50.0257 (6)0.0419 (7)0.0344 (7)0.0021 (5)0.0100 (5)0.0076 (6)
O60.0457 (8)0.0691 (10)0.0530 (9)0.0287 (8)0.0309 (7)0.0421 (8)
O70.0240 (6)0.0291 (6)0.0471 (8)0.0044 (5)0.0135 (5)0.0095 (6)
O80.0300 (7)0.0367 (7)0.0509 (8)0.0049 (6)0.0193 (6)0.0056 (6)
O90.0262 (6)0.0410 (7)0.0380 (7)0.0055 (6)0.0055 (5)0.0076 (6)
O100.0455 (8)0.0532 (9)0.0648 (9)0.0284 (7)0.0330 (8)0.0444 (8)
O110.0513 (9)0.0784 (12)0.1307 (18)0.0294 (9)0.0552 (11)0.0819 (13)
O120.0245 (6)0.0340 (7)0.0484 (7)0.0084 (5)0.0153 (5)0.0215 (6)
C130.0263 (8)0.0413 (10)0.0292 (8)0.0072 (8)0.0106 (7)0.0209 (8)
C140.0258 (8)0.0355 (9)0.0334 (9)0.0074 (7)0.0111 (7)0.0196 (7)
C150.0262 (8)0.0291 (8)0.0336 (9)0.0057 (7)0.0115 (7)0.0142 (7)
C160.0286 (9)0.0254 (8)0.0402 (9)0.0063 (7)0.0156 (7)0.0170 (7)
C170.0255 (8)0.0306 (9)0.0342 (9)0.0070 (7)0.0123 (7)0.0176 (7)
C180.0233 (8)0.0249 (8)0.0357 (9)0.0063 (6)0.0106 (7)0.0150 (7)
C190.0242 (8)0.0291 (9)0.0362 (9)0.0073 (7)0.0117 (7)0.0164 (8)
C200.0286 (8)0.0274 (8)0.0360 (9)0.0053 (7)0.0153 (7)0.0141 (7)
N10.0436 (9)0.0281 (8)0.0353 (8)0.0098 (7)0.0149 (7)0.0109 (7)
N20.0646 (12)0.0312 (9)0.0364 (10)0.0133 (8)0.0164 (8)0.0149 (8)
C10.0290 (8)0.0311 (9)0.0334 (9)0.0063 (7)0.0106 (7)0.0140 (8)
C20.0381 (10)0.0292 (9)0.0329 (9)0.0061 (7)0.0124 (8)0.0093 (8)
C30.0349 (10)0.0307 (10)0.0507 (11)0.0032 (8)0.0128 (9)0.0193 (9)
C40.0407 (11)0.0459 (12)0.0473 (11)0.0082 (9)0.0135 (9)0.0295 (10)
C50.0385 (10)0.0480 (12)0.0335 (9)0.0073 (8)0.0123 (8)0.0198 (9)
C60.0813 (19)0.0347 (12)0.0725 (17)0.0119 (12)0.0208 (15)0.0248 (12)
N30.0541 (11)0.0444 (10)0.0342 (9)0.0062 (8)0.0122 (8)0.0179 (8)
N40.0698 (14)0.0596 (13)0.0480 (12)0.0180 (11)0.0234 (10)0.0365 (11)
O1W0.0442 (8)0.0447 (8)0.0366 (8)0.0045 (7)0.0102 (7)0.0143 (7)
C70.0550 (13)0.0454 (12)0.0626 (15)0.0048 (10)0.0142 (11)0.0320 (12)
C80.0500 (13)0.0651 (15)0.0577 (14)0.0048 (11)0.0122 (11)0.0435 (13)
C90.0369 (11)0.0773 (17)0.0395 (11)0.0048 (11)0.0085 (9)0.0334 (12)
C100.0403 (11)0.0472 (12)0.0404 (10)0.0109 (9)0.0156 (9)0.0194 (9)
C110.0319 (9)0.0461 (11)0.0376 (10)0.0063 (8)0.0126 (7)0.0238 (9)
C120.092 (2)0.108 (3)0.0447 (14)0.019 (2)0.0205 (15)0.0349 (16)
O2W0.0345 (7)0.0524 (9)0.0328 (8)0.0026 (6)0.0055 (6)0.0125 (7)
Geometric parameters (Å, º) top
O1—C131.256 (2)C2—C31.363 (3)
O2—C131.237 (3)N2—H2NA0.84 (3)
O3—C141.418 (3)N2—H2NB0.83 (4)
O4—C151.410 (2)C3—C41.410 (3)
O5—C161.308 (2)C3—C61.491 (4)
O6—C161.207 (2)C4—C51.348 (4)
O3—H30.82 (4)C2—H20.9300
O4—H4A0.90 (4)N3—C111.342 (3)
O5—H5A1.16 (4)N3—C71.354 (4)
O7—C171.285 (2)N4—C111.326 (4)
O8—C171.216 (3)C4—H40.9300
O9—C181.409 (2)C5—H50.9300
O10—C191.417 (3)C6—H6A0.9600
O11—C201.216 (3)C6—H6B0.9600
O12—C201.268 (3)C6—H6C0.9600
C13—C141.531 (3)N3—H3N0.84 (3)
C14—C151.519 (3)N4—H4NB0.83 (4)
C15—C161.527 (2)N4—H4NA0.88 (3)
O7—H7A1.09 (4)C7—C81.335 (4)
O9—H90.91 (3)C8—C91.399 (4)
O10—H10A0.83 (3)C9—C101.369 (4)
C14—H140.9800C9—C121.506 (3)
C15—H150.9800C10—C111.408 (3)
C17—C181.528 (2)O1W—H1WB0.78 (3)
C18—C191.520 (3)O1W—H1WA0.87 (3)
C19—C201.535 (2)C7—H70.9300
N1—C51.355 (3)C8—H80.9300
N1—C11.347 (3)C10—H100.9300
N2—C11.317 (3)C12—H12C0.9600
C18—H180.9800C12—H12A0.9600
C19—H190.9800C12—H12B0.9600
C1—C21.418 (3)O2W—H2WA0.82 (4)
N1—H290.78 (3)O2W—H2WB0.84 (4)
C14—O3—H3100 (3)C1—N2—H2NB119 (2)
C15—O4—H4A103.0 (19)C1—C2—C3120.58 (17)
C16—O5—H5A108.0 (18)H2NA—N2—H2NB121 (3)
O1—C13—C14116.99 (16)C2—C3—C4119.4 (2)
O1—C13—O2126.88 (16)C4—C3—C6120.2 (2)
O2—C13—C14116.10 (17)C2—C3—C6120.37 (19)
O3—C14—C13109.65 (16)C3—C4—C5119.3 (2)
O3—C14—C15110.52 (16)N1—C5—C4120.27 (18)
C13—C14—C15111.91 (17)C1—C2—H2120.00
C14—C15—C16108.80 (17)C3—C2—H2120.00
O4—C15—C14108.89 (16)C7—N3—C11122.6 (2)
O4—C15—C16111.36 (15)C5—C4—H4120.00
O5—C16—O6126.04 (16)C3—C4—H4120.00
O5—C16—C15112.27 (15)N1—C5—H5120.00
O6—C16—C15121.67 (16)C4—C5—H5120.00
C17—O7—H7A111 (2)C3—C6—H6B109.00
C18—O9—H9107.2 (19)C3—C6—H6C109.00
C19—O10—H10A106 (2)C3—C6—H6A109.00
O3—C14—H14108.00H6A—C6—H6C110.00
C13—C14—H14108.00H6B—C6—H6C109.00
C15—C14—H14108.00H6A—C6—H6B109.00
C16—C15—H15109.00C11—N3—H3N121 (2)
O4—C15—H15109.00C7—N3—H3N116 (2)
C14—C15—H15109.00C11—N4—H4NA118 (2)
O7—C17—C18114.13 (16)H4NA—N4—H4NB126 (3)
O7—C17—O8125.05 (16)C11—N4—H4NB116 (3)
O8—C17—C18120.83 (17)N3—C7—C8120.5 (3)
O9—C18—C17108.17 (14)C7—C8—C9119.9 (3)
O9—C18—C19111.32 (16)C8—C9—C12120.8 (3)
C17—C18—C19109.84 (14)C10—C9—C12120.1 (3)
C18—C19—C20112.12 (14)C8—C9—C10119.2 (2)
O10—C19—C18108.04 (15)C9—C10—C11120.0 (2)
O10—C19—C20111.07 (16)N3—C11—C10117.8 (2)
O11—C20—O12125.81 (18)N4—C11—C10122.9 (2)
O11—C20—C19118.3 (2)N3—C11—N4119.2 (2)
O12—C20—C19115.93 (17)H1WA—O1W—H1WB105 (3)
C1—N1—C5123.5 (2)N3—C7—H7120.00
C17—C18—H18109.00C8—C7—H7120.00
C19—C18—H18109.00C9—C8—H8120.00
O9—C18—H18109.00C7—C8—H8120.00
C18—C19—H19109.00C9—C10—H10120.00
C20—C19—H19108.00C11—C10—H10120.00
O10—C19—H19109.00C9—C12—H12B109.00
N1—C1—N2120.2 (2)C9—C12—H12C109.00
N1—C1—C2116.89 (19)C9—C12—H12A109.00
N2—C1—C2122.93 (18)H12A—C12—H12C110.00
C5—N1—H29115 (2)H12B—C12—H12C109.00
C1—N1—H29122 (2)H12A—C12—H12B109.00
C1—N2—H2NA120 (2)H2WA—O2W—H2WB109 (3)
O1—C13—C14—O3179.57 (18)C18—C19—C20—O11135.1 (2)
O1—C13—C14—C1557.4 (2)C18—C19—C20—O1246.2 (2)
O2—C13—C14—O31.2 (3)C5—N1—C1—N2180.0 (2)
O2—C13—C14—C15124.3 (2)C5—N1—C1—C21.1 (3)
O3—C14—C15—O463.3 (2)C1—N1—C5—C40.9 (4)
O3—C14—C15—C1658.3 (2)N2—C1—C2—C3179.0 (2)
C13—C14—C15—O459.26 (19)N1—C1—C2—C30.1 (3)
C13—C14—C15—C16179.20 (14)C1—C2—C3—C41.2 (3)
O4—C15—C16—O5170.89 (18)C1—C2—C3—C6178.3 (2)
O4—C15—C16—O610.5 (3)C6—C3—C4—C5178.0 (2)
C14—C15—C16—O569.1 (2)C2—C3—C4—C51.4 (3)
C14—C15—C16—O6109.5 (2)C3—C4—C5—N10.5 (3)
O7—C17—C18—O9173.74 (17)C11—N3—C7—C81.0 (4)
O7—C17—C18—C1964.6 (2)C7—N3—C11—N4179.3 (2)
O8—C17—C18—O96.1 (3)C7—N3—C11—C101.1 (4)
O8—C17—C18—C19115.6 (2)N3—C7—C8—C90.1 (4)
O9—C18—C19—O1063.25 (18)C7—C8—C9—C12179.5 (3)
O9—C18—C19—C2059.5 (2)C7—C8—C9—C100.8 (4)
C17—C18—C19—O1056.5 (2)C8—C9—C10—C110.7 (3)
C17—C18—C19—C20179.23 (17)C12—C9—C10—C11179.6 (3)
O10—C19—C20—O1114.1 (3)C9—C10—C11—N4179.8 (2)
O10—C19—C20—O12167.13 (16)C9—C10—C11—N30.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.87 (3)1.86 (3)2.725 (3)172 (3)
O1W—H1WB···O3i0.78 (3)2.39 (4)3.012 (3)137 (3)
O1W—H1WB···O120.78 (3)2.39 (3)3.006 (3)137 (3)
O3—H3···O20.82 (4)1.95 (4)2.562 (2)131 (4)
O3—H3···O70.82 (4)2.51 (4)3.072 (3)127 (3)
N2—H2NA···O1Wii0.84 (3)2.00 (3)2.819 (3)164 (3)
N3—H3N···O40.84 (3)2.15 (3)2.939 (3)157 (3)
N3—H3N···O60.84 (3)2.44 (3)3.047 (3)130 (3)
N2—H2NB···O8iii0.83 (4)2.41 (3)3.032 (3)132 (3)
N2—H2NB···O9iii0.83 (4)2.21 (4)2.942 (3)147 (3)
O4—H4A···O11iv0.90 (4)1.88 (4)2.732 (3)156 (3)
O2W—H2WA···O8i0.82 (4)2.00 (4)2.819 (3)173 (4)
O5—H5A···O1ii1.16 (4)1.41 (4)2.534 (2)163 (4)
N4—H4NA···O30.88 (3)2.12 (3)2.968 (3)163 (3)
O7—H7A···O12ii1.09 (4)1.39 (4)2.476 (2)174 (4)
N4—H4NB···O2Wii0.83 (4)2.32 (4)3.128 (4)164 (3)
N4—H4NB···O12ii0.83 (4)2.60 (4)2.955 (4)108 (3)
O9—H9···O2W0.91 (3)1.81 (3)2.715 (3)172 (3)
O10—H10A···O6v0.83 (3)2.19 (3)2.912 (3)145 (3)
O10—H10A···O110.83 (3)2.15 (3)2.648 (3)119 (3)
N1—H29···O10iii0.78 (3)2.24 (3)2.946 (3)151 (3)
C5—H5···O6vi0.932.463.158 (3)132
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1, y1, z1; (iv) x1, y1, z; (v) x+1, y+1, z; (vi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.87 (3)1.86 (3)2.725 (3)172 (3)
O1W—H1WB···O3i0.78 (3)2.39 (4)3.012 (3)137 (3)
O1W—H1WB···O120.78 (3)2.39 (3)3.006 (3)137 (3)
O3—H3···O20.82 (4)1.95 (4)2.562 (2)131 (4)
O3—H3···O70.82 (4)2.51 (4)3.072 (3)127 (3)
N2—H2NA···O1Wii0.84 (3)2.00 (3)2.819 (3)164 (3)
N3—H3N···O40.84 (3)2.15 (3)2.939 (3)157 (3)
N3—H3N···O60.84 (3)2.44 (3)3.047 (3)130 (3)
N2—H2NB···O8iii0.83 (4)2.41 (3)3.032 (3)132 (3)
N2—H2NB···O9iii0.83 (4)2.21 (4)2.942 (3)147 (3)
O4—H4A···O11iv0.90 (4)1.88 (4)2.732 (3)156 (3)
O2W—H2WA···O8i0.82 (4)2.00 (4)2.819 (3)173 (4)
O5—H5A···O1ii1.16 (4)1.41 (4)2.534 (2)163 (4)
N4—H4NA···O30.88 (3)2.12 (3)2.968 (3)163 (3)
O7—H7A···O12ii1.09 (4)1.39 (4)2.476 (2)174 (4)
N4—H4NB···O2Wii0.83 (4)2.32 (4)3.128 (4)164 (3)
N4—H4NB···O12ii0.83 (4)2.60 (4)2.955 (4)108 (3)
O9—H9···O2W0.91 (3)1.81 (3)2.715 (3)172 (3)
O10—H10A···O6v0.83 (3)2.19 (3)2.912 (3)145 (3)
O10—H10A···O110.83 (3)2.15 (3)2.648 (3)119 (3)
N1—H29···O10iii0.78 (3)2.24 (3)2.946 (3)151 (3)
C5—H5···O6vi0.932.463.158 (3)132
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1, y1, z1; (iv) x1, y1, z; (v) x+1, y+1, z; (vi) x, y, z1.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2151–o2152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJudge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1036-o1037
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds