organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-[(2-Amino­benz­yl)amino]-1-phenyl­but-2-en-1-one

aDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 14 May 2014; accepted 24 May 2014; online 4 June 2014)

In the title compound, C17H18N2O, the aromatic rings are almost normal to one another, making a dihedral angle of 89.00 (8)°. There is an intra­molecular N—H⋯O hydrogen bond in the mol­ecule enclosing an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along [010].

Related literature

For the biological activity of chalcones, see: Di Carlo et al. (1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]); Lin et al. (2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]). For a related structure, see: Ranjith et al. (2010[Ranjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261-o2262.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O

  • Mr = 266.33

  • Monoclinic, P 21 /c

  • a = 11.3197 (4) Å

  • b = 9.8341 (3) Å

  • c = 13.4207 (4) Å

  • β = 106.387 (2)°

  • V = 1433.29 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.698, Tmax = 0.746

  • 14860 measured reflections

  • 3921 independent reflections

  • 2528 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.156

  • S = 1.03

  • 3921 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.99 2.6619 (17) 134
N1—H1A⋯O1i 0.86 2.27 3.0009 (19) 143
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are a major class of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff and have recently been the subject of great interest for their interesting pharmacological activities (Di Carlo et al., 1999). Chalcones and flavonoids have been reported to be active anti-tuberculosis agents (Lin et al.,2002). Against this background and in order to obtain detailed information on molecular conformation in the solid state, an X-ray study of the title compound was carried out.

In the title compound, Fig. 1, the aminobenzyl ring (C1-C6) and the phenyl ring (C12-C17) are normal to one another with a dihedral angle of 89.00 (8)°. The amine N atom, N1, attached to phenyl ring (C1-C6), deviates by only -0.0020 (16) Å from the ring plane. There is an intramolecular N-H···O hydrogen bonds enclosing an S(6) ring motif.

In the crystal, molecules are linked by N–H···O hydrogen bonds forming chains along the b axis direction (Table 1 and Fig. 2).

Related literature top

For the biological activity of chalcones, see: Di Carlo et al. (1999); Lin et al. (2002). For a related structure, see: Ranjith et al. (2010).

Experimental top

To a warm ethanolic solution (25 ml) of 2-aminobenzylamine (0.25 g, 0.2 mmol), an ethanolic solution of benzylacetone (0.3 g, 0.2 mmol) was added dropwise and the resulting solution was refluxed for 3 h. The solution was then filtered hot and allowed to stand at room temperature. After slow evaporation of the solvent at 298 K, block-like colourless crystals of the title compound were obtained. They were filtered off, washed with cold methanol and dried [Yield 0.45 g, 83%].

Refinement top

Hydrogen atoms were placed in calculated positions and refined as riding atoms: N-H = 0.86 Å, C—H = 0.93- 0.97 Å, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Structure description top

Chalcones are a major class of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff and have recently been the subject of great interest for their interesting pharmacological activities (Di Carlo et al., 1999). Chalcones and flavonoids have been reported to be active anti-tuberculosis agents (Lin et al.,2002). Against this background and in order to obtain detailed information on molecular conformation in the solid state, an X-ray study of the title compound was carried out.

In the title compound, Fig. 1, the aminobenzyl ring (C1-C6) and the phenyl ring (C12-C17) are normal to one another with a dihedral angle of 89.00 (8)°. The amine N atom, N1, attached to phenyl ring (C1-C6), deviates by only -0.0020 (16) Å from the ring plane. There is an intramolecular N-H···O hydrogen bonds enclosing an S(6) ring motif.

In the crystal, molecules are linked by N–H···O hydrogen bonds forming chains along the b axis direction (Table 1 and Fig. 2).

For the biological activity of chalcones, see: Di Carlo et al. (1999); Lin et al. (2002). For a related structure, see: Ranjith et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular N-H···O hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
(Z)-3-[(2-Aminobenzyl)amino]-1-phenylbut-2-en-1-one top
Crystal data top
C17H18N2OF(000) = 568
Mr = 266.33Dx = 1.234 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3921 reflections
a = 11.3197 (4) Åθ = 1.9–29.3°
b = 9.8341 (3) ŵ = 0.08 mm1
c = 13.4207 (4) ÅT = 293 K
β = 106.387 (2)°Block, colourless
V = 1433.29 (8) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3921 independent reflections
Radiation source: fine-focus sealed tube2528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 29.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.698, Tmax = 0.746k = 1313
14860 measured reflectionsl = 1018
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.2241P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3921 reflectionsΔρmax = 0.23 e Å3
183 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (3)
Crystal data top
C17H18N2OV = 1433.29 (8) Å3
Mr = 266.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3197 (4) ŵ = 0.08 mm1
b = 9.8341 (3) ÅT = 293 K
c = 13.4207 (4) Å0.30 × 0.25 × 0.20 mm
β = 106.387 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2528 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.746Rint = 0.028
14860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
3921 reflectionsΔρmin = 0.16 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37143 (13)0.36601 (14)0.34891 (10)0.0447 (3)
C20.24361 (15)0.37189 (17)0.38045 (13)0.0588 (4)
H20.20350.40730.44550.071*
C30.17631 (16)0.3268 (2)0.31782 (17)0.0701 (5)
H30.09080.33110.34070.084*
C40.23319 (19)0.27475 (19)0.22096 (17)0.0724 (5)
H40.18670.24420.17830.087*
C50.36069 (17)0.26853 (18)0.18788 (13)0.0601 (4)
H50.39950.23350.12240.072*
C60.43142 (13)0.31337 (15)0.25025 (10)0.0445 (3)
C70.56975 (14)0.3028 (2)0.21832 (11)0.0602 (4)
H7A0.59300.22640.25450.072*
H7B0.60310.38440.24070.072*
C80.66303 (14)0.38414 (16)0.03882 (11)0.0516 (4)
C90.6376 (2)0.5280 (2)0.07480 (15)0.0830 (6)
H9A0.68430.54980.12220.125*
H9B0.66070.58800.01610.125*
H9C0.55130.53840.10920.125*
C100.72605 (14)0.35770 (15)0.06411 (11)0.0492 (4)
H100.74880.43130.10900.059*
C110.75754 (13)0.22683 (14)0.10462 (10)0.0438 (3)
C120.83849 (12)0.20920 (14)0.21386 (10)0.0414 (3)
C130.88339 (15)0.08133 (17)0.24592 (12)0.0559 (4)
H130.86320.00860.19990.067*
C140.95824 (18)0.0598 (2)0.34596 (13)0.0714 (5)
H140.98880.02670.36630.086*
C150.98725 (17)0.1654 (2)0.41484 (12)0.0709 (5)
H151.03760.15090.48190.085*
C160.94187 (17)0.2926 (2)0.38466 (12)0.0691 (5)
H160.96040.36410.43180.083*
C170.86870 (15)0.31536 (17)0.28458 (11)0.0568 (4)
H170.83950.40250.26450.068*
N10.43740 (14)0.41274 (17)0.41456 (10)0.0704 (4)
H1A0.39930.44520.47450.084*
H1B0.51650.40930.39540.084*
N20.62611 (13)0.28532 (14)0.10721 (9)0.0572 (4)
H2A0.63620.20330.08410.069*
O10.72160 (13)0.12117 (11)0.05299 (8)0.0710 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0496 (8)0.0388 (8)0.0424 (7)0.0033 (6)0.0076 (6)0.0008 (5)
C20.0501 (9)0.0528 (9)0.0654 (9)0.0066 (7)0.0031 (7)0.0081 (7)
C30.0493 (9)0.0607 (11)0.0986 (14)0.0023 (8)0.0179 (9)0.0194 (10)
C40.0741 (12)0.0607 (11)0.0985 (14)0.0168 (9)0.0506 (11)0.0133 (10)
C50.0728 (11)0.0578 (10)0.0551 (8)0.0043 (8)0.0270 (8)0.0019 (7)
C60.0493 (8)0.0446 (8)0.0381 (6)0.0003 (6)0.0101 (5)0.0000 (6)
C70.0511 (8)0.0879 (13)0.0373 (7)0.0072 (8)0.0052 (6)0.0062 (7)
C80.0517 (8)0.0490 (9)0.0492 (7)0.0033 (7)0.0065 (6)0.0074 (6)
C90.1066 (16)0.0575 (12)0.0705 (11)0.0052 (11)0.0013 (11)0.0193 (9)
C100.0554 (8)0.0400 (8)0.0446 (7)0.0008 (6)0.0016 (6)0.0002 (6)
C110.0445 (7)0.0414 (8)0.0402 (6)0.0044 (6)0.0032 (5)0.0026 (5)
C120.0389 (7)0.0425 (8)0.0401 (6)0.0038 (5)0.0069 (5)0.0023 (5)
C130.0635 (10)0.0474 (9)0.0527 (8)0.0000 (7)0.0094 (7)0.0081 (7)
C140.0772 (12)0.0672 (12)0.0623 (10)0.0094 (9)0.0074 (9)0.0260 (9)
C150.0655 (11)0.0922 (14)0.0453 (8)0.0024 (10)0.0001 (7)0.0165 (9)
C160.0724 (11)0.0783 (13)0.0455 (8)0.0077 (10)0.0015 (8)0.0074 (8)
C170.0621 (9)0.0502 (9)0.0482 (8)0.0006 (7)0.0008 (7)0.0032 (7)
N10.0644 (9)0.0951 (12)0.0499 (7)0.0127 (8)0.0134 (6)0.0302 (7)
N20.0638 (8)0.0585 (8)0.0395 (6)0.0052 (6)0.0012 (6)0.0044 (5)
O10.0959 (9)0.0427 (7)0.0538 (6)0.0044 (6)0.0122 (6)0.0065 (5)
Geometric parameters (Å, º) top
C1—N11.384 (2)C9—H9C0.9600
C1—C21.389 (2)C10—C111.403 (2)
C1—C61.4053 (18)C10—H100.9300
C2—C31.358 (3)C11—O11.2516 (16)
C2—H20.9300C11—C121.5036 (17)
C3—C41.376 (3)C12—C131.379 (2)
C3—H30.9300C12—C171.387 (2)
C4—C51.386 (3)C13—C141.387 (2)
C4—H40.9300C13—H130.9300
C5—C61.384 (2)C14—C151.367 (3)
C5—H50.9300C14—H140.9300
C6—C71.506 (2)C15—C161.369 (3)
C7—N21.4571 (17)C15—H150.9300
C7—H7A0.9700C16—C171.383 (2)
C7—H7B0.9700C16—H160.9300
C8—N21.3210 (19)C17—H170.9300
C8—C101.3888 (19)N1—H1A0.8600
C8—C91.496 (2)N1—H1B0.8600
C9—H9A0.9600N2—H2A0.8600
C9—H9B0.9600
N1—C1—C2119.65 (13)H9B—C9—H9C109.5
N1—C1—C6121.19 (13)C8—C10—C11124.07 (13)
C2—C1—C6119.16 (14)C8—C10—H10118.0
C3—C2—C1121.04 (16)C11—C10—H10118.0
C3—C2—H2119.5O1—C11—C10122.65 (12)
C1—C2—H2119.5O1—C11—C12117.23 (12)
C2—C3—C4120.75 (16)C10—C11—C12120.12 (12)
C2—C3—H3119.6C13—C12—C17118.34 (13)
C4—C3—H3119.6C13—C12—C11118.62 (13)
C3—C4—C5119.09 (16)C17—C12—C11123.03 (13)
C3—C4—H4120.5C12—C13—C14120.79 (16)
C5—C4—H4120.5C12—C13—H13119.6
C6—C5—C4121.33 (16)C14—C13—H13119.6
C6—C5—H5119.3C15—C14—C13120.23 (17)
C4—C5—H5119.3C15—C14—H14119.9
C5—C6—C1118.63 (14)C13—C14—H14119.9
C5—C6—C7122.58 (13)C14—C15—C16119.68 (15)
C1—C6—C7118.75 (12)C14—C15—H15120.2
N2—C7—C6114.79 (13)C16—C15—H15120.2
N2—C7—H7A108.6C15—C16—C17120.48 (16)
C6—C7—H7A108.6C15—C16—H16119.8
N2—C7—H7B108.6C17—C16—H16119.8
C6—C7—H7B108.6C16—C17—C12120.47 (16)
H7A—C7—H7B107.5C16—C17—H17119.8
N2—C8—C10121.76 (14)C12—C17—H17119.8
N2—C8—C9118.48 (13)C1—N1—H1A120.0
C10—C8—C9119.75 (15)C1—N1—H1B120.0
C8—C9—H9A109.5H1A—N1—H1B120.0
C8—C9—H9B109.5C8—N2—C7125.86 (14)
H9A—C9—H9B109.5C8—N2—H2A117.1
C8—C9—H9C109.5C7—N2—H2A117.1
H9A—C9—H9C109.5
N1—C1—C2—C3179.97 (16)C8—C10—C11—C12172.88 (14)
C6—C1—C2—C30.5 (2)O1—C11—C12—C139.5 (2)
C1—C2—C3—C40.4 (3)C10—C11—C12—C13170.01 (14)
C2—C3—C4—C50.2 (3)O1—C11—C12—C17169.53 (15)
C3—C4—C5—C60.0 (3)C10—C11—C12—C1711.0 (2)
C4—C5—C6—C10.0 (2)C17—C12—C13—C140.9 (2)
C4—C5—C6—C7177.47 (16)C11—C12—C13—C14179.89 (15)
N1—C1—C6—C5179.81 (15)C12—C13—C14—C150.9 (3)
C2—C1—C6—C50.3 (2)C13—C14—C15—C160.1 (3)
N1—C1—C6—C72.6 (2)C14—C15—C16—C171.1 (3)
C2—C1—C6—C7177.83 (14)C15—C16—C17—C121.1 (3)
C5—C6—C7—N219.4 (2)C13—C12—C17—C160.1 (2)
C1—C6—C7—N2163.10 (14)C11—C12—C17—C16178.86 (15)
N2—C8—C10—C110.8 (3)C10—C8—N2—C7174.01 (15)
C9—C8—C10—C11178.05 (17)C9—C8—N2—C74.9 (3)
C8—C10—C11—O16.6 (3)C6—C7—N2—C890.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.992.6619 (17)134
N1—H1A···O1i0.862.273.0009 (19)143
Symmetry code: (i) x+1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.992.6619 (17)134
N1—H1A···O1i0.862.273.0009 (19)143
Symmetry code: (i) x+1, y+1/2, z1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India for data collection. TS also thanks the DST for an Inspire Fellowship. The UGC (SAP–CAS) is acknowleged for departmental facilities.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261–o2262.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds