organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (E)-3-(2-formyl­phen­­oxy)acrylate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 May 2014; accepted 9 May 2014; online 24 May 2014)

In the title compound, C11H10O4, the methyl acrylate sub­stituent adopts an extended E conformation with all torsion angles close to 180°. The conformation of the keto group with respect to the olefinic double bond is typically S-trans. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) graph-set motif. The dimers are further linked via C—H⋯O hydrogen bonds, forming chains along [001], which enclose R32(16) graph-set ring motifs. The keto group O atomaccepts two C—H⋯O interactions.

Related literature

For applications of acrylate derivatives, see: Xiao et al. (2008[Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828-1836.]); De et al. (2011[De, P., Baltas, M. & Bedos-Belvan, F. (2011). Curr. Med. Chem. 18, 1672-1703.]); Sharma (2011[Sharma, P. (2011). J. Chem. Pharm. Res. 3, 403-423.]). For related crystal structures, see: Karthikeyan et al. (2012[Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2012). Acta Cryst. E68, o1273.]). For E-conformation aspects, see: Dunitz & Schweizer (1982[Dunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547-1554.]). For resonance effects of acrylate, see: Merlino (1971[Merlino, S. (1971). Acta Cryst. B27, 2491-2492.]); Varghese et al. (1986[Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544-1546.]). For graph-set motif notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10O4

  • Mr = 206.19

  • Monoclinic, P 21 /c

  • a = 17.7458 (8) Å

  • b = 4.0629 (2) Å

  • c = 14.5745 (7) Å

  • β = 107.868 (3)°

  • V = 1000.13 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • 13052 measured reflections

  • 2015 independent reflections

  • 1523 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.155

  • S = 1.06

  • 2015 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.93 2.54 3.440 (2) 164
C8—H8⋯O4ii 0.93 2.61 3.529 (2) 171
C11—H11C⋯O2iii 0.96 2.63 3.578 (2) 168
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cinnamic acid derivatives have received attention in medicinal research as traditional as well as recent synthetic antitumor agents (De et al., 2011). They also posses significant antibacterial activities against staphylococcus aureus (Xiao et al., 2008). Different substitutions on the basic moiety lead to various pharmacological activities, such as antioxidant, hepatoprotective, anxiolytic, insect repellent, antidiabetic, and anticholesterolemic (Sharma, 2011).

In the title molecule, Fig. 1, the methyl acrylate group is essentially planar, with a maximum deviation of 0.0264 (19) Å for atom C9. Its mean plane forms a dihedral angle of 31.74 (6)° with the benzene ring (C2—C7). The molecular dimensions are in excellent agreement with the those reported for a closely related compound (Karthikeyan et al., 2012).

The configuration of the keto group with respect to the olefinic double bond is typically S-trans, with the O2C10—C9C8 torsion angle = 178.78 (19)°. The methyl acrylate group adopts an extended E conformation with torsion angles C8C9—C10O2 = 178.78 (19)°, C8 C9—C10—O1 = -1.2 (3)°, C9—C10—O1—C11 = -178.82 (16)° and O2 C10—O1—C11 = 1.2 (3)°. The extended conformation is supported by the fact that the bond angles involving carbonyl O atoms are invariably enlarged (Dunitz & Schweizer, 1982).

The significant difference in the bond lengths C10—O1 = 1.342 (2) Å and C11—O1 = 1.438 (2) Å is attributed to a partial contribution from the O-—CO+—C resonance structure of the O2C10—O1—C11 group (Merlino, 1971). This feature, commonly observed for the carboxylic ester group of substituents in various compounds gives average values of 1.340 Å and 1.447 Å, respectively (Varghese et al., 1986).

The crystal packing (Fig. 2 and Table 1) is stabilized by C—H···O intermolecular interactions. The molecules are linked into inversion dimers via C9—H9···O2 interactions resulting in an R22(8) graph-set motif (Bernstein et al., 1995). The dimers are further consolidated by R23(16) graph-set ring motifs via C8—H8···O4 and C11—H11C···O2 interactions resulting in chains of molecules running parallel to the c axis; the keto group O atom (O2) is involved in bifurcated hydrogen bonding.

Related literature top

For applications of acrylate derivatives, see: Xiao et al. (2008); De et al. (2011); Sharma (2011). For related crystal structures, see: Karthikeyan et al. (2012). For E-conformation aspects, see: Dunitz & Schweizer (1982). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For graph-set motif notation, see: Bernstein et al. (1995).

Experimental top

Salicylaldehyde (1 mmol) was dissolved in an aqueous solution of K2CO3 (1 mmol) and methyl propiolate (1 mmol) was added. The reaction mixture was stirred vigorously at room temperature. A turbid solution was formed by consumption of salicylaldehyde (monitored by TLC) in 5 min, the reaction mixture then became clear. The title compound was precipitated as a solid in water. The product was isolated by filtration without further purification [Yield 75%]. Block-like colourless crystals were obtained by slow evaporation of a solution in ethylacetate.

Refinement top

The H atoms could all be located in difference electron-density maps. In the final cycles of refinement they were treated as riding atoms: C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5 Ueq(C– methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al.,2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, showing the formation of the R22(8) graph-set motif. The dimers are further consolidated by R23(16) graph-set ring motifs. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).)
Methyl (E)-3-(2-formylphenoxy)acrylate top
Crystal data top
C11H10O4F(000) = 432
Mr = 206.19Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 2015 reflections
a = 17.7458 (8) Åθ = 1.2–26.3°
b = 4.0629 (2) ŵ = 0.11 mm1
c = 14.5745 (7) ÅT = 293 K
β = 107.868 (3)°Block, colorless
V = 1000.13 (8) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
1523 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 26.3°, θmin = 1.2°
ω scansh = 2221
13052 measured reflectionsk = 55
2015 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1001P)2 + 0.0957P]
where P = (Fo2 + 2Fc2)/3
2015 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C11H10O4V = 1000.13 (8) Å3
Mr = 206.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.7458 (8) ŵ = 0.11 mm1
b = 4.0629 (2) ÅT = 293 K
c = 14.5745 (7) Å0.20 × 0.15 × 0.10 mm
β = 107.868 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1523 reflections with I > 2σ(I)
13052 measured reflectionsRint = 0.027
2015 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2015 reflectionsΔρmin = 0.17 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19462 (11)0.6483 (5)1.09554 (11)0.0570 (5)
H10.24260.75881.10790.068*
C20.16126 (8)0.4928 (4)1.00055 (10)0.0437 (4)
C30.08802 (9)0.3378 (4)0.97865 (12)0.0518 (5)
H30.06210.32501.02520.062*
C40.05341 (10)0.2034 (5)0.88901 (13)0.0574 (5)
H40.00400.10330.87460.069*
C50.09250 (10)0.2182 (5)0.82056 (12)0.0545 (5)
H50.06920.12650.76000.065*
C60.16554 (9)0.3671 (4)0.84083 (11)0.0484 (4)
H60.19180.37340.79460.058*
C70.19943 (8)0.5068 (4)0.93033 (10)0.0425 (4)
C80.30241 (9)0.7868 (4)0.88985 (11)0.0463 (4)
H80.27060.80140.82600.056*
C90.37579 (9)0.8937 (5)0.91462 (12)0.0542 (5)
H90.40750.86490.97800.065*
C100.40974 (9)1.0549 (5)0.84737 (12)0.0516 (4)
C110.39059 (12)1.2299 (6)0.68764 (14)0.0655 (5)
H11A0.41031.44520.70970.098*
H11B0.34941.24840.62720.098*
H11C0.43291.09760.67940.098*
O10.35946 (7)1.0781 (3)0.75754 (8)0.0598 (4)
O20.47632 (7)1.1596 (4)0.86851 (10)0.0723 (5)
O30.27287 (6)0.6544 (3)0.95771 (7)0.0541 (4)
O40.16367 (9)0.6413 (5)1.15808 (9)0.0821 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0536 (10)0.0738 (13)0.0448 (8)0.0075 (8)0.0171 (7)0.0039 (8)
C20.0403 (8)0.0498 (10)0.0419 (8)0.0095 (6)0.0142 (6)0.0084 (7)
C30.0432 (9)0.0604 (11)0.0562 (9)0.0071 (7)0.0220 (7)0.0119 (8)
C40.0442 (9)0.0590 (11)0.0665 (11)0.0046 (8)0.0134 (8)0.0077 (8)
C50.0531 (10)0.0542 (10)0.0504 (9)0.0009 (8)0.0074 (7)0.0007 (8)
C60.0485 (9)0.0547 (10)0.0443 (8)0.0048 (7)0.0175 (7)0.0049 (7)
C70.0357 (7)0.0485 (10)0.0429 (7)0.0054 (6)0.0115 (6)0.0082 (6)
C80.0411 (8)0.0565 (10)0.0435 (8)0.0025 (7)0.0162 (6)0.0013 (7)
C90.0425 (8)0.0710 (12)0.0490 (9)0.0019 (8)0.0137 (7)0.0027 (8)
C100.0383 (8)0.0609 (11)0.0580 (9)0.0018 (7)0.0184 (7)0.0063 (8)
C110.0639 (11)0.0721 (13)0.0669 (11)0.0039 (10)0.0297 (9)0.0095 (10)
O10.0487 (7)0.0767 (9)0.0553 (7)0.0123 (6)0.0181 (5)0.0033 (6)
O20.0431 (7)0.1021 (13)0.0731 (8)0.0180 (7)0.0197 (6)0.0050 (7)
O30.0403 (6)0.0800 (9)0.0427 (6)0.0071 (5)0.0139 (5)0.0042 (5)
O40.0787 (10)0.1250 (15)0.0509 (7)0.0008 (9)0.0322 (7)0.0084 (7)
Geometric parameters (Å, º) top
C1—O41.200 (2)C7—O31.3778 (18)
C1—C21.471 (2)C8—C91.314 (2)
C1—H10.9300C8—O31.3640 (18)
C2—C31.390 (2)C8—H80.9300
C2—C71.3910 (19)C9—C101.454 (2)
C3—C41.375 (3)C9—H90.9300
C3—H30.9300C10—O21.2035 (19)
C4—C51.380 (2)C10—O11.342 (2)
C4—H40.9300C11—O11.438 (2)
C5—C61.378 (2)C11—H11A0.9600
C5—H50.9300C11—H11B0.9600
C6—C71.380 (2)C11—H11C0.9600
C6—H60.9300
O4—C1—C2123.98 (17)O3—C7—C2115.83 (13)
O4—C1—H1118.0C6—C7—C2120.61 (14)
C2—C1—H1118.0C9—C8—O3120.00 (14)
C3—C2—C7118.80 (14)C9—C8—H8120.0
C3—C2—C1119.24 (14)O3—C8—H8120.0
C7—C2—C1121.91 (15)C8—C9—C10122.98 (15)
C4—C3—C2120.77 (15)C8—C9—H9118.5
C4—C3—H3119.6C10—C9—H9118.5
C2—C3—H3119.6O2—C10—O1122.10 (15)
C3—C4—C5119.52 (16)O2—C10—C9124.32 (16)
C3—C4—H4120.2O1—C10—C9113.58 (14)
C5—C4—H4120.2O1—C11—H11A109.5
C6—C5—C4120.83 (15)O1—C11—H11B109.5
C6—C5—H5119.6H11A—C11—H11B109.5
C4—C5—H5119.6O1—C11—H11C109.5
C5—C6—C7119.46 (15)H11A—C11—H11C109.5
C5—C6—H6120.3H11B—C11—H11C109.5
C7—C6—H6120.3C10—O1—C11115.85 (13)
O3—C7—C6123.51 (13)C8—O3—C7120.10 (12)
O4—C1—C2—C32.7 (3)C3—C2—C7—C60.5 (2)
O4—C1—C2—C7179.85 (17)C1—C2—C7—C6178.03 (15)
C7—C2—C3—C40.6 (2)O3—C8—C9—C10176.28 (16)
C1—C2—C3—C4176.94 (17)C8—C9—C10—O2178.78 (19)
C2—C3—C4—C51.0 (3)C8—C9—C10—O11.2 (3)
C3—C4—C5—C60.3 (3)O2—C10—O1—C111.2 (3)
C4—C5—C6—C70.9 (3)C9—C10—O1—C11178.82 (16)
C5—C6—C7—O3178.55 (15)C9—C8—O3—C7172.25 (16)
C5—C6—C7—C21.3 (2)C6—C7—O3—C826.2 (2)
C3—C2—C7—O3178.02 (14)C2—C7—O3—C8156.37 (14)
C1—C2—C7—O34.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.543.440 (2)164
C8—H8···O4ii0.932.613.529 (2)171
C11—H11C···O2iii0.962.633.578 (2)168
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.543.440 (2)164
C8—H8···O4ii0.932.613.529 (2)171.2
C11—H11C···O2iii0.962.633.578 (2)167.6
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

SK and KS thank Dr D. Velmurugan, CAS in Crystallography and Biophysics, University of Madras, Maraimalai Campus, Chennai, India, for the X-ray intensity data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe, P., Baltas, M. & Bedos-Belvan, F. (2011). Curr. Med. Chem. 18, 1672–1703.  CrossRef CAS PubMed Google Scholar
First citationDunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547–1554.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2012). Acta Cryst. E68, o1273.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerlino, S. (1971). Acta Cryst. B27, 2491–2492.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSharma, P. (2011). J. Chem. Pharm. Res. 3, 403–423.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds