organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-oxo-2H-chromene-3-carboxyl­ate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bChemistry Division, Directorate of Science, PINSTECH, Nilore, Islamabad, Pakistan, and cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany.
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 19 September 2012; accepted 21 September 2012; online 26 September 2012)

The title compound, C11H8O4, features an almost planar mol­ecule (r.m.s. deviation = 0.033 Å for all non-H atoms). In the crystal, the mol­ecules are linked via C—H⋯O hydrogen bonds, forming two-dimensional networks lying parallel to (1-21).

Related literature

For details of the biological activity of coumarins, see: Surya et al. (2006[Surya, H., Rao, P. & Sivakumar, S. (2006). J. Org. Chem. 71, 8715-8718.]); Kostova (2006[Kostova, I. (2006). Curr. HIV Res. 4, 347-351.]); Reddy et al. (2002[Reddy, N. S., Mallireddigari, M. R., Cosenza, S., Gumireddy, K., Bell, S. C. E. P., Reddy, E. P. & Murray, R. D. H. (2002). Prog. Chem. Org. Nat. Prod. 83, 1-42.]); Lacy & O'Kennedy (2004[Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797-3811.]). For other applications of coumarins, see: Flašík et al. (2009[Flašík, R., Stankovičová, H., Gáplovský, A. & Donovalová, J. (2009). Molecules, 14, 4838-4842.]); Fonsecaa et al. (2010[Fonsecaa, F. V., Baldissera, L. Jr, Camargo, E. A., Antunes, E., Diz-Filhoa, E. B. S., Corrêa, A. G., Beriamd, L. O. S., Toyamae, D. O., Cotrima, C. A. & Toyama, M. H. (2010). Toxicon, 55, 1527-1530.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8O4

  • Mr = 204.17

  • Triclinic, [P \overline 1]

  • a = 3.8874 (10) Å

  • b = 9.782 (3) Å

  • c = 13.078 (3) Å

  • α = 111.569 (19)°

  • β = 90.83 (2)°

  • γ = 95.01 (2)°

  • V = 460.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.30 × 0.27 × 0.20 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-RED32; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.967, Tmax = 0.978

  • 4851 measured reflections

  • 1725 independent reflections

  • 1378 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.09

  • 1725 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.54 3.360 (2) 145
C5—H5⋯O3i 0.95 2.46 3.298 (2) 147
C8—H8⋯O1ii 0.95 2.55 3.454 (2) 160
C11—H11A⋯O2iii 0.98 2.53 3.354 (2) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z; (iii) -x+3, -y+2, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarins (2H-1-benzopyran-2-ones) are natural lactones and amongst the best known oxygen heterocycles, well represented as a structural motif in numerous natural products (Surya et al., 2006). Various coumarin derivatives are known to possess an array of biological activities, including anticancer, anti-HIV, anti acetylcholinesterase, antifungal, antioxidant, antihelmintic, anticoagulant, antibacterial, antiviral and anticlotting activities, and find extensive application in pharmaceuticals, fragrances, agrochemicals, additives in food and cosmetics and insecticides (Kostova, 2006; Reddy et al., 2002; Lacy & O'Kennedy, 2004). Moreover, coumarins find applications as dyes in laser technology, fluorescent indicators, optical brighteners and photosensitizers (Flašík et al., 2009). Ethyl 2-oxo-2H-chromene-3-carboxylate irreversibly inhibits phospholipase A2 (sPLA2) from Crotalus durissus ruruima venom with an IC50 of 3.1 ± 0.06 nmol (Fonsecaa et al., 2010).

The title compound, Fig. 1, features an almost planar molecule (r.m.s. deviation = 0.033 Å for all non-H atoms). The maximum deviation from the mean plane being 0.0734 (12) Å for atom O2.

In the crystal, molecules are linked via C—H···O hydrogen bonds forming two-dimensional networks lying parallel to (121); Table 1 and Fig. 2.

Related literature top

For details of the biological activity of coumarins, see: Surya et al. (2006); Kostova (2006); Reddy et al. (2002); Lacy & O'Kennedy (2004). For other applications of coumarins, see: Flašík et al. (2009); Fonsecaa et al. (2010). [Please revise scheme to show correct methyl derivative, not ethyl]

Experimental top

Salicylaldehyde (1.22 g, 0.01 mol) and diethylmalonate (1.6 g, 0.01 mol) were dissolved in ethanol to give a clear solution. Piperidine (2 ml) was added and the mixture was refluxed for 5 h. The content was concentrated to a small volume. The product (3) was poured onto crushed ice, filtered out and crystallized from ethanol to give colourless crystals, m.p. 393–395 K; Yield: 90%. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

All the H atoms were included in calculated positions and treated as riding atoms: Caromatic—H = 0.95 Å and Cmethyl—H = 0.98 Å, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

Coumarins (2H-1-benzopyran-2-ones) are natural lactones and amongst the best known oxygen heterocycles, well represented as a structural motif in numerous natural products (Surya et al., 2006). Various coumarin derivatives are known to possess an array of biological activities, including anticancer, anti-HIV, anti acetylcholinesterase, antifungal, antioxidant, antihelmintic, anticoagulant, antibacterial, antiviral and anticlotting activities, and find extensive application in pharmaceuticals, fragrances, agrochemicals, additives in food and cosmetics and insecticides (Kostova, 2006; Reddy et al., 2002; Lacy & O'Kennedy, 2004). Moreover, coumarins find applications as dyes in laser technology, fluorescent indicators, optical brighteners and photosensitizers (Flašík et al., 2009). Ethyl 2-oxo-2H-chromene-3-carboxylate irreversibly inhibits phospholipase A2 (sPLA2) from Crotalus durissus ruruima venom with an IC50 of 3.1 ± 0.06 nmol (Fonsecaa et al., 2010).

The title compound, Fig. 1, features an almost planar molecule (r.m.s. deviation = 0.033 Å for all non-H atoms). The maximum deviation from the mean plane being 0.0734 (12) Å for atom O2.

In the crystal, molecules are linked via C—H···O hydrogen bonds forming two-dimensional networks lying parallel to (121); Table 1 and Fig. 2.

For details of the biological activity of coumarins, see: Surya et al. (2006); Kostova (2006); Reddy et al. (2002); Lacy & O'Kennedy (2004). For other applications of coumarins, see: Flašík et al. (2009); Fonsecaa et al. (2010). [Please revise scheme to show correct methyl derivative, not ethyl]

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound view along [100]. Hydrogen bonds are drawn as dashed lines.
Methyl 2-oxo-2H-chromene-3-carboxylate top
Crystal data top
C11H8O4Z = 2
Mr = 204.17F(000) = 212
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8874 (10) ÅCell parameters from 10306 reflections
b = 9.782 (3) Åθ = 3.3–26.0°
c = 13.078 (3) ŵ = 0.11 mm1
α = 111.569 (19)°T = 173 K
β = 90.83 (2)°Block, colourless
γ = 95.01 (2)°0.30 × 0.27 × 0.20 mm
V = 460.1 (2) Å3
Data collection top
Stoe IPDS II two-circle
diffractometer
1725 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source1378 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.054
ω scansθmax = 25.7°, θmin = 4.2°
Absorption correction: multi-scan
(X-RED32; Stoe & Cie, 2001)
h = 44
Tmin = 0.967, Tmax = 0.978k = 1111
4851 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.0733P]
where P = (Fo2 + 2Fc2)/3
1725 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C11H8O4γ = 95.01 (2)°
Mr = 204.17V = 460.1 (2) Å3
Triclinic, P1Z = 2
a = 3.8874 (10) ÅMo Kα radiation
b = 9.782 (3) ŵ = 0.11 mm1
c = 13.078 (3) ÅT = 173 K
α = 111.569 (19)°0.30 × 0.27 × 0.20 mm
β = 90.83 (2)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1725 independent reflections
Absorption correction: multi-scan
(X-RED32; Stoe & Cie, 2001)
1378 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.978Rint = 0.054
4851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
1725 reflectionsΔρmin = 0.18 e Å3
136 parameters
Special details top

Experimental. Spectroscopic data for the title compound: IR (KBr, cm-1) 1710 (CO, coumarin), 1670 (CO), 1750 (CO, ester), 1200 (C—O); 1HNMR (DMSO-d6, 300MHz, δ p.p.m.): 7.5 (4H, m, Ar—H), 8.1 (1H, s, Ar—H, H-4), 1.83 (3H, t, CH3), 3.20 (2H, q, CH2). Mass m/z (%): 216 M+.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8969 (3)0.56201 (13)0.15727 (9)0.0371 (3)
O21.2039 (3)0.76399 (14)0.26510 (10)0.0472 (4)
O30.8489 (3)0.68616 (13)0.54600 (9)0.0469 (4)
O41.1674 (3)0.84024 (13)0.48731 (9)0.0394 (3)
C11.0100 (4)0.66021 (18)0.26166 (14)0.0352 (4)
C20.8796 (4)0.62198 (18)0.35402 (13)0.0328 (4)
C30.6775 (4)0.49482 (18)0.33393 (13)0.0329 (4)
H30.59780.47150.39450.039*
C40.5793 (4)0.39425 (18)0.22513 (13)0.0330 (4)
C50.3781 (4)0.25926 (18)0.20103 (14)0.0371 (4)
H50.29430.23140.25910.045*
C60.3016 (4)0.1670 (2)0.09335 (15)0.0408 (4)
H60.16950.07450.07730.049*
C70.4178 (4)0.2090 (2)0.00751 (14)0.0422 (4)
H70.36040.14520.06660.051*
C80.6144 (4)0.34155 (19)0.02878 (14)0.0385 (4)
H80.69270.37000.02960.046*
C90.6949 (4)0.43218 (18)0.13747 (13)0.0338 (4)
C100.9625 (4)0.71847 (18)0.47158 (13)0.0338 (4)
C111.2460 (4)0.9364 (2)0.60135 (14)0.0415 (4)
H11A1.39861.02310.60430.062*
H11B1.36140.88270.63990.062*
H11C1.03110.96820.63680.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (6)0.0439 (7)0.0297 (6)0.0047 (5)0.0051 (5)0.0184 (5)
O20.0525 (7)0.0500 (7)0.0411 (7)0.0127 (6)0.0077 (6)0.0228 (6)
O30.0582 (7)0.0504 (8)0.0306 (7)0.0130 (6)0.0077 (5)0.0171 (6)
O40.0420 (6)0.0437 (7)0.0321 (6)0.0096 (5)0.0006 (5)0.0167 (5)
C10.0333 (8)0.0419 (9)0.0325 (9)0.0004 (7)0.0049 (6)0.0171 (7)
C20.0294 (7)0.0411 (9)0.0312 (9)0.0011 (6)0.0042 (6)0.0178 (7)
C30.0309 (8)0.0423 (9)0.0301 (8)0.0021 (7)0.0053 (6)0.0191 (7)
C40.0304 (7)0.0400 (9)0.0313 (9)0.0015 (6)0.0033 (6)0.0165 (7)
C50.0349 (8)0.0450 (9)0.0348 (9)0.0009 (7)0.0024 (7)0.0198 (8)
C60.0395 (8)0.0422 (9)0.0401 (10)0.0031 (7)0.0016 (7)0.0161 (8)
C70.0407 (9)0.0506 (10)0.0318 (9)0.0017 (8)0.0016 (7)0.0120 (8)
C80.0372 (8)0.0505 (10)0.0318 (9)0.0043 (7)0.0044 (7)0.0199 (8)
C90.0300 (7)0.0407 (9)0.0339 (9)0.0018 (6)0.0034 (6)0.0179 (7)
C100.0319 (8)0.0390 (9)0.0333 (9)0.0003 (6)0.0032 (6)0.0173 (7)
C110.0417 (9)0.0456 (10)0.0356 (9)0.0061 (7)0.0029 (7)0.0158 (8)
Geometric parameters (Å, º) top
O1—C91.3691 (19)C4—C51.400 (2)
O1—C11.387 (2)C5—C61.376 (2)
O2—C11.1970 (19)C5—H50.9500
O3—C101.2069 (19)C6—C71.398 (3)
O4—C101.3209 (19)C6—H60.9500
O4—C111.452 (2)C7—C81.378 (2)
C1—C21.474 (2)C7—H70.9500
C2—C31.348 (2)C8—C91.384 (2)
C2—C101.491 (2)C8—H80.9500
C3—C41.424 (2)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C4—C91.397 (2)C11—H11C0.9800
C9—O1—C1123.86 (12)C7—C6—H6119.9
C10—O4—C11115.67 (12)C8—C7—C6120.97 (17)
O2—C1—O1115.90 (14)C8—C7—H7119.5
O2—C1—C2128.38 (16)C6—C7—H7119.5
O1—C1—C2115.71 (14)C7—C8—C9118.30 (15)
C3—C2—C1120.00 (16)C7—C8—H8120.9
C3—C2—C10117.20 (14)C9—C8—H8120.9
C1—C2—C10122.80 (15)O1—C9—C8117.63 (13)
C2—C3—C4122.29 (14)O1—C9—C4120.23 (15)
C2—C3—H3118.9C8—C9—C4122.14 (15)
C4—C3—H3118.9O3—C10—O4123.18 (16)
C9—C4—C5118.29 (15)O3—C10—C2121.75 (15)
C9—C4—C3117.80 (15)O4—C10—C2115.07 (13)
C5—C4—C3123.90 (14)O4—C11—H11A109.5
C6—C5—C4120.13 (15)O4—C11—H11B109.5
C6—C5—H5119.9H11A—C11—H11B109.5
C4—C5—H5119.9O4—C11—H11C109.5
C5—C6—C7120.15 (16)H11A—C11—H11C109.5
C5—C6—H6119.9H11B—C11—H11C109.5
C9—O1—C1—O2175.14 (13)C1—O1—C9—C8177.09 (13)
C9—O1—C1—C24.0 (2)C1—O1—C9—C42.4 (2)
O2—C1—C2—C3175.95 (16)C7—C8—C9—O1178.57 (13)
O1—C1—C2—C33.1 (2)C7—C8—C9—C40.9 (2)
O2—C1—C2—C103.8 (3)C5—C4—C9—O1178.95 (13)
O1—C1—C2—C10177.24 (12)C3—C4—C9—O10.3 (2)
C1—C2—C3—C40.7 (2)C5—C4—C9—C80.6 (2)
C10—C2—C3—C4179.63 (13)C3—C4—C9—C8179.76 (13)
C2—C3—C4—C91.1 (2)C11—O4—C10—O30.9 (2)
C2—C3—C4—C5178.10 (14)C11—O4—C10—C2179.09 (12)
C9—C4—C5—C60.7 (2)C3—C2—C10—O31.4 (2)
C3—C4—C5—C6178.50 (14)C1—C2—C10—O3178.88 (14)
C4—C5—C6—C71.4 (2)C3—C2—C10—O4178.57 (13)
C5—C6—C7—C81.0 (2)C1—C2—C10—O41.1 (2)
C6—C7—C8—C90.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.543.360 (2)145
C5—H5···O3i0.952.463.298 (2)147
C8—H8···O1ii0.952.553.454 (2)160
C11—H11A···O2iii0.982.533.354 (2)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x+3, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC11H8O4
Mr204.17
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)3.8874 (10), 9.782 (3), 13.078 (3)
α, β, γ (°)111.569 (19), 90.83 (2), 95.01 (2)
V3)460.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.27 × 0.20
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(X-RED32; Stoe & Cie, 2001)
Tmin, Tmax0.967, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
4851, 1725, 1378
Rint0.054
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.09
No. of reflections1725
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: X-AREA (Stoe & Cie, 2001), X-RED32 (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.543.360 (2)145
C5—H5···O3i0.952.463.298 (2)147
C8—H8···O1ii0.952.553.454 (2)160
C11—H11A···O2iii0.982.533.354 (2)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x+3, y+2, z+1.
 

References

First citationFlašík, R., Stankovičová, H., Gáplovský, A. & Donovalová, J. (2009). Molecules, 14, 4838–4842.  Web of Science PubMed Google Scholar
First citationFonsecaa, F. V., Baldissera, L. Jr, Camargo, E. A., Antunes, E., Diz-Filhoa, E. B. S., Corrêa, A. G., Beriamd, L. O. S., Toyamae, D. O., Cotrima, C. A. & Toyama, M. H. (2010). Toxicon, 55, 1527–1530.  Web of Science PubMed Google Scholar
First citationKostova, I. (2006). Curr. HIV Res. 4, 347–351.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReddy, N. S., Mallireddigari, M. R., Cosenza, S., Gumireddy, K., Bell, S. C. E. P., Reddy, E. P. & Murray, R. D. H. (2002). Prog. Chem. Org. Nat. Prod. 83, 1–42.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSurya, H., Rao, P. & Sivakumar, S. (2006). J. Org. Chem. 71, 8715–8718.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds