metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­phenyl­phosphanyl­­idene)iminium di­chloridotri­phenyl­stannate(IV)

aDipartimento di Chimica GIAF, Viale delle Scienze, 17/A, Università di Parma, 43100 Parma, Italy
*Correspondence e-mail: claudia.graiff@unipr.it

(Received 14 July 2011; accepted 30 August 2011; online 14 September 2011)

The structure of the title compound, [Ph3P=N=PPh3]+[Ph3SnCl2] or (C36H30NP2)[Sn(C6H5)3Cl2], obtained as a by product of the reaction between Ph3SnCl and [Ph3P=N=PPh3]+·HSeO3, consists of discrete essentially isolated ions. Both the cation and the anion lie on twofold axes which pass through the central N atom in the cation and through the SnIV atom in the anion. In the crystal, the ions inter­act only through a weak inter­action between the Cl atom of the anion and an H atom of a phenyl ring of the cation.

Related literature

For general background to selenite compounds, see: Delferro et al. (2010[Delferro, M., Graiff, C., Elviri, L. & Predieri, G. (2010). Dalton Trans. 39, 4479-4481.], 2011[Delferro, M., Graiff, C., Marchiò, L., Elviri, L., Mazzani, M., Riccò, M. & Predieri, G. (2011). Eur. J. Inorg. Chem. doi:10.1002/ejic.201100385.]). For related structures, see: Harrison et al. (1978[Harrison, P. G., Molloy, K., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421-434.]); Nayek et al. (2010[Nayek, H. P., Massa, W. & Dehnen, S. (2010). Inorg. Chem. 49, 144-149.]); Ng (1995[Ng, S. W. (1995). Acta Cryst. C51, 1124-1125.], 1999[Ng, S. W. (1999). Acta Cryst. C55, IUC9900098.]). For details of the Cambridge Crystal Structure Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C36H30NP2)[Sn(C6H5)3Cl2]

  • Mr = 959.44

  • Orthorhombic, P n n 2

  • a = 17.9119 (6) Å

  • b = 9.7744 (3) Å

  • c = 13.3835 (4) Å

  • V = 2343.16 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 K

  • 0.42 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.629, Tmax = 0.746

  • 36432 measured reflections

  • 7179 independent reflections

  • 6352 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.04

  • 7179 reflections

  • 273 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3430 Friedel pairs

  • Flack parameter: −0.022 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl1i 0.93 2.79 3.718 (2) 173
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was isolated from a dichloromethane solution as a by product of the reaction between of Ph3SnCl with [Ph3P=N=PPh3]+ HSeO3- in dichloromethane solvent. The hydrogen selenite salt, prepared in the framework of our research activity on selenite compounds (Delferro et al., 2010, Delferro et al., 2011), contained a significant amount of [Ph3P=N=PPh3]+ Cl-, which is responsible of the formation of the title compound.

The structure of the title compound consists of discrete [Ph3P=N=PPh3]+ and [Ph3SnCl2]- ions (Fig. 1). The [Ph3P=N=PPh3]+, (or PPN+ for simplicity), cation is rather typical, lieing on a two fold axis that passes through the central N atom, N1. The P1—N1 bond distance of 1.5763 (9) Å and the P1—N1—P1i [symmetry code (i) = -x + 2, -y + 1, z] bond angle of 141.9 (2)° are in good agreement with the average values of 1.577 (6) Å and 143 (9)° found in 1409 PPN+ cations reported in the Cambridge Crystal Structure Database (CSD, V5.32, last update May 2011; Allen, 2002), see Fig. 3. In particular, examining the 1409 PPN+ cations it is evident that less than 40 examples present a linear geometry at the nitrogen atom. On excluding these cases the mean value of the P—N—P bond angle is reduced to 142 (7)°, even more in agreement with the angle in the title compound. The P atom is tetrahedral, with the C—P—C and C—P—N angles averaging 109 (3)°.

The [Ph3SnCl2]- anion exhibits trigonal bipyramidal geometry at the tin atom, with the usual equatorial arrangement of organic groups and the chlorine atoms occupying axial positions. The anion is lying on a two-fold axis passing through the tin atom and atom C25 and C28 of one phenyl ring. The Cl1—Sn1 bond distance is 2.5858 (4) Å and the Cl—Sn—Clii [symmetry code: (ii) = -x + 2, -y + 2, z] bond angle is 177.83 (4)°, both in agreement with the values found in four examples (Ng, 1995,1999; Harrison et al., 1978; Nayek et al., 2010) reported in the CSD: The mean values are 2.590 (2) Å and 176.6 (7)°, respectively. The mean planes of the phenyl rings form dihedral angles of 59.70 (2)° and 38.78 (2)° with the SnC3 mean plane.

In the crystal there is a weak interaction between the chlorine atom of the dichlorotriphenylstannate anion and a hydrogen atom of a phenyl ring of the bis(triphenylphosphine)iminium cation (Table 1).

Related literature top

For general background to selenite compounds, see: Delferro et al. (2010, 2011). For related structures, see: Harrison et al. (1978); Nayek et al. (2010); Ng (1995, 1999). For details of the Cambridge Crystal Structure Database, see: Allen (2002).

Experimental top

A dichloromethane solution of equimolar amounts of triphenyl-tin chloride and bis(triphenylphosphine)iminium hydrogenselenite was stirred at room temperature for 1 h. The solution was then cooled slowly to 278 K. Crystals suitable for X-ray analysis were obtained from the solution in two days.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 Å for CH(aromatic), with Uiso(H) = 1.2Ueq(parent C-atom).

Structure description top

The title compound was isolated from a dichloromethane solution as a by product of the reaction between of Ph3SnCl with [Ph3P=N=PPh3]+ HSeO3- in dichloromethane solvent. The hydrogen selenite salt, prepared in the framework of our research activity on selenite compounds (Delferro et al., 2010, Delferro et al., 2011), contained a significant amount of [Ph3P=N=PPh3]+ Cl-, which is responsible of the formation of the title compound.

The structure of the title compound consists of discrete [Ph3P=N=PPh3]+ and [Ph3SnCl2]- ions (Fig. 1). The [Ph3P=N=PPh3]+, (or PPN+ for simplicity), cation is rather typical, lieing on a two fold axis that passes through the central N atom, N1. The P1—N1 bond distance of 1.5763 (9) Å and the P1—N1—P1i [symmetry code (i) = -x + 2, -y + 1, z] bond angle of 141.9 (2)° are in good agreement with the average values of 1.577 (6) Å and 143 (9)° found in 1409 PPN+ cations reported in the Cambridge Crystal Structure Database (CSD, V5.32, last update May 2011; Allen, 2002), see Fig. 3. In particular, examining the 1409 PPN+ cations it is evident that less than 40 examples present a linear geometry at the nitrogen atom. On excluding these cases the mean value of the P—N—P bond angle is reduced to 142 (7)°, even more in agreement with the angle in the title compound. The P atom is tetrahedral, with the C—P—C and C—P—N angles averaging 109 (3)°.

The [Ph3SnCl2]- anion exhibits trigonal bipyramidal geometry at the tin atom, with the usual equatorial arrangement of organic groups and the chlorine atoms occupying axial positions. The anion is lying on a two-fold axis passing through the tin atom and atom C25 and C28 of one phenyl ring. The Cl1—Sn1 bond distance is 2.5858 (4) Å and the Cl—Sn—Clii [symmetry code: (ii) = -x + 2, -y + 2, z] bond angle is 177.83 (4)°, both in agreement with the values found in four examples (Ng, 1995,1999; Harrison et al., 1978; Nayek et al., 2010) reported in the CSD: The mean values are 2.590 (2) Å and 176.6 (7)°, respectively. The mean planes of the phenyl rings form dihedral angles of 59.70 (2)° and 38.78 (2)° with the SnC3 mean plane.

In the crystal there is a weak interaction between the chlorine atom of the dichlorotriphenylstannate anion and a hydrogen atom of a phenyl ring of the bis(triphenylphosphine)iminium cation (Table 1).

For general background to selenite compounds, see: Delferro et al. (2010, 2011). For related structures, see: Harrison et al. (1978); Nayek et al. (2010); Ng (1995, 1999). For details of the Cambridge Crystal Structure Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the [Ph3P=N=PPh3]+ cation, showing the atom labelling and the displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. Symmetry code for generating equivalent atoms: ' = -x + 2, -y + 1, z.
[Figure 2] Fig. 2. ORTEP drawing of the [Ph3SnCl2]- anion, showing the atom labelling and the displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. Symmetry code for generating equivalent atoms: ' = -x + 2, -y + 2, z.
[Figure 3] Fig. 3. Histogram showing the distribution of the P—N—P bond angle over the 1409 [Ph3P=N=PPh3]+ cations reported in the Cambridge Structural Database (Allen, 2002).
Bis(triphenylphosphanylidene)iminium dichloridotriphenylstannate(IV) top
Crystal data top
(C36H30NP2)[Sn(C6H5)3Cl2]F(000) = 980
Mr = 959.44Dx = 1.360 Mg m3
Orthorhombic, Pnn2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 -2nCell parameters from 999 reflections
a = 17.9119 (6) Åθ = 3–27°
b = 9.7744 (3) ŵ = 0.76 mm1
c = 13.3835 (4) ÅT = 296 K
V = 2343.16 (13) Å3Prism, colourless
Z = 20.42 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
7179 independent reflections
Radiation source: fine-focus sealed tube6352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 30.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2525
Tmin = 0.629, Tmax = 0.746k = 1313
36432 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.062P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7179 reflectionsΔρmax = 0.20 e Å3
273 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 3430 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (13)
Crystal data top
(C36H30NP2)[Sn(C6H5)3Cl2]V = 2343.16 (13) Å3
Mr = 959.44Z = 2
Orthorhombic, Pnn2Mo Kα radiation
a = 17.9119 (6) ŵ = 0.76 mm1
b = 9.7744 (3) ÅT = 296 K
c = 13.3835 (4) Å0.42 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
7179 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6352 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.746Rint = 0.026
36432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.25 e Å3
7179 reflectionsAbsolute structure: Flack (1983), 3430 Friedel pairs
273 parametersAbsolute structure parameter: 0.022 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88435 (9)0.69033 (16)0.54090 (12)0.0432 (3)
C20.81206 (10)0.72511 (17)0.51192 (17)0.0576 (5)
H20.78110.65960.48320.069*
C30.78656 (12)0.8566 (2)0.5259 (2)0.0726 (6)
H30.73840.88000.50650.087*
C40.83185 (16)0.9526 (2)0.5683 (2)0.0786 (7)
H40.81461.04160.57640.094*
C50.90228 (15)0.9193 (2)0.5988 (2)0.0812 (7)
H50.93230.98520.62870.097*
C60.92925 (11)0.7871 (2)0.58522 (17)0.0611 (5)
H60.97720.76430.60590.073*
C70.85781 (9)0.40724 (16)0.59273 (12)0.0436 (3)
C80.88264 (11)0.3604 (2)0.68448 (15)0.0542 (4)
H80.93060.38180.70600.065*
C90.83627 (14)0.2816 (2)0.74452 (16)0.0677 (5)
H90.85300.25000.80610.081*
C100.76534 (13)0.2506 (2)0.71193 (19)0.0711 (6)
H100.73390.19890.75240.085*
C110.74047 (11)0.2948 (2)0.62107 (19)0.0660 (6)
H110.69280.27130.59950.079*
C120.78589 (9)0.37442 (19)0.56092 (16)0.0537 (4)
H120.76850.40590.49960.064*
C130.90382 (10)0.48460 (16)0.39035 (14)0.0428 (3)
C140.91498 (10)0.5907 (2)0.32243 (14)0.0507 (4)
H140.92510.67840.34560.061*
C150.91117 (12)0.5664 (3)0.22073 (16)0.0654 (5)
H150.91920.63760.17580.078*
C160.89552 (13)0.4373 (3)0.18605 (18)0.0725 (6)
H160.89220.42150.11770.087*
C170.88481 (14)0.3321 (3)0.2517 (2)0.0783 (7)
H170.87440.24500.22730.094*
C180.88920 (11)0.3529 (2)0.35474 (17)0.0601 (5)
H180.88250.28040.39890.072*
C190.93324 (11)0.8460 (2)0.92452 (14)0.0555 (4)
C200.94493 (15)0.7072 (2)0.9444 (2)0.0787 (6)
H200.98440.68070.98520.094*
C210.89793 (18)0.6079 (3)0.9033 (3)0.0981 (8)
H210.90640.51600.91720.118*
C220.84039 (17)0.6437 (3)0.8437 (2)0.0908 (8)
H220.80970.57660.81660.109*
C230.82711 (15)0.7791 (3)0.82299 (19)0.0835 (7)
H230.78740.80350.78190.100*
C240.87280 (12)0.8799 (2)0.86322 (17)0.0681 (5)
H240.86300.97140.84920.082*
C251.00001.00001.1555 (2)0.0497 (6)
C261.06462 (16)1.0253 (2)1.20891 (19)0.0680 (6)
H261.10921.04081.17520.082*
C271.0633 (2)1.0278 (3)1.3133 (2)0.0940 (11)
H271.10661.04881.34840.113*
C281.00001.00001.3635 (3)0.104 (2)
H281.00001.00001.43290.125*
N11.00000.50000.55925 (18)0.0477 (5)
P10.91740 (2)0.51807 (4)0.52080 (3)0.03734 (9)
Sn11.00001.00000.996036 (19)0.04870 (5)
Cl10.88562 (3)1.16132 (5)0.99969 (5)0.07087 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0413 (8)0.0429 (7)0.0452 (8)0.0004 (6)0.0109 (6)0.0061 (6)
C20.0472 (8)0.0522 (8)0.0735 (14)0.0078 (6)0.0013 (9)0.0093 (10)
C30.0606 (11)0.0593 (11)0.0979 (19)0.0178 (9)0.0169 (11)0.0040 (11)
C40.0870 (17)0.0482 (10)0.1007 (18)0.0135 (11)0.0296 (14)0.0106 (11)
C50.0852 (16)0.0531 (12)0.105 (2)0.0121 (11)0.0140 (14)0.0259 (12)
C60.0527 (10)0.0546 (10)0.0760 (13)0.0077 (8)0.0047 (9)0.0150 (9)
C70.0381 (7)0.0415 (7)0.0513 (9)0.0010 (6)0.0064 (7)0.0023 (7)
C80.0569 (11)0.0566 (10)0.0490 (10)0.0034 (8)0.0032 (8)0.0030 (8)
C90.0928 (16)0.0613 (11)0.0491 (10)0.0055 (10)0.0154 (10)0.0016 (9)
C100.0732 (14)0.0598 (12)0.0802 (15)0.0155 (10)0.0313 (12)0.0049 (10)
C110.0459 (10)0.0605 (11)0.0914 (16)0.0101 (8)0.0166 (10)0.0056 (11)
C120.0390 (8)0.0516 (10)0.0703 (12)0.0042 (7)0.0018 (8)0.0020 (8)
C130.0355 (7)0.0512 (9)0.0418 (9)0.0077 (6)0.0030 (6)0.0088 (6)
C140.0497 (9)0.0579 (9)0.0445 (9)0.0199 (7)0.0037 (7)0.0002 (7)
C150.0618 (11)0.0859 (15)0.0484 (10)0.0300 (11)0.0056 (9)0.0042 (10)
C160.0651 (13)0.1060 (18)0.0464 (11)0.0206 (13)0.0085 (9)0.0204 (13)
C170.0743 (14)0.0871 (17)0.0736 (16)0.0019 (12)0.0025 (12)0.0441 (14)
C180.0597 (11)0.0558 (11)0.0648 (13)0.0010 (8)0.0035 (9)0.0120 (9)
C190.0593 (11)0.0659 (11)0.0414 (9)0.0071 (8)0.0049 (8)0.0087 (8)
C200.0872 (16)0.0715 (13)0.0774 (15)0.0129 (12)0.0088 (12)0.0081 (11)
C210.113 (2)0.0713 (16)0.110 (2)0.0072 (15)0.0013 (18)0.0146 (16)
C220.0943 (19)0.0950 (19)0.0831 (18)0.0156 (15)0.0095 (15)0.0308 (14)
C230.0711 (15)0.114 (2)0.0650 (14)0.0008 (14)0.0075 (11)0.0255 (14)
C240.0700 (13)0.0775 (13)0.0567 (11)0.0032 (10)0.0080 (9)0.0113 (10)
C250.0626 (16)0.0476 (13)0.0389 (13)0.0052 (10)0.0000.000
C260.0810 (15)0.0662 (11)0.0568 (13)0.0148 (10)0.0186 (11)0.0072 (9)
C270.152 (3)0.0699 (14)0.0604 (16)0.0191 (16)0.0434 (19)0.0006 (12)
C280.210 (7)0.064 (2)0.0396 (17)0.012 (2)0.0000.000
N10.0341 (9)0.0663 (13)0.0427 (11)0.0008 (8)0.0000.000
P10.03077 (16)0.04225 (16)0.0390 (2)0.00106 (13)0.00104 (13)0.00220 (15)
Sn10.04949 (8)0.06206 (9)0.03456 (7)0.00872 (6)0.0000.000
Cl10.0614 (2)0.0894 (3)0.0618 (3)0.0292 (2)0.0110 (3)0.0201 (3)
Geometric parameters (Å, º) top
C1—C61.376 (2)C16—C171.367 (4)
C1—C21.394 (2)C16—H160.9300
C1—P11.8049 (16)C17—C181.396 (4)
C2—C31.377 (2)C17—H170.9300
C2—H20.9300C18—H180.9300
C3—C41.364 (4)C19—C241.398 (3)
C3—H30.9300C19—C201.398 (3)
C4—C51.365 (4)C19—Sn12.1476 (19)
C4—H40.9300C20—C211.397 (4)
C5—C61.391 (3)C20—H200.9300
C5—H50.9300C21—C221.349 (4)
C6—H60.9300C21—H210.9300
C7—C81.384 (3)C22—C231.373 (4)
C7—C121.394 (2)C22—H220.9300
C7—P11.7998 (16)C23—C241.389 (3)
C8—C91.389 (3)C23—H230.9300
C8—H80.9300C24—H240.9300
C9—C101.377 (3)C25—C26i1.383 (3)
C9—H90.9300C25—C261.383 (3)
C10—C111.365 (4)C25—Sn12.134 (3)
C10—H100.9300C26—C271.397 (4)
C11—C121.384 (3)C26—H260.9300
C11—H110.9300C27—C281.346 (5)
C12—H120.9300C27—H270.9300
C13—C181.398 (3)C28—C27i1.345 (5)
C13—C141.393 (3)C28—H280.9300
C13—P11.7929 (19)N1—P1ii1.5763 (9)
C14—C151.383 (3)N1—P11.5763 (9)
C14—H140.9300Sn1—C19i2.1476 (19)
C15—C161.374 (4)Sn1—Cl12.5858 (4)
C15—H150.9300Sn1—Cl1i2.5858 (4)
C6—C1—C2119.70 (16)C17—C18—C13118.8 (2)
C6—C1—P1120.91 (14)C17—C18—H18120.6
C2—C1—P1119.39 (12)C13—C18—H18120.6
C1—C2—C3119.87 (18)C24—C19—C20117.2 (2)
C1—C2—H2120.1C24—C19—Sn1121.74 (16)
C3—C2—H2120.1C20—C19—Sn1120.81 (16)
C4—C3—C2120.1 (2)C21—C20—C19120.6 (3)
C4—C3—H3120.0C21—C20—H20119.7
C2—C3—H3120.0C19—C20—H20119.7
C5—C4—C3120.7 (2)C22—C21—C20120.8 (3)
C5—C4—H4119.7C22—C21—H21119.6
C3—C4—H4119.7C20—C21—H21119.6
C4—C5—C6120.2 (2)C23—C22—C21120.1 (3)
C4—C5—H5119.9C23—C22—H22119.9
C6—C5—H5119.9C21—C22—H22119.9
C1—C6—C5119.4 (2)C22—C23—C24120.2 (3)
C1—C6—H6120.3C22—C23—H23119.9
C5—C6—H6120.3C24—C23—H23119.9
C8—C7—C12119.46 (16)C19—C24—C23121.0 (2)
C8—C7—P1118.89 (13)C19—C24—H24119.5
C12—C7—P1121.54 (14)C23—C24—H24119.5
C7—C8—C9120.3 (2)C26i—C25—C26117.7 (3)
C7—C8—H8119.8C26i—C25—Sn1121.14 (16)
C9—C8—H8119.8C26—C25—Sn1121.14 (16)
C8—C9—C10119.4 (2)C25—C26—C27120.4 (3)
C8—C9—H9120.3C25—C26—H26119.8
C10—C9—H9120.3C27—C26—H26119.8
C11—C10—C9120.91 (19)C28—C27—C26120.6 (3)
C11—C10—H10119.5C28—C27—H27119.7
C9—C10—H10119.5C26—C27—H27119.7
C10—C11—C12120.3 (2)C27i—C28—C27120.1 (4)
C10—C11—H11119.9C27i—C28—H28119.9
C12—C11—H11119.9C27—C28—H28119.9
C11—C12—C7119.66 (19)P1ii—N1—P1141.90 (17)
C11—C12—H12120.2N1—P1—C13115.13 (10)
C7—C12—H12120.2N1—P1—C7108.34 (8)
C18—C13—C14119.33 (18)C13—P1—C7109.30 (8)
C18—C13—P1121.71 (15)N1—P1—C1111.33 (6)
C14—C13—P1118.69 (13)C13—P1—C1105.72 (8)
C15—C14—C13120.5 (2)C7—P1—C1106.69 (7)
C15—C14—H14119.8C25—Sn1—C19i116.46 (5)
C13—C14—H14119.8C25—Sn1—C19116.46 (5)
C16—C15—C14120.0 (2)C19i—Sn1—C19127.07 (10)
C16—C15—H15120.0C25—Sn1—Cl188.916 (18)
C14—C15—H15120.0C19i—Sn1—Cl191.27 (5)
C17—C16—C15120.2 (2)C19—Sn1—Cl189.70 (5)
C17—C16—H16119.9C25—Sn1—Cl1i88.917 (18)
C15—C16—H16119.9C19i—Sn1—Cl1i89.70 (5)
C16—C17—C18121.2 (2)C19—Sn1—Cl1i91.27 (5)
C16—C17—H17119.4Cl1—Sn1—Cl1i177.83 (4)
C18—C17—H17119.4
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl1iii0.932.793.718 (2)173
Symmetry code: (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C36H30NP2)[Sn(C6H5)3Cl2]
Mr959.44
Crystal system, space groupOrthorhombic, Pnn2
Temperature (K)296
a, b, c (Å)17.9119 (6), 9.7744 (3), 13.3835 (4)
V3)2343.16 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.42 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.629, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
36432, 7179, 6352
Rint0.026
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.04
No. of reflections7179
No. of parameters273
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25
Absolute structureFlack (1983), 3430 Friedel pairs
Absolute structure parameter0.022 (13)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl1i0.932.793.718 (2)173
Symmetry code: (i) x, y1, z.
 

Acknowledgements

Financial support from the PRIN 2008-Mol­ecular Clusters in Nanoscience and the University of Parma, Italy, is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelferro, M., Graiff, C., Elviri, L. & Predieri, G. (2010). Dalton Trans. 39, 4479–4481.  Web of Science CSD CrossRef CAS Google Scholar
First citationDelferro, M., Graiff, C., Marchiò, L., Elviri, L., Mazzani, M., Riccò, M. & Predieri, G. (2011). Eur. J. Inorg. Chem. doi:10.1002/ejic.201100385.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, P. G., Molloy, K., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421–434.  CSD CrossRef CAS Web of Science Google Scholar
First citationNayek, H. P., Massa, W. & Dehnen, S. (2010). Inorg. Chem. 49, 144–149.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNg, S. W. (1995). Acta Cryst. C51, 1124–1125.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNg, S. W. (1999). Acta Cryst. C55, IUC9900098.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds