metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{[4-amino-3,5-bis­­(2-pyrid­yl)-4H-1,2,4-triazole-κN1]chloridomercury(II)}

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance of Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: tjnulicp@gmail.com

(Received 12 July 2011; accepted 24 July 2011; online 2 August 2011)

In the centrosymmetric binuclear title complex, [Hg2Cl4(C12H10N6)2], the HgII ion is five-coordinated by two N atoms and three chloride ions with a distorted square-pyramidal geometry. In the complex, there is an intra­molecular N—H⋯N hydrogen bond. In the crystal, the binuclear units are connected by inter­molecular N—H⋯Cl hydrogen bonds, as well as ππ stacking inter­actions [centroid–centroid distances = 3.526 (2) and 3.696 (2) Å], forming a two-dimensional layered structure parallel to (010).

Related literature

For background information on triazole derivatives, see: Klingele et al. (2009[Klingele, J., Scherer, H. & Klingele, M. H. (2009). Z. Anorg. Allg. Chem. 635, 2279-2287.]); Shao et al. (2004[Shao, S.-C., Liu, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, m1815-m1816.]); Huang et al. (2011[Huang, Y. G., Mu, B., Schoenecker, P. M., Carson, C. G., Karra, J. R., Cai, Y. & Walton, K. S. (2011). Angew. Chem. Int. Ed. 50, 436-440.]). For the coordination compounds synthesized with related triazole ligands, see: Du et al. (2007[Du, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984-3995.], 2008[Du, M., Zhang, Z.-H., You, Y.-P. & Zhao, X.-J. (2008). CrystEngComm, 10, 306-321.]). For a description of the geometry of complexes with five-coordinate metal ions, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2Cl4(C12H10N6)2]

  • Mr = 1019.50

  • Orthorhombic, P b c a

  • a = 11.3634 (4) Å

  • b = 14.9962 (6) Å

  • c = 17.2328 (7) Å

  • V = 2936.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.85 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.475, Tmax = 1.000

  • 14063 measured reflections

  • 2596 independent reflections

  • 2071 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.058

  • S = 1.08

  • 2596 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯Cl2i 0.89 2.80 3.446 (3) 131
N5—H5A⋯Cl1ii 0.89 2.77 3.512 (4) 142
N5—H5B⋯Cl1iii 0.89 2.62 3.452 (4) 155
N5—H5B⋯N6 0.89 2.47 2.956 (5) 115
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

1,2,4-triazole and its derivatives have been extensively used to prepare diverse coordination complexes (Klingele et al., 2009; Shao et al., 2004; Huang et al., 2011). Recently, a series of interesting metallosupramolecular systems have been constructed using the triazole ligands 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole and 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole, using different synthetic methods (Du et al., 2007, 2008). In this context, the analogous ligand, 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole (2-bpt), that may exhibit different conformations and coordination modes, has received our attention.

Herein, we present the title binuclear complex obtained by the reaction of 2-bpt and HgCl2 under the hydrothermal condition. In the centrosymmetric title complex, the coordination sphere of each HgII ion can be described as a distorted square pyramid, as indicated by the τ value of 0.33 (Addison et al., 1984). The HgII ion coordinates to one terminal chloride ion, two bridging chloride ions and two chelating nitrogen donors from the same 2-bpt ligand (Fig. 1). Each 2-bpt ligand adopts the anti-conformation considering its two terminal pyridyl nitrogen, with the bidentate chelating coordination to one HgII center. In addition, the two adjacent HgII centers are linked by a pair of chloride bridges to form a Hg2Cl2 subunit, in which the Hg···Hg separation is 3.856 (1) Å and the Hg–Cl–Hg angle is 93.22 (3)°. There is an intramolecular N5–H5B···N6 hydrogen bond in the complex (Table 1).

In the crystal the binuclear units are connected to form a two-dimensional supramolecular network via intermolecular N-H···Cl hydrogen bonds (Table 1 and Fig. 2). In addition, ππ stacking interactions are present and further reinforce the two-dimensional supramolecular network. The centroid-centroid distance of the involved pyridyl rings, (N1/C1—C5) and (N6/C8—C12)i, is 3.696 (2) Å, while the centroid-centroid distance involving the triazole rings, (N2—N4/C6,C7) and (N2—N4/C6,C7)i, is 3.526 (2) Å (Fig. 2; symmetry code: (i) = -x+2, -y+1, -z+2).

Related literature top

For background information on triazole derivatives, see: Klingele et al. (2009); Shao et al. (2004); Huang et al. (2011). For the coordination compounds synthesized with related triazole ligands, see: Du et al. (2007, 2008). For a description of five-coordinate metal geometries, see: Addison et al. (1984).

Experimental top

A mixture of 2-bpt (23.8 mg, 0.1 mmol), HgCl2 (27.1 mg, 0.1 mmol) in water (10 ml) was sealed in a Teflon-lined stainless steel vessel (20 ml), which was heated to 413 K over a period of 24 h. It was then gradually cooled to room temperature at a rate of 5 °C/h. Colourless block-like crystals, suitable for X-ray analysis, were obtained. Anal. Calc. for C24H20Cl4Hg2N12: C, 28.27; H, 1.98; N, 16.49%. Found: C, 28.30; H, 1.94; N, 16.47%.

Refinement top

All the H-atoms were initially located in a difference Fourier map. The C—H and N—H atoms were then constrained to an ideal geometry, and refined as riding atoms: C—H = 0.93 Å and N—H = 0.89 Å, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the c-axis of the two-dimensional network in the crystal of the title compound, showing the N–H···N and N–H···Cl hydrogen bonds (red dashed lines) and the ππ stacking interactions (green dashed lines) [See Table 1 and the comment section for details].
Di-µ-chlorido-bis{[4-amino-3,5-bis(2-pyridyl)-4H-1,2,4- triazole-κN1]chloridomercury(II)} top
Crystal data top
[Hg2Cl4(C12H10N6)2]F(000) = 1904
Mr = 1019.50Dx = 2.306 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5032 reflections
a = 11.3634 (4) Åθ = 2.5–28.1°
b = 14.9962 (6) ŵ = 10.85 mm1
c = 17.2328 (7) ÅT = 296 K
V = 2936.6 (2) Å3Block, colourless
Z = 40.28 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2596 independent reflections
Radiation source: fine-focus sealed tube2071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 813
Tmin = 0.475, Tmax = 1.000k = 1617
14063 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.028P)2 + 2.8778P]
where P = (Fo2 + 2Fc2)/3
2596 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
[Hg2Cl4(C12H10N6)2]V = 2936.6 (2) Å3
Mr = 1019.50Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 11.3634 (4) ŵ = 10.85 mm1
b = 14.9962 (6) ÅT = 296 K
c = 17.2328 (7) Å0.28 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2596 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2071 reflections with I > 2σ(I)
Tmin = 0.475, Tmax = 1.000Rint = 0.023
14063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.08Δρmax = 0.53 e Å3
2596 reflectionsΔρmin = 1.26 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.661120 (15)0.459756 (11)0.997612 (9)0.04268 (8)
Cl10.66817 (10)0.31955 (7)0.92929 (6)0.0460 (3)
Cl20.53708 (10)0.57586 (7)0.92105 (6)0.0486 (3)
N10.7468 (3)0.5214 (2)1.11219 (19)0.0384 (8)
N20.8392 (3)0.5359 (2)0.9665 (2)0.0381 (9)
N30.8938 (3)0.5633 (2)0.89923 (19)0.0377 (8)
N40.9726 (3)0.63366 (19)0.99779 (15)0.0266 (7)
N51.0319 (3)0.6981 (2)1.04316 (18)0.0356 (8)
H5A1.00210.74951.02640.053*
H5B1.10860.69321.03350.053*
N61.1599 (3)0.6863 (2)0.89418 (19)0.0413 (9)
C10.9194 (4)0.5833 (3)1.1697 (2)0.0377 (10)
H10.99160.61161.16360.045*
C20.8783 (5)0.5612 (3)1.2427 (2)0.0489 (12)
H20.92310.57351.28660.059*
C30.7707 (5)0.5210 (3)1.2493 (3)0.0554 (13)
H30.74060.50681.29800.066*
C40.7081 (4)0.5017 (3)1.1836 (3)0.0504 (12)
H40.63540.47381.18880.060*
C50.8509 (4)0.5626 (3)1.1058 (2)0.0326 (9)
C60.8872 (4)0.5792 (3)1.0255 (2)0.0292 (8)
C70.9726 (3)0.6220 (2)0.9190 (2)0.0286 (8)
C81.0551 (3)0.6651 (2)0.8653 (2)0.0300 (9)
C91.0248 (4)0.6771 (3)0.7884 (2)0.0438 (10)
H90.95120.65990.77020.053*
C101.1062 (5)0.7153 (3)0.7393 (2)0.0506 (13)
H101.08830.72500.68730.061*
C111.2143 (5)0.7389 (3)0.7688 (3)0.0536 (13)
H111.27100.76500.73710.064*
C121.2368 (4)0.7232 (3)0.8453 (3)0.0515 (12)
H121.31020.73920.86460.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.04114 (12)0.03899 (12)0.04791 (13)0.00931 (7)0.00559 (8)0.00763 (7)
Cl10.0512 (7)0.0409 (6)0.0458 (6)0.0077 (5)0.0005 (5)0.0119 (5)
Cl20.0474 (7)0.0458 (6)0.0524 (7)0.0020 (5)0.0129 (5)0.0116 (5)
N10.038 (2)0.0356 (19)0.0413 (19)0.0031 (16)0.0071 (16)0.0029 (15)
N20.039 (2)0.039 (2)0.0355 (19)0.0087 (17)0.0010 (16)0.0032 (16)
N30.041 (2)0.040 (2)0.0321 (18)0.0088 (17)0.0007 (16)0.0049 (15)
N40.0283 (17)0.0246 (16)0.0271 (16)0.0013 (13)0.0005 (14)0.0011 (13)
N50.042 (2)0.0365 (19)0.0283 (17)0.0086 (16)0.0004 (16)0.0082 (14)
N60.042 (2)0.048 (2)0.0347 (18)0.0137 (17)0.0009 (16)0.0035 (16)
C10.043 (3)0.037 (2)0.033 (2)0.0008 (19)0.0031 (19)0.0026 (18)
C20.063 (3)0.049 (3)0.035 (2)0.005 (3)0.004 (2)0.004 (2)
C30.073 (4)0.053 (3)0.040 (3)0.002 (3)0.021 (3)0.008 (2)
C40.051 (3)0.047 (3)0.054 (3)0.007 (2)0.017 (2)0.009 (2)
C50.036 (2)0.024 (2)0.038 (2)0.0060 (18)0.0041 (18)0.0025 (17)
C60.030 (2)0.025 (2)0.0319 (19)0.0008 (17)0.0031 (17)0.0020 (16)
C70.033 (2)0.0270 (19)0.0261 (18)0.0032 (17)0.0026 (17)0.0008 (15)
C80.037 (2)0.028 (2)0.0251 (19)0.0000 (18)0.0040 (17)0.0004 (15)
C90.052 (3)0.047 (3)0.032 (2)0.002 (2)0.007 (2)0.0006 (18)
C100.085 (4)0.041 (2)0.026 (2)0.003 (3)0.007 (2)0.0065 (18)
C110.072 (4)0.045 (3)0.044 (3)0.011 (3)0.017 (3)0.004 (2)
C120.050 (3)0.051 (3)0.054 (3)0.018 (2)0.005 (2)0.002 (2)
Geometric parameters (Å, º) top
Hg1—N22.385 (3)C1—C21.383 (6)
Hg1—N12.388 (3)C1—C51.384 (6)
Hg1—Cl12.4111 (10)C1—H10.9300
Hg1—Cl22.5998 (11)C2—C31.368 (7)
Hg1—Cl2i2.7061 (11)C2—H20.9300
Cl2—Hg1i2.7061 (11)C3—C41.368 (7)
N1—C51.339 (5)C3—H30.9300
N1—C41.340 (5)C4—H40.9300
N2—C61.324 (5)C5—C61.465 (5)
N2—N31.378 (5)C7—C81.468 (5)
N3—C71.301 (5)C8—C91.380 (5)
N4—C61.355 (5)C9—C101.378 (6)
N4—C71.368 (4)C9—H90.9300
N4—N51.414 (4)C10—C111.376 (8)
N5—H5A0.8901C10—H100.9300
N5—H5B0.8900C11—C121.365 (6)
N6—C81.329 (5)C11—H110.9300
N6—C121.333 (5)C12—H120.9300
N2—Hg1—N169.78 (12)C2—C3—C4119.3 (4)
N2—Hg1—Cl1106.24 (9)C2—C3—H3120.4
N1—Hg1—Cl1136.70 (9)C4—C3—H3120.4
N2—Hg1—Cl291.45 (9)N1—C4—C3122.9 (5)
N1—Hg1—Cl2112.43 (8)N1—C4—H4118.6
Cl1—Hg1—Cl2110.74 (4)C3—C4—H4118.6
N2—Hg1—Cl2i156.52 (9)N1—C5—C1122.3 (4)
N1—Hg1—Cl2i89.27 (8)N1—C5—C6113.9 (4)
Cl1—Hg1—Cl2i96.23 (4)C1—C5—C6123.7 (4)
Cl2—Hg1—Cl2i86.78 (3)N2—C6—N4108.6 (3)
Hg1—Cl2—Hg1i93.22 (3)N2—C6—C5121.7 (4)
C5—N1—C4117.9 (4)N4—C6—C5129.6 (4)
C5—N1—Hg1118.1 (3)N3—C7—N4110.3 (3)
C4—N1—Hg1122.7 (3)N3—C7—C8124.9 (3)
C6—N2—N3108.4 (3)N4—C7—C8124.8 (3)
C6—N2—Hg1114.3 (3)N6—C8—C9123.5 (4)
N3—N2—Hg1135.5 (3)N6—C8—C7116.2 (3)
C7—N3—N2106.9 (3)C9—C8—C7120.2 (4)
C6—N4—C7105.9 (3)C10—C9—C8118.4 (4)
C6—N4—N5123.9 (3)C10—C9—H9120.8
C7—N4—N5129.4 (3)C8—C9—H9120.8
N4—N5—H5A103.4C11—C10—C9118.7 (4)
N4—N5—H5B107.9C11—C10—H10120.6
H5A—N5—H5B112.5C9—C10—H10120.6
C8—N6—C12116.7 (4)C12—C11—C10118.6 (4)
C2—C1—C5118.7 (4)C12—C11—H11120.7
C2—C1—H1120.6C10—C11—H11120.7
C5—C1—H1120.6N6—C12—C11124.1 (5)
C3—C2—C1118.9 (4)N6—C12—H12118.0
C3—C2—H2120.6C11—C12—H12118.0
C1—C2—H2120.6
N2—Hg1—Cl2—Hg1i156.57 (9)C2—C1—C5—C6177.3 (4)
N1—Hg1—Cl2—Hg1i87.88 (9)N3—N2—C6—N40.5 (4)
Cl1—Hg1—Cl2—Hg1i95.44 (4)Hg1—N2—C6—N4167.7 (2)
Cl2i—Hg1—Cl2—Hg1i0.0N3—N2—C6—C5177.9 (4)
N2—Hg1—N1—C53.4 (3)Hg1—N2—C6—C514.9 (5)
Cl1—Hg1—N1—C589.1 (3)C7—N4—C6—N20.9 (4)
Cl2—Hg1—N1—C586.3 (3)N5—N4—C6—N2171.6 (3)
Cl2i—Hg1—N1—C5172.6 (3)C7—N4—C6—C5178.0 (4)
N2—Hg1—N1—C4169.9 (4)N5—N4—C6—C511.2 (6)
Cl1—Hg1—N1—C477.4 (4)N1—C5—C6—N217.9 (5)
Cl2—Hg1—N1—C4107.1 (3)C1—C5—C6—N2159.1 (4)
Cl2i—Hg1—N1—C420.9 (3)N1—C5—C6—N4165.3 (4)
N1—Hg1—N2—C65.9 (3)C1—C5—C6—N417.8 (7)
Cl1—Hg1—N2—C6140.4 (3)N2—N3—C7—N40.6 (4)
Cl2—Hg1—N2—C6107.5 (3)N2—N3—C7—C8176.7 (3)
Cl2i—Hg1—N2—C622.2 (4)C6—N4—C7—N30.9 (4)
N1—Hg1—N2—N3168.5 (4)N5—N4—C7—N3171.0 (4)
Cl1—Hg1—N2—N357.0 (4)C6—N4—C7—C8177.0 (3)
Cl2—Hg1—N2—N355.1 (4)N5—N4—C7—C812.9 (6)
Cl2i—Hg1—N2—N3140.3 (3)C12—N6—C8—C91.8 (6)
C6—N2—N3—C70.1 (4)C12—N6—C8—C7178.2 (4)
Hg1—N2—N3—C7163.2 (3)N3—C7—C8—N6148.0 (4)
C5—C1—C2—C31.0 (6)N4—C7—C8—N627.6 (5)
C1—C2—C3—C41.6 (7)N3—C7—C8—C928.6 (6)
C5—N1—C4—C30.9 (7)N4—C7—C8—C9155.9 (4)
Hg1—N1—C4—C3165.7 (4)N6—C8—C9—C101.8 (6)
C2—C3—C4—N10.6 (7)C7—C8—C9—C10178.1 (4)
C4—N1—C5—C11.5 (6)C8—C9—C10—C110.7 (7)
Hg1—N1—C5—C1165.7 (3)C9—C10—C11—C120.2 (7)
C4—N1—C5—C6178.5 (4)C8—N6—C12—C110.8 (7)
Hg1—N1—C5—C611.3 (4)C10—C11—C12—N60.2 (7)
C2—C1—C5—N10.5 (6)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···Cl2ii0.892.803.446 (3)131
N5—H5A···Cl1iii0.892.773.512 (4)142
N5—H5B···Cl1iv0.892.623.452 (4)155
N5—H5B···N60.892.472.956 (5)115
Symmetry codes: (ii) x+1/2, y+3/2, z+2; (iii) x+3/2, y+1/2, z; (iv) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Hg2Cl4(C12H10N6)2]
Mr1019.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.3634 (4), 14.9962 (6), 17.2328 (7)
V3)2936.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)10.85
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.475, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14063, 2596, 2071
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.058, 1.08
No. of reflections2596
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 1.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···Cl2i0.892.803.446 (3)131
N5—H5A···Cl1ii0.892.773.512 (4)142
N5—H5B···Cl1iii0.892.623.452 (4)155
N5—H5B···N60.892.472.956 (5)115
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+3/2, y+1/2, z; (iii) x+2, y+1, z+2.
 

Acknowledgements

This work was financially supported by Tianjin Normal University (grant No. 52X09004).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984–3995.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDu, M., Zhang, Z.-H., You, Y.-P. & Zhao, X.-J. (2008). CrystEngComm, 10, 306–321.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, Y. G., Mu, B., Schoenecker, P. M., Carson, C. G., Karra, J. R., Cai, Y. & Walton, K. S. (2011). Angew. Chem. Int. Ed. 50, 436–440.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlingele, J., Scherer, H. & Klingele, M. H. (2009). Z. Anorg. Allg. Chem. 635, 2279–2287.  Web of Science CSD CrossRef CAS Google Scholar
First citationShao, S.-C., Liu, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, m1815–m1816.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds