metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(cyanato-κN)bis­­(5,7-di­methyl-1,2,4-triazolo[1,5-a]pyrimidine-κN3)zinc

aDepartamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, c/ Severo Ochoa s/n, 18071 Granada, Spain
*Correspondence e-mail: acaballero@ugr.es

(Received 31 January 2011; accepted 16 February 2011; online 19 February 2011)

In the title complex, [Zn(NCO)2(C7H8N4)2], the ZnII ion exhibits a distorted tetra­hedral coordination geometry. The coordination environment is formed by two 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) ligands, coordinated through the N atom in position 3, and two cyanate anions inter­acting by their N atoms. Supra­molecular dimers are generated by stacking inter­actions between the pyrimidine rings of two ligands related by an inversion center [centroid–centroid distance = 3.5444 (18) Å].

Related literature

For similar structures, see: Adriaanse et al. (2009[Adriaanse, J. H., Askes, S. H. C., van Bree, I., van Oudheusden, S., van den Bos, E. D., Gunay, E., Mutikainen, I., Turpeinen, U., van Albada, G. A., Haasnoot, J. G. & Reedijk, J. (2009). Polyhedron, 28, 3143-3149.]); Salas et al. (1999[Salas, J. M., Romero, M. A., Sánchez, M. P. & Quirós, M. (1999). Coord. Chem. Rev. 193-195, 1119-1142.]); Caballero et al. (2010[Caballero, A. B., Rodríguez-Diéguez, A., Barea, E., Quirós, M. & Salas, J. M. (2010). CrystEngComm, 12, 3038-3045.]). For a description of the geometry of tetra­hedrally coordinated metal atoms, see: Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCO)2(C7H8N4)2]

  • Mr = 445.76

  • Triclinic, [P \overline 1]

  • a = 10.0023 (15) Å

  • b = 10.8168 (16) Å

  • c = 11.1094 (16) Å

  • α = 116.772 (2)°

  • β = 107.226 (2)°

  • γ = 98.557 (2)°

  • V = 967.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 293 K

  • 0.25 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD system diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.773, Tmax = 0.881

  • 11387 measured reflections

  • 4403 independent reflections

  • 3580 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.01

  • 4403 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Xtal_GX (Hall et al., 1999[Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal Reference Manual. University of Western Australia: Lamb, Perth.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The coordination chemistry of 1,2,4-triazolo[1,5-a]pyrimidine derivatives displays great versatility, binding metal ions in several different ways, either in a monodentate (usually through the N atom in position 3) or in a bidentate fashion, bridging metal atoms and leading to dinuclear or polynuclear species with interesting metal-metal interactions (Salas et al., 1999). Some zinc(II) complexes containing these derivatives together with secondary bridging ligands have been described, for example with the thiocyanate anion (Salas et al., 1999; Adriaanse et al., 2009). In most of these metal complexes, both ligands display monodentate binding leading to mononuclear species with either octahedral or tetrahedral coordination geometries.

The title compound continues our studies on a series of triazolopyrimidine and pseudohalide-based metal complexes (Caballero et al., 2010). This zinc(II) complex, together with the analogous complex with the unsubstituted triazolopyrimidine ligand (Caballero et al., 2010), are the only ones that have been obtained with the cyanate anion.

The title compound exhibits a distorted tetrahedral coordination geometry (τ4 = 0.924, Yang et al., 2007) made of two dmtp ligands (dmtp = 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine) interacting through their more usual coordination position, N3, and two cyanate anions bound through their N atom (Fig. 1). The Zn—N3 bond distances, 2.022 (2) and 2.043 (2) Å, are in the typical range for triazolopyrimidine ligands.

In the crystal the stacking interactions between the pyrimidine ring of two triazolopyrimidine aromatic systems leads to the formation of supramolecular centrosymmetric dimers (Fig. 2); the centroid-to-centroid distance, involving ring (N4A,C3A,N8A,C7A,C6A,C5A) and that related by an inversion center [symmetry code: 1-x, -y, -z], is 3.5444 (18) Å.

Related literature top

For similar structures, see: Adriaanse et al. (2009); Salas et al. (1999); Caballero et al. (2010). For a description of the geometry of tetrahedrally coordinated metal atoms, see: Yang et al. (2007).

Experimental top

A 10 ml volume of an aqueous solution containing 1 mmol of NaNCO (0.068 g) was slowly added to a 10 ml aqueous solution containing 0.5 mmol of Zn(NO)3.4H2O (0.131 g) and 1 mmol of dmtp ligand (0.148 g). Immediately after adding NaNCO, a yellow turbidity gradually appeared. The mixture was stirred at 353 K for 15 min. and the precipitate was then filtered off. The resulting clear yellow solution was left to stand for a week at room temperature and yellow crystals of the title compound were collected and used for X-ray diffraction studies.

Refinement top

The pyrimidine H atoms were positioned geometrically and treated as riding with C—H = 0.93 Å (methine) and 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Xtal_GX (Hall et al., 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view along c axis of the crystal packing of the title compound, showing the formation of the dimers by π···π interactions (dashed lines) involing pyrimidine ring (N4A, C3A, N8A, C7A, C6A, C5A) and that related by an inversion center.
Bis(cyanato-κN)bis(5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine- κN3)zinc top
Crystal data top
[Zn(NCO)2(C7H8N4)2]Z = 2
Mr = 445.76F(000) = 456
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.0023 (15) ÅCell parameters from 3345 reflections
b = 10.8168 (16) Åθ = 2.2–23.4°
c = 11.1094 (16) ŵ = 1.31 mm1
α = 116.772 (2)°T = 293 K
β = 107.226 (2)°Prismatic, colourless
γ = 98.557 (2)°0.25 × 0.14 × 0.10 mm
V = 967.2 (2) Å3
Data collection top
Bruker SMART APEX CCD system
diffractometer
4403 independent reflections
Radiation source: fine-focus sealed tube3580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.26 pixels mm-1θmax = 28.4°, θmin = 2.2°
ϕ and ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1314
Tmin = 0.773, Tmax = 0.881l = 1414
11387 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.060P)2 + 0.060P]
where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Zn(NCO)2(C7H8N4)2]γ = 98.557 (2)°
Mr = 445.76V = 967.2 (2) Å3
Triclinic, P1Z = 2
a = 10.0023 (15) ÅMo Kα radiation
b = 10.8168 (16) ŵ = 1.31 mm1
c = 11.1094 (16) ÅT = 293 K
α = 116.772 (2)°0.25 × 0.14 × 0.10 mm
β = 107.226 (2)°
Data collection top
Bruker SMART APEX CCD system
diffractometer
4403 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3580 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.881Rint = 0.025
11387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.01Δρmax = 0.37 e Å3
4403 reflectionsΔρmin = 0.22 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.36171 (3)0.27490 (3)0.25442 (3)0.04810 (12)
N1A0.7252 (2)0.5596 (2)0.2847 (2)0.0566 (5)
C2A0.6371 (3)0.5067 (3)0.3287 (3)0.0552 (6)
H2A0.65520.54970.42820.066*
N3A0.5182 (2)0.3860 (2)0.2224 (2)0.0477 (4)
C3AA0.5321 (2)0.3589 (2)0.0970 (2)0.0429 (5)
N4A0.4440 (2)0.2520 (2)0.0413 (2)0.0485 (5)
C5A0.4853 (3)0.2523 (3)0.1441 (3)0.0528 (6)
C51A0.3895 (4)0.1323 (3)0.3011 (3)0.0776 (9)
H51A0.44370.06900.33840.093*
H52A0.36110.17450.36050.093*
H53A0.30220.07660.30530.093*
C6A0.6140 (3)0.3580 (3)0.1100 (3)0.0578 (6)
H6A0.63880.35290.18610.069*
C7A0.7020 (3)0.4665 (3)0.0310 (3)0.0514 (6)
C71A0.8386 (3)0.5868 (3)0.0821 (4)0.0715 (8)
H71A0.85970.57360.00100.086*
H72A0.92070.58510.15220.086*
H73A0.82310.67950.12810.086*
N8A0.6577 (2)0.4640 (2)0.1343 (2)0.0455 (4)
N1B0.2927 (2)0.1274 (2)0.1076 (3)0.0627 (6)
C2B0.3459 (3)0.0230 (3)0.0314 (3)0.0560 (6)
H2B0.43020.01600.10180.067*
N3B0.2735 (2)0.0740 (2)0.0676 (2)0.0463 (4)
C3AB0.1626 (2)0.0281 (2)0.0619 (2)0.0436 (5)
N4B0.0575 (2)0.0863 (2)0.0882 (2)0.0522 (5)
C5B0.0380 (3)0.0186 (3)0.2292 (3)0.0580 (6)
C51B0.1560 (3)0.0829 (4)0.2625 (4)0.0837 (10)
H51B0.14470.16720.17270.100*
H52B0.25190.01130.30590.100*
H53B0.14700.11180.33050.100*
C6B0.0299 (3)0.1076 (3)0.3424 (3)0.0645 (7)
H6B0.09920.15120.43930.077*
C7B0.0770 (3)0.1662 (3)0.3123 (3)0.0598 (7)
C71B0.0991 (4)0.2982 (3)0.4201 (3)0.0881 (10)
H71B0.19210.26900.42450.106*
H72B0.02000.34200.51610.106*
H73B0.09950.36820.38940.106*
N8B0.1732 (2)0.0941 (2)0.1680 (2)0.0484 (4)
N1C0.2232 (3)0.3742 (3)0.2904 (3)0.0697 (6)
C1C0.1135 (4)0.3882 (3)0.2404 (4)0.0699 (8)
O1C0.0024 (3)0.4026 (4)0.1929 (4)0.1284 (11)
N1D0.4708 (3)0.2496 (3)0.4110 (3)0.0750 (7)
C1D0.5648 (3)0.2391 (3)0.4912 (3)0.0589 (6)
O1D0.6598 (3)0.2288 (3)0.5767 (3)0.0985 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.05173 (19)0.05143 (19)0.03623 (16)0.01493 (13)0.01566 (13)0.02134 (13)
N1A0.0559 (12)0.0492 (12)0.0424 (11)0.0070 (9)0.0145 (10)0.0137 (9)
C2A0.0582 (15)0.0539 (14)0.0382 (12)0.0137 (12)0.0182 (11)0.0150 (11)
N3A0.0519 (11)0.0467 (11)0.0359 (10)0.0134 (9)0.0181 (9)0.0159 (9)
C3AA0.0468 (12)0.0404 (11)0.0395 (11)0.0166 (10)0.0168 (10)0.0195 (10)
N4A0.0568 (12)0.0427 (10)0.0376 (10)0.0131 (9)0.0154 (9)0.0182 (9)
C5A0.0708 (16)0.0491 (14)0.0399 (13)0.0256 (12)0.0209 (12)0.0238 (11)
C51A0.102 (2)0.0684 (19)0.0408 (15)0.0189 (17)0.0195 (15)0.0212 (14)
C6A0.0741 (17)0.0644 (16)0.0534 (15)0.0314 (14)0.0354 (14)0.0368 (14)
C7A0.0539 (14)0.0562 (14)0.0579 (15)0.0245 (12)0.0265 (12)0.0362 (13)
C71A0.0649 (18)0.0762 (19)0.083 (2)0.0181 (15)0.0344 (16)0.0484 (18)
N8A0.0488 (11)0.0420 (10)0.0424 (10)0.0163 (9)0.0177 (9)0.0198 (9)
N1B0.0521 (12)0.0550 (13)0.0588 (14)0.0194 (10)0.0156 (11)0.0169 (11)
C2B0.0480 (13)0.0550 (15)0.0550 (15)0.0175 (11)0.0122 (12)0.0266 (13)
N3B0.0467 (10)0.0454 (10)0.0398 (10)0.0134 (8)0.0117 (8)0.0213 (9)
C3AB0.0428 (12)0.0406 (12)0.0401 (12)0.0076 (9)0.0123 (9)0.0204 (10)
N4B0.0487 (11)0.0485 (11)0.0544 (12)0.0142 (9)0.0135 (10)0.0285 (10)
C5B0.0471 (14)0.0557 (15)0.0606 (16)0.0056 (11)0.0058 (12)0.0359 (14)
C51B0.0582 (18)0.083 (2)0.090 (2)0.0150 (16)0.0003 (16)0.0516 (19)
C6B0.0555 (16)0.0666 (17)0.0458 (14)0.0007 (13)0.0016 (12)0.0281 (13)
C7B0.0543 (15)0.0522 (14)0.0448 (14)0.0028 (12)0.0137 (12)0.0143 (12)
C71B0.081 (2)0.074 (2)0.0547 (18)0.0086 (17)0.0222 (16)0.0010 (15)
N8B0.0459 (11)0.0431 (10)0.0429 (11)0.0093 (8)0.0131 (9)0.0173 (9)
N1C0.0721 (16)0.0717 (15)0.0620 (15)0.0335 (13)0.0318 (13)0.0272 (13)
C1C0.077 (2)0.0734 (19)0.073 (2)0.0326 (17)0.0411 (18)0.0403 (17)
O1C0.100 (2)0.172 (3)0.157 (3)0.085 (2)0.059 (2)0.103 (3)
N1D0.0783 (17)0.0876 (18)0.0526 (14)0.0202 (14)0.0111 (13)0.0437 (14)
C1D0.0783 (19)0.0609 (16)0.0416 (13)0.0249 (14)0.0291 (14)0.0266 (12)
O1D0.115 (2)0.136 (2)0.0756 (15)0.0763 (18)0.0359 (14)0.0712 (16)
Geometric parameters (Å, º) top
Zn—N1C1.902 (2)N1B—C2B1.306 (3)
Zn—N1D1.919 (2)N1B—N8B1.370 (3)
Zn—N3B2.0223 (19)C2B—N3B1.344 (3)
Zn—N3A2.0430 (19)C2B—H2B0.9300
N1A—C2A1.304 (3)N3B—C3AB1.339 (3)
N1A—N8A1.372 (3)C3AB—N4B1.329 (3)
C2A—N3A1.353 (3)C3AB—N8B1.365 (3)
C2A—H2A0.9300N4B—C5B1.332 (3)
N3A—C3AA1.344 (3)C5B—C6B1.414 (4)
C3AA—N4A1.330 (3)C5B—C51B1.494 (4)
C3AA—N8A1.373 (3)C51B—H51B0.9600
N4A—C5A1.326 (3)C51B—H52B0.9600
C5A—C6A1.411 (4)C51B—H53B0.9601
C5A—C51A1.498 (4)C6B—C7B1.356 (4)
C51A—H51A0.9603C6B—H6B0.9300
C51A—H52A0.9604C7B—N8B1.357 (3)
C51A—H53A0.9604C7B—C71B1.494 (4)
C6A—C7A1.351 (4)C71B—H71B0.9602
C6A—H6A0.9300C71B—H72B0.9602
C7A—N8A1.357 (3)C71B—H73B0.9602
C7A—C71A1.493 (4)N1C—C1C1.140 (4)
C71A—H71A0.9601C1C—O1C1.188 (4)
C71A—H72A0.9601N1D—C1D1.148 (3)
C71A—H73A0.9601C1D—O1D1.188 (3)
N1C—Zn—N1D115.09 (11)N1A—N8A—C3AA110.40 (18)
N1C—Zn—N3B114.59 (9)C2B—N1B—N8B101.30 (19)
N1D—Zn—N3B106.30 (9)N1B—C2B—N3B116.8 (2)
N1C—Zn—N3A111.07 (9)N1B—C2B—H2B121.5
N1D—Zn—N3A105.50 (10)N3B—C2B—H2B121.6
N3B—Zn—N3A103.25 (8)C3AB—N3B—C2B103.40 (19)
C2A—N1A—N8A101.70 (19)C3AB—N3B—Zn128.57 (15)
N1A—C2A—N3A116.7 (2)C2B—N3B—Zn124.47 (16)
N1A—C2A—H2A121.6N4B—C3AB—N3B128.1 (2)
N3A—C2A—H2A121.6N4B—C3AB—N8B124.0 (2)
C3AA—N3A—C2A103.34 (19)N3B—C3AB—N8B107.9 (2)
C3AA—N3A—Zn130.18 (16)C3AB—N4B—C5B115.2 (2)
C2A—N3A—Zn126.47 (16)N4B—C5B—C6B122.5 (2)
N4A—C3AA—N3A128.6 (2)N4B—C5B—C51B116.4 (3)
N4A—C3AA—N8A123.6 (2)C6B—C5B—C51B121.1 (3)
N3A—C3AA—N8A107.82 (19)C5B—C51B—H51B109.6
C5A—N4A—C3AA115.4 (2)C5B—C51B—H52B109.7
N4A—C5A—C6A122.6 (2)H51B—C51B—H52B109.5
N4A—C5A—C51A116.8 (2)C5B—C51B—H53B109.2
C6A—C5A—C51A120.5 (2)H51B—C51B—H53B109.5
C5A—C51A—H51A109.6H52B—C51B—H53B109.5
C5A—C51A—H52A109.5C7B—C6B—C5B121.2 (2)
H51A—C51A—H52A109.4C7B—C6B—H6B119.4
C5A—C51A—H53A109.5C5B—C6B—H6B119.4
H51A—C51A—H53A109.4C6B—C7B—N8B114.9 (2)
H52A—C51A—H53A109.4C6B—C7B—C71B127.0 (3)
C7A—C6A—C5A121.3 (2)N8B—C7B—C71B118.1 (3)
C7A—C6A—H6A119.3C7B—C71B—H71B109.2
C5A—C6A—H6A119.3C7B—C71B—H72B109.3
C6A—C7A—N8A115.0 (2)H71B—C71B—H72B109.5
C6A—C7A—C71A126.8 (2)C7B—C71B—H73B109.9
N8A—C7A—C71A118.1 (2)H71B—C71B—H73B109.5
C7A—C71A—H71A109.7H72B—C71B—H73B109.4
C7A—C71A—H72A109.5C7B—N8B—C3AB122.2 (2)
H71A—C71A—H72A109.5C7B—N8B—N1B127.2 (2)
C7A—C71A—H73A109.3C3AB—N8B—N1B110.57 (19)
H71A—C71A—H73A109.5C1C—N1C—Zn146.6 (2)
H72A—C71A—H73A109.5N1C—C1C—O1C177.2 (4)
C7A—N8A—N1A127.6 (2)C1D—N1D—Zn161.5 (3)
C7A—N8A—C3AA122.0 (2)N1D—C1D—O1D178.1 (3)

Experimental details

Crystal data
Chemical formula[Zn(NCO)2(C7H8N4)2]
Mr445.76
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.0023 (15), 10.8168 (16), 11.1094 (16)
α, β, γ (°)116.772 (2), 107.226 (2), 98.557 (2)
V3)967.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.25 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD system
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.773, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
11387, 4403, 3580
Rint0.025
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.01
No. of reflections4403
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Xtal_GX (Hall et al., 1999).

 

Acknowledgements

Financial support from the Junta de Andalucia (FQM-3705 and FQM-4228) and the Spanish Ministry of Education (FPU fellowship of Ana B. Caballero) is gratefully acknowledged.

References

First citationAdriaanse, J. H., Askes, S. H. C., van Bree, I., van Oudheusden, S., van den Bos, E. D., Gunay, E., Mutikainen, I., Turpeinen, U., van Albada, G. A., Haasnoot, J. G. & Reedijk, J. (2009). Polyhedron, 28, 3143–3149.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaballero, A. B., Rodríguez-Diéguez, A., Barea, E., Quirós, M. & Salas, J. M. (2010). CrystEngComm, 12, 3038–3045.  Web of Science CSD CrossRef CAS Google Scholar
First citationHall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal Reference Manual. University of Western Australia: Lamb, Perth.  Google Scholar
First citationSalas, J. M., Romero, M. A., Sánchez, M. P. & Quirós, M. (1999). Coord. Chem. Rev. 193–195, 1119–1142.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds