Download citation
Download citation
link to html
The title complex, [Cu4(C12H22N4O4)(C10H8N2)4](ClO4)4, has a novel tetra­nuclear copper(II) cation with the oxamidate and ethanol­ate groups of a trans tetra­anion of N,N'-bis­[3-(hy­droxy­ethyl­amino)­propyl]oxamide (H4heap) as bridges. The Cu...Cu separation through the oxamide group is 5.1592 (15) Å, while those through the two ethanol­ate bridges are 3.3845 (13) and 3.3392 (13) Å. The two central copper(II) ions are in square-planar N2O2 environments, while the two terminal copper(II) ions have distorted N4O square-pyramidal geometries. The heap4- ligand, with an imino­alcohol form, has both an oxamide and two ethanol­ate bridges. Two of the four perchlorate anions are disordered and have long contacts with the square-planar CuII ions. The three-dimensional structure features arene-perchlorate C-H...O hydrogen bonds and [pi]-[pi] stacking.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110026089/sq3251sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110026089/sq3251Isup2.hkl
Contains datablock I

CCDC reference: 790629

Comment top

Polynuclear copper(II) complexes are of interest due to their ability to bind DNA and to function as a chemical nuclease by performing strand scission (Oliveira et al., 2005; Peralta et al., 2006; Qian et al., 2007; Sigman et al., 1993). It is well known that N,N'-bis(substituent)oxamides are good candidates as a bridging ligand to form polynuclear complexes because their coordinating ability towards transition metal ions can be modified and tuned by changing the nature of the amide substituents (Ojima & Nonoyama, 1988). To date, many polynuclear complexes with interesting structures based on bridging N,N'-bis(substituent)oxamides have been synthesized and their properties have been studied extensively (Messori et al., 2003; Wang et al., 2004). However, few complexes with coordinating hydroxyl groups in the N,N'-bis(substituent)oxamide bridging ligand have been reported (Li et al., 2009; Zhu et al., 2007). To the best of our knowledge, no complex with alkoxyl bridges in this family of ligands has hitherto been reported [Cambridge Structural Database (CSD), Version 5.30; Allen, 2002]. In our previous studies, we chose the dianion of N,N'-bis(N-hydroxyethylaminopropyl)oxamide (H2heap2-) as the bridging ligand to synthesize two binuclear copper(II) complexes (Li et al., 2009; Zhu et al., 2007). In both of those complexes, the hydroxyl groups of the ligand coordinate to individual CuII ions but do not bridge another CuII ion. In order to explore further the coordination behaviour of the ligand under different experimental conditions, we removed the H atoms on the hydroxyl groups and chose 2,2'-bipyridine (bpy) as the terminal ligand to synthesize the title complex, [Cu4(heap4-)(bpy)4](ClO4)4, (I) (bpy is 2,2'-bipyridine), in which the heap4- ligand, with an iminoalcohol form, has one oxamide and two ethanolate bridges simultaneously. Such an alkoxylate coordination mode is thus observed for the first time in N,N'-bis(substituent)oxamides.

Compound (I) features a tetranuclear copper(II) complex cation, [Cu4(heap4-)(bpy)4]4+ (Fig. 1). Two [Cu(bpy)2]2+ fragments coordinate to a binuclear trans-oxamide copper(II) complex, [Cu2(heap4-)], in which the oxamide and the hydroxyl groups of H4heap have lost their H atomss so as to bridge the copper(II) ions. The Cu···Cu distances through the two oxo bridges are 3.3845 (13) (Cu1···Cu3) and 3.3392 (13) Å (Cu2···Cu4), respectively, while the separation through the oxamide bridge is 5.1592 (15) Å (Cu1···Cu2). The Cu···Cu distance through the oxamide bridge is similar to those previously reported in tetracopper(II) complexes with analogous ligands (Abbati et al., 1999; Albano et al., 1992; van Koningsbruggen et al., 1993; Li et al., 2008; Gu et al., 2009; Li et al., 2010; Tang et al., 2005). Previous structural and magnetic investigations have shown that magnetic coupling can occur between copper(II) ions bridged by an oxamide bridge, even if the Cu···Cu separation in the bridge is greater than 5 Å (Tang et al., 2005), due to the remarkably efficient electron-transfer ability of this kind of ligand. The oxamide group has thus been proved to be an appropriate bridging unit to design magnetic systems (Ruiz et al., 1999; Tercero et al., 2002). Therefore, from the viewpoint of magnetism there should be a magnetic exchange interaction between the copper(II) ions bridged by the oxamide bridge in (I). Verification of the magnetic properties will require measurements of variable-temperature magnetic susceptibilities and electron spin resonance spectra. These are, however, beyond our present purpose.

The central copper(II) ions, Cu1 and Cu2, are in square [N2O2] coordination environments (Fig. 1, Table 1), with the metal centres displaced only 0.081 (3) and 0.105 (3)Å from their coordination planes, respectively. A perchlorate anion lies above the coordination plane of each Cu atom (Fig. 2), so that elongated Cu···O distances of 2.734 (6) (Cu1—O5) and 2.595 (7) Å (Cu2—O9) are formed. Each of these perchlorate groups has the remaining three O atoms disordered over two positions. The open space on the other side of the [N2O2] planes is occupied by one perchlorate anion (Cl4), but the O atoms are too far away for significant interaction with the CuII centres. The sp2-hybridized atoms N2 and N3 have shorter Cu—N bonds than do the sp3-hybridized atoms N1 and N4, which is in accordance with their donor abilities (Tang et al., 2005). The two terminal copper(II) ions (Cu3 and Cu4) coordinated by bpy ligands have markedly distorted [N4O1] square-pyramidal geometries. The τ values (Addison et al., 1984) are 0.37 for Cu3 and 0.39 for Cu4. The axial Cu3—N5 and Cu4—N11 bonds are longer than those in the basal planes, as expected.

The heap4- ligand tetradentately chelates to atoms Cu1 and Cu2 with each arm. The six-membered rings formed with the propylenediamine fragments and the five-membered rings formed with the oxidoethylamine groups adopt half-chair and envelope conformations, respectively. Their puckering parameters (Cremer & Pople, 1975) are listed in Table 3. The oxamide C6—N2 and C7—N3 distances are typical CN bond lengths, while C6—C7 is consistent with a Csp2—Csp2 bond (Table 1) (Ladd & Palmer, 1985; Sun et al., 2007), which implies that the ligand is in the iminoalcohol form and deprotonated at the O atoms (O2 and O3). In addition, due to the coordination with the copper(II) ions, the terminal hydroxyl groups (O1 and O4) are activated and deprotonated to bridge with another copper(II) ion. Atoms O1 and O4 are sp2 hybridized and almost in the plane of their three bonded atoms [offsets 0.189 (6) Å for O1 and 0.224 (7) Å for O4]. This is the first example of such an oxo coordination mode in N,N'-bis(substituent)oxamides. We also compared (I) with related oxamidate-bridged tetracopper(II) complexes, and found that most of the reported oxamidate-bridged tetracopper(II) complexes can be considered as two dinuclear copper(II) units assembled through another bridge, such as a carboxyl or azido group, to form either a circular tetranuclear system (Abbati et al., 1999; van Koningsbruggen et al., 1993; Li et al., 2008; Gu et al., 2009; Li et al., 2010) or a `dimer-of-dimers' (Tang et al., 2005). By contrast, in (I) one oxamide and two oxo groups of the heap4- ligand bridge copper(II) ions simultaneously to form an extended tetracopper(II) system.

In the crystal structure of (I), the cations and anions interact via the longer Cu—O coordination mentioned earlier, and additionally through arene–perchlorate C—H···O hydrogen bonds (Table 2, Fig. 2) that link the tetranuclear complex cation and two perchlorate ions (Cl3 and Cl4) into a zigzag chain extending along the c axis (Fig. 3). The chains are linked to complete the three-dimensional structure by two kinds of π-system interactions. One is a T-shaped C—H···π interaction between adjacent [Cu4(heap)(bpy)4]4+ cations along the a axis, C30–H30···Cg1v, where Cg1 is the centroid of the ring containing atom N11 [symmetry code: (v) x + 1, y, z] (Table 2, Fig. 4). The other is an offset stacking between two parallel N7-pyridine rings, in which the smallest separation is 3.361 (12) Å between atoms C25 and C25iv [symmetry code: (iv) 1 - x, -y, 1 - z].

Related literature top

For related literature, see: Abbati et al. (1999); Addison et al. (1984); Albano et al. (1992); Allen (2002); Cremer & Pople (1975); Gu et al. (2009); Jaeger & Dijk (1936); Koningsbruggen et al. (1993); Ladd & Palmer (1985); Li et al. (2008, 2009, 2010); Messori et al. (2003); Ojima & Nonoyama (1988); Oliveira et al. (2005); Peralta et al. (2006); Qian et al. (2007); Ruiz et al. (1999); Sheldrick (2008); Sigman et al. (1993); Sun et al. (2007); Tang et al. (2005); Tercero et al. (2002); Wang et al. (2004); Zhu et al. (2007).

Experimental top

The H4heap ligand was synthesized according to the method of Ojima & Nonoyama (1988). [Cu2(H2heap)](ClO4)2.2H2O and [Cu(bpy)2](ClO4)2 were prepared according to the methods of Zhu et al. (2007) and Jaeger & Dijk (1936), respectively. [Cu2(H2heap)](ClO4)2.2H2O (32.5 mg, 0.05 mmol) was dissolved in methanol (6 ml) and the solution was heated under reflux with stirring. After 10 min, a methanol solution (0.5 ml) containing piperidine (8.5 mg, 0.1 mmol) was added. After 30 min, a methanol solution (5 ml) of [Cu(bpy)2](ClO4)2 (28.7 mg, 0.1 mmol) was added dropwise to the mixture, which was then heated under reflux with stirring at 323 K for 5 h. The resulting light-green solution was filtered. Green crystals of (I) of a suitable size for X-ray analysis were obtained from the filtrate after one week by slow evaporation at room temperature. Analysis, calculated for C52H54Cl4Cu4N12O20: C 39.96, H 3.48, N 10.75%; found: C 40.03, H 3.30, N 10.86%.

Refinement top

All H atoms were placed in calculated positions, with N—H = 0.91 Å and C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(carrier atom). The C atoms of one substituent of the oxamide group in the heap anion are disordered over two sets of positions (C9A–C11A and C9B–C11B), the occupancies of which were refined and then fixed at 0.7 and 0.3, respectively. The perchlorate anions containing atoms Cl1 and Cl2 have three disordered O atoms, which were refined isotropically. The occupancies of atoms O6A–O8A and O6B–O8B were fixed at 0.4 and 0.6, respectively, and those of atoms O10A–O12A and O10B–O12B are equal at 0.5. To obtain reasonable bond lengths, DFIX restraints (SHELXL97; Sheldrick, 2008) were applied to the disordered parts. In the perchlorate anions containing atoms Cl1 and Cl2, the Cl—O bonds and O···O distances were restrained to 1.4 and 2.3 Å, respectively, while in the disordered parts of the heap ligand, the C—C and N—C bonds were restrained to 1.54 and 1.47 Å, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the tetranuclear copper(II) complex cation [Cu4(heap)(bpy)4]4+ in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Disordered atoms are drawn with open bonds and unshaded atoms, and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The asymmetric unit of (I), with displacement ellipsoids at the 30% probability level. For clarity, only the coordination environments of copper(II) ions and perchlorate anions are labelled, and all H atoms (except those that participate in hydrogen bonds) have been omitted. Dashed and double-dashed lines indicate hydrogen bonds and weak coordination interactions, respectively.
[Figure 3] Fig. 3. The zigzag hydrogen-bonded chain extending along the [001] direction. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x, 1/2 - y, z - 1/2; (ii) x, 1/2 - y, z + 1/2.]
[Figure 4] Fig. 4. A view of the two kinds of π-system interactions (dashed lines), which combine the chains in Fig. 3 into a three-dimensional structure. [Symmetry codes: (iv) 1 - x, -y, 1 - z; (v) x + 1, y, z.]
Tetrakis(2,2'-bipyridine)-1κ4N,N';4κ4N,N'- {µ4-N,N'-bis[3-(2-oxidoethylamino)propyl]oxamidato(4-)- 1:2:3:4κO:κ3N,N',O':κ3O'', N'',N''':κO'''}tetracopper(II) tetrakis(perchlorate) top
Crystal data top
[Cu4(C12H22N4O4)(C10H8N2)4](ClO4)4F(000) = 3176
Mr = 1563.03Dx = 1.628 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4777 reflections
a = 14.617 (3) Åθ = 2.9–20.4°
b = 33.273 (7) ŵ = 1.57 mm1
c = 13.897 (3) ÅT = 296 K
β = 109.39 (3)°Block, green
V = 6375 (2) Å30.15 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
11536 independent reflections
Radiation source: fine-focus sealed tube6688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 25.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1717
Tmin = 0.799, Tmax = 0.926k = 3924
31167 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0778P)2 + 13.2663P]
where P = (Fo2 + 2Fc2)/3
11536 reflections(Δ/σ)max < 0.001
853 parametersΔρmax = 0.75 e Å3
20 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu4(C12H22N4O4)(C10H8N2)4](ClO4)4V = 6375 (2) Å3
Mr = 1563.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.617 (3) ŵ = 1.57 mm1
b = 33.273 (7) ÅT = 296 K
c = 13.897 (3) Å0.15 × 0.07 × 0.05 mm
β = 109.39 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
11536 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6688 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.926Rint = 0.054
31167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06820 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0778P)2 + 13.2663P]
where P = (Fo2 + 2Fc2)/3
11536 reflectionsΔρmax = 0.75 e Å3
853 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.29284 (6)0.12867 (3)0.44215 (6)0.0508 (2)
Cu20.30068 (6)0.06792 (3)0.78637 (6)0.0538 (3)
Cu30.52563 (6)0.15043 (3)0.46640 (6)0.0497 (2)
Cu40.08419 (6)0.09031 (3)0.80420 (7)0.0556 (3)
O10.3894 (3)0.14663 (14)0.3867 (4)0.0555 (12)
O20.2013 (3)0.08595 (15)0.6605 (3)0.0524 (12)
O30.3908 (3)0.10527 (14)0.5630 (3)0.0492 (11)
O40.2084 (3)0.06308 (16)0.8555 (3)0.0606 (13)
N10.1989 (4)0.1575 (2)0.3269 (5)0.0669 (18)
H10.18370.13860.27670.080*
N20.2009 (4)0.11304 (17)0.5078 (4)0.0469 (13)
N30.3916 (3)0.07925 (17)0.7155 (4)0.0464 (14)
N40.3989 (4)0.0557 (2)0.9210 (4)0.080 (2)
H4C0.40120.02840.92320.096*0.70
H4D0.40840.08080.94890.096*0.30
N50.5913 (4)0.17516 (18)0.3592 (5)0.0565 (15)
N60.5160 (4)0.20999 (19)0.4863 (5)0.0588 (16)
N70.5471 (4)0.09186 (17)0.4564 (4)0.0490 (14)
N80.6393 (4)0.14275 (19)0.5966 (4)0.0538 (15)
N90.0232 (4)0.0477 (2)0.7050 (5)0.0603 (16)
N100.0087 (4)0.1244 (2)0.6941 (5)0.0623 (17)
N110.0070 (4)0.07868 (18)0.9134 (4)0.0502 (14)
N120.1264 (4)0.13644 (19)0.9015 (5)0.0609 (16)
C10.3496 (5)0.1698 (3)0.2963 (6)0.070 (2)
H1A0.34340.15340.23670.085*
H1B0.39170.19240.29650.085*
C20.2530 (6)0.1845 (3)0.2933 (8)0.105 (4)
H2A0.26190.20860.33480.126*
H2B0.21640.19200.22370.126*
C30.1051 (5)0.1672 (3)0.3346 (7)0.084 (3)
H3A0.06360.17650.26830.100*
H3B0.11350.18950.38180.100*
C40.0551 (6)0.1351 (4)0.3677 (8)0.109 (4)
H4A0.05350.11170.32540.131*
H4B0.01150.14340.35490.131*
C50.0965 (4)0.1226 (2)0.4761 (5)0.060 (2)
H5A0.08660.14400.51890.072*
H5B0.06160.09920.48690.072*
C60.2414 (4)0.0977 (2)0.5966 (5)0.0440 (16)
C70.3515 (4)0.0935 (2)0.6270 (5)0.0431 (15)
C80.4977 (4)0.0766 (3)0.7540 (5)0.060 (2)
H8A0.52490.10340.76370.072*0.70
H8B0.51970.06310.70380.072*0.70
H8C0.52440.09830.72520.072*0.30
H8D0.51770.05140.73180.072*0.30
C9A0.5341 (10)0.0538 (7)0.8540 (10)0.087 (5)0.70
H9A0.51660.02570.84050.104*0.70
H9B0.60440.05530.87930.104*0.70
C10A0.4982 (9)0.0677 (8)0.934 (2)0.089 (9)0.70
H10A0.54030.05730.99920.107*0.70
H10B0.50210.09680.93760.107*0.70
C11A0.3563 (7)0.0664 (5)0.9974 (8)0.074 (4)0.70
H11A0.36130.09521.00920.089*0.70
H11B0.39050.05291.06110.089*0.70
C9B0.542 (3)0.0809 (13)0.876 (3)0.094 (16)0.30
H9C0.61160.07830.89730.113*0.30
H9D0.52640.10730.89540.113*0.30
C10B0.500 (2)0.0485 (16)0.929 (6)0.082 (19)0.30
H10C0.50410.02260.89840.098*0.30
H10D0.53930.04731.00000.098*0.30
C11B0.3519 (11)0.0359 (8)0.9847 (19)0.066 (9)0.30
H11C0.38900.04001.05610.079*0.30
H11D0.34740.00730.97110.079*0.30
C120.2505 (5)0.0538 (3)0.9605 (6)0.079 (3)
H12A0.24560.02520.97080.095*0.70
H12B0.21610.06790.99920.095*0.70
H12C0.20970.03470.97990.095*0.30
H12D0.25340.07810.99990.095*0.30
C130.6333 (6)0.1559 (3)0.3010 (6)0.071 (2)
H130.62570.12820.29430.086*
C140.6876 (7)0.1749 (3)0.2500 (7)0.082 (3)
H140.71580.16070.20950.098*
C150.6978 (8)0.2151 (4)0.2615 (8)0.099 (3)
H150.73440.22890.22880.118*
C160.6557 (7)0.2360 (3)0.3200 (7)0.086 (3)
H160.66370.26370.32790.103*
C170.6009 (5)0.2152 (2)0.3674 (6)0.0584 (19)
C180.5531 (5)0.2348 (2)0.4322 (6)0.0587 (19)
C190.5430 (7)0.2758 (3)0.4393 (8)0.088 (3)
H190.56700.29310.40080.106*
C200.4982 (8)0.2907 (3)0.5021 (10)0.108 (4)
H200.49330.31840.50850.130*
C210.4602 (7)0.2657 (3)0.5563 (9)0.094 (3)
H210.42790.27580.59850.113*
C220.4707 (6)0.2254 (3)0.5472 (7)0.074 (2)
H220.44560.20800.58450.089*
C230.4991 (5)0.0688 (3)0.3792 (6)0.061 (2)
H230.44940.08000.32550.073*
C240.5194 (7)0.0291 (3)0.3751 (7)0.069 (2)
H240.48510.01380.31860.083*
C250.5902 (7)0.0118 (3)0.4542 (8)0.078 (3)
H250.60440.01540.45210.093*
C260.6407 (6)0.0348 (2)0.5372 (7)0.064 (2)
H260.68900.02360.59230.077*
C270.6173 (5)0.0754 (2)0.5362 (6)0.0507 (18)
C280.6653 (4)0.1040 (2)0.6174 (5)0.0504 (18)
C290.7330 (5)0.0935 (3)0.7115 (6)0.067 (2)
H290.75020.06670.72620.081*
C300.7736 (6)0.1223 (3)0.7816 (6)0.077 (3)
H300.81680.11520.84510.092*
C310.7514 (6)0.1620 (3)0.7592 (7)0.088 (3)
H310.78080.18230.80510.106*
C320.6834 (6)0.1705 (3)0.6656 (6)0.071 (2)
H320.66730.19730.64960.086*
C330.0451 (6)0.0092 (3)0.7174 (7)0.074 (2)
H330.09660.00140.77440.088*
C340.0044 (8)0.0199 (3)0.6505 (9)0.098 (3)
H340.01310.04680.66170.117*
C350.0809 (8)0.0084 (4)0.5660 (10)0.109 (4)
H350.11610.02750.51960.130*
C360.1044 (6)0.0315 (4)0.5512 (7)0.093 (3)
H360.15580.03940.49430.111*
C370.0523 (5)0.0603 (3)0.6204 (6)0.066 (2)
C380.0660 (5)0.1041 (3)0.6141 (7)0.066 (2)
C390.1320 (6)0.1226 (4)0.5294 (7)0.085 (3)
H390.17140.10750.47500.102*
C400.1371 (7)0.1639 (4)0.5288 (9)0.104 (4)
H400.18070.17730.47390.124*
C410.0779 (8)0.1850 (4)0.6092 (10)0.108 (4)
H410.07960.21290.60890.129*
C420.0162 (7)0.1650 (3)0.6901 (8)0.092 (3)
H420.02260.17980.74530.111*
C430.0492 (5)0.0478 (2)0.9175 (6)0.062 (2)
H430.05400.02610.87380.075*
C440.1006 (6)0.0469 (3)0.9845 (7)0.074 (2)
H440.13980.02500.98590.089*
C450.0926 (6)0.0789 (3)1.0496 (7)0.078 (3)
H450.12610.07881.09600.093*
C460.0355 (5)0.1109 (3)1.0459 (5)0.065 (2)
H460.02970.13281.08900.078*
C470.0138 (5)0.1099 (2)0.9758 (5)0.0512 (17)
C480.0780 (5)0.1437 (2)0.9673 (6)0.0579 (19)
C490.0889 (7)0.1787 (3)1.0181 (7)0.084 (3)
H490.05320.18341.06130.101*
C500.1514 (9)0.2073 (3)1.0076 (9)0.114 (4)
H500.15810.23161.04220.137*
C510.2039 (7)0.1994 (3)0.9451 (10)0.101 (3)
H510.24880.21810.93850.121*
C520.1903 (6)0.1641 (3)0.8922 (7)0.082 (3)
H520.22580.15900.84900.098*
Cl10.22823 (15)0.04680 (7)0.23862 (16)0.0682 (5)
O50.2613 (5)0.05606 (19)0.3445 (4)0.096 (2)
O6A0.3092 (12)0.0496 (6)0.2025 (13)0.100 (5)*0.40
O7A0.1588 (12)0.0733 (4)0.1845 (13)0.120 (6)*0.40
O8A0.1950 (12)0.0066 (3)0.2317 (10)0.109 (5)*0.40
O6B0.1255 (11)0.0428 (5)0.1932 (11)0.142 (5)*0.60
O7B0.2757 (9)0.0151 (4)0.2112 (9)0.115 (4)*0.60
O8B0.2486 (11)0.0814 (3)0.1907 (10)0.134 (5)*0.60
Cl20.29226 (17)0.04446 (8)0.76641 (19)0.0836 (7)
O90.2776 (6)0.00541 (18)0.7191 (6)0.127 (3)
O10A0.3841 (10)0.0583 (4)0.7946 (13)0.090 (6)*0.50
O11A0.2761 (11)0.0369 (4)0.8619 (8)0.095 (4)*0.50
O12A0.2203 (10)0.0727 (4)0.7204 (13)0.133 (6)*0.50
O10B0.3935 (11)0.0478 (7)0.8186 (18)0.184 (14)*0.50
O11B0.2382 (12)0.0514 (6)0.8284 (13)0.136 (7)*0.50
O12B0.2707 (10)0.0706 (3)0.6787 (8)0.105 (4)*0.50
Cl30.82389 (18)0.20638 (8)0.0525 (2)0.0852 (7)
O130.8650 (6)0.2134 (3)0.0225 (6)0.152 (3)
O140.7716 (4)0.24045 (18)0.0684 (5)0.0911 (18)
O150.7574 (7)0.1745 (3)0.0114 (8)0.162 (4)
O160.8896 (6)0.1952 (3)0.1423 (6)0.175 (5)
Cl40.2894 (2)0.20533 (9)0.6836 (3)0.1046 (8)
O170.2749 (6)0.2016 (3)0.5742 (6)0.132 (3)
O180.3487 (8)0.2389 (3)0.7171 (8)0.167 (4)
O190.3350 (7)0.1729 (3)0.7385 (7)0.152 (3)
O200.2009 (8)0.2126 (4)0.6953 (9)0.205 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0420 (4)0.0591 (6)0.0490 (5)0.0088 (4)0.0121 (4)0.0163 (4)
Cu20.0435 (4)0.0785 (7)0.0388 (5)0.0063 (4)0.0127 (4)0.0065 (4)
Cu30.0467 (5)0.0476 (5)0.0534 (5)0.0015 (4)0.0147 (4)0.0064 (4)
Cu40.0486 (5)0.0605 (6)0.0583 (6)0.0013 (4)0.0188 (4)0.0025 (5)
O10.047 (3)0.054 (3)0.059 (3)0.000 (2)0.011 (2)0.025 (3)
O20.039 (2)0.077 (4)0.044 (3)0.000 (2)0.017 (2)0.005 (2)
O30.039 (2)0.064 (3)0.044 (3)0.009 (2)0.013 (2)0.015 (2)
O40.054 (3)0.090 (4)0.042 (3)0.010 (3)0.022 (2)0.008 (3)
N10.055 (4)0.081 (5)0.057 (4)0.010 (3)0.008 (3)0.027 (4)
N20.037 (3)0.062 (4)0.038 (3)0.006 (3)0.007 (2)0.005 (3)
N30.037 (3)0.058 (4)0.041 (3)0.008 (3)0.008 (2)0.010 (3)
N40.060 (4)0.132 (7)0.048 (4)0.011 (4)0.016 (3)0.016 (4)
N50.056 (3)0.044 (4)0.070 (4)0.002 (3)0.022 (3)0.005 (3)
N60.050 (3)0.058 (4)0.065 (4)0.005 (3)0.016 (3)0.006 (3)
N70.050 (3)0.049 (4)0.052 (4)0.006 (3)0.021 (3)0.002 (3)
N80.049 (3)0.055 (4)0.052 (4)0.008 (3)0.009 (3)0.003 (3)
N90.056 (4)0.061 (5)0.071 (4)0.000 (3)0.031 (4)0.002 (4)
N100.046 (3)0.079 (5)0.060 (4)0.005 (3)0.015 (3)0.009 (4)
N110.046 (3)0.049 (4)0.057 (4)0.000 (3)0.019 (3)0.004 (3)
N120.050 (3)0.060 (4)0.070 (4)0.013 (3)0.017 (3)0.000 (3)
C10.051 (4)0.087 (6)0.066 (5)0.005 (4)0.009 (4)0.025 (5)
C20.056 (5)0.121 (9)0.113 (8)0.000 (5)0.003 (5)0.086 (7)
C30.049 (5)0.079 (6)0.102 (7)0.007 (4)0.004 (5)0.033 (5)
C40.054 (5)0.172 (11)0.095 (7)0.018 (6)0.018 (5)0.058 (7)
C50.038 (4)0.078 (6)0.057 (5)0.013 (4)0.006 (3)0.010 (4)
C60.041 (3)0.050 (4)0.037 (4)0.003 (3)0.007 (3)0.000 (3)
C70.041 (3)0.047 (4)0.042 (4)0.006 (3)0.014 (3)0.001 (3)
C80.038 (4)0.088 (6)0.050 (4)0.000 (4)0.010 (3)0.007 (4)
C9A0.037 (7)0.166 (18)0.049 (9)0.029 (10)0.003 (6)0.035 (11)
C10A0.047 (9)0.16 (3)0.057 (10)0.031 (11)0.017 (7)0.033 (18)
C11A0.062 (8)0.114 (12)0.036 (6)0.009 (8)0.002 (6)0.017 (8)
C9B0.07 (2)0.10 (3)0.10 (3)0.04 (3)0.01 (2)0.02 (3)
C10B0.05 (2)0.11 (4)0.07 (3)0.039 (18)0.004 (19)0.03 (3)
C11B0.043 (14)0.11 (3)0.039 (14)0.020 (17)0.003 (11)0.027 (18)
C120.085 (6)0.114 (8)0.043 (5)0.023 (5)0.027 (4)0.021 (5)
C130.080 (5)0.063 (6)0.075 (6)0.008 (4)0.031 (5)0.004 (5)
C140.100 (7)0.087 (7)0.070 (6)0.004 (6)0.042 (5)0.003 (5)
C150.124 (8)0.105 (9)0.081 (7)0.034 (7)0.054 (6)0.010 (6)
C160.115 (7)0.067 (6)0.081 (6)0.019 (5)0.040 (6)0.013 (5)
C170.051 (4)0.062 (6)0.055 (5)0.008 (4)0.009 (4)0.011 (4)
C180.049 (4)0.051 (5)0.066 (5)0.000 (4)0.005 (4)0.008 (4)
C190.081 (6)0.054 (6)0.126 (9)0.002 (5)0.030 (6)0.003 (6)
C200.097 (8)0.064 (7)0.154 (11)0.017 (6)0.030 (8)0.007 (7)
C210.073 (6)0.085 (8)0.121 (9)0.021 (6)0.027 (6)0.015 (7)
C220.064 (5)0.072 (6)0.087 (6)0.014 (4)0.025 (5)0.002 (5)
C230.063 (5)0.064 (6)0.059 (5)0.004 (4)0.025 (4)0.001 (4)
C240.091 (6)0.056 (6)0.067 (6)0.015 (5)0.037 (5)0.012 (5)
C250.093 (6)0.049 (5)0.108 (8)0.002 (5)0.055 (6)0.005 (6)
C260.066 (5)0.052 (5)0.083 (6)0.016 (4)0.036 (5)0.020 (5)
C270.041 (4)0.056 (5)0.059 (5)0.005 (3)0.021 (4)0.011 (4)
C280.034 (3)0.067 (5)0.051 (4)0.005 (3)0.015 (3)0.007 (4)
C290.053 (4)0.070 (6)0.072 (6)0.014 (4)0.013 (4)0.007 (5)
C300.059 (5)0.101 (8)0.055 (5)0.016 (5)0.002 (4)0.001 (5)
C310.071 (6)0.098 (8)0.077 (6)0.015 (5)0.001 (5)0.025 (6)
C320.069 (5)0.069 (6)0.064 (5)0.013 (4)0.005 (4)0.013 (5)
C330.072 (5)0.080 (7)0.073 (6)0.004 (5)0.030 (5)0.009 (5)
C340.105 (8)0.074 (7)0.122 (9)0.024 (6)0.050 (7)0.029 (7)
C350.096 (8)0.111 (10)0.111 (9)0.021 (7)0.024 (7)0.040 (8)
C360.059 (5)0.142 (10)0.074 (6)0.019 (6)0.018 (5)0.025 (7)
C370.039 (4)0.109 (8)0.057 (5)0.014 (4)0.027 (4)0.007 (5)
C380.041 (4)0.085 (7)0.078 (6)0.009 (4)0.026 (4)0.017 (5)
C390.050 (5)0.128 (10)0.073 (6)0.015 (6)0.014 (4)0.013 (6)
C400.069 (6)0.118 (10)0.110 (9)0.032 (7)0.012 (6)0.043 (8)
C410.089 (7)0.090 (8)0.136 (10)0.027 (7)0.026 (7)0.033 (8)
C420.094 (7)0.070 (7)0.103 (8)0.027 (6)0.021 (6)0.015 (6)
C430.057 (4)0.057 (5)0.073 (5)0.007 (4)0.022 (4)0.004 (4)
C440.067 (5)0.064 (6)0.095 (7)0.012 (4)0.031 (5)0.018 (5)
C450.071 (5)0.096 (7)0.074 (6)0.010 (5)0.036 (5)0.028 (6)
C460.069 (5)0.080 (6)0.047 (4)0.011 (5)0.021 (4)0.003 (4)
C470.051 (4)0.051 (5)0.050 (4)0.004 (3)0.015 (3)0.005 (4)
C480.059 (4)0.050 (5)0.060 (5)0.000 (4)0.013 (4)0.000 (4)
C490.103 (7)0.062 (6)0.081 (6)0.026 (5)0.023 (5)0.015 (5)
C500.128 (10)0.070 (7)0.121 (10)0.029 (7)0.010 (8)0.010 (7)
C510.083 (7)0.079 (8)0.128 (10)0.037 (6)0.017 (7)0.007 (7)
C520.072 (6)0.074 (7)0.094 (7)0.021 (5)0.020 (5)0.014 (6)
Cl10.0690 (12)0.0628 (14)0.0641 (13)0.0030 (10)0.0107 (10)0.0037 (10)
O50.137 (6)0.093 (5)0.057 (4)0.005 (4)0.031 (4)0.009 (3)
Cl20.0859 (15)0.0764 (17)0.0951 (17)0.0061 (13)0.0388 (14)0.0043 (14)
O90.195 (8)0.074 (5)0.139 (6)0.009 (5)0.092 (6)0.020 (5)
Cl30.0882 (16)0.0898 (18)0.0856 (17)0.0080 (14)0.0397 (14)0.0071 (14)
O130.153 (7)0.216 (10)0.117 (6)0.012 (7)0.084 (6)0.005 (6)
O140.091 (4)0.084 (4)0.105 (5)0.016 (4)0.041 (4)0.002 (4)
O150.166 (8)0.099 (6)0.223 (10)0.011 (6)0.068 (8)0.044 (7)
O160.162 (7)0.240 (11)0.080 (5)0.124 (8)0.017 (5)0.044 (6)
Cl40.126 (2)0.0728 (19)0.124 (2)0.0064 (17)0.054 (2)0.0040 (18)
O170.149 (7)0.147 (7)0.103 (6)0.017 (6)0.047 (5)0.014 (5)
O180.217 (10)0.093 (6)0.187 (9)0.046 (7)0.064 (8)0.052 (6)
O190.176 (8)0.115 (7)0.157 (8)0.075 (6)0.045 (6)0.044 (6)
O200.200 (10)0.233 (12)0.243 (12)0.098 (9)0.153 (10)0.108 (10)
Geometric parameters (Å, º) top
Cu1—O11.915 (4)C13—C141.379 (11)
Cu1—O31.970 (4)C13—H130.9300
Cu1—N11.977 (6)C14—C151.350 (12)
Cu1—N21.930 (5)C14—H140.9300
Cu2—O21.960 (4)C15—C161.362 (13)
Cu2—O41.905 (4)C15—H150.9300
Cu2—N31.936 (5)C16—C171.381 (10)
Cu2—N41.986 (6)C16—H160.9300
Cu3—O11.935 (4)C17—C181.463 (11)
Cu3—N52.184 (6)C18—C191.378 (11)
Cu3—N62.012 (6)C19—C201.348 (14)
Cu3—N71.986 (6)C19—H190.9300
Cu3—N82.025 (6)C20—C211.359 (14)
Cu4—O41.941 (5)C20—H200.9300
Cu4—N91.972 (7)C21—C221.360 (12)
Cu4—N102.023 (6)C21—H210.9300
Cu4—N112.206 (5)C22—H220.9300
Cu4—N122.003 (6)C23—C241.358 (10)
C6—O21.277 (7)C23—H230.9300
C6—N21.284 (8)C24—C251.362 (12)
C6—C71.528 (8)C24—H240.9300
C7—O31.270 (7)C25—C261.377 (11)
C7—N31.266 (8)C25—H250.9300
O1—C11.423 (8)C26—C271.391 (10)
O4—C121.416 (8)C26—H260.9300
N1—C21.377 (9)C27—C281.465 (10)
N1—C31.447 (10)C28—C291.397 (10)
N1—H10.9100C29—C301.355 (11)
N2—C51.475 (8)C29—H290.9300
N3—C81.465 (8)C30—C311.371 (12)
N4—C11A1.442 (8)C30—H300.9300
N4—C11B1.447 (10)C31—C321.378 (11)
N4—C10A1.456 (9)C31—H310.9300
N4—C10B1.464 (10)C32—H320.9300
N4—H4C0.9100C33—C341.371 (12)
N4—H4D0.9101C33—H330.9300
N5—C131.331 (9)C34—C351.379 (14)
N5—C171.341 (9)C34—H340.9300
N6—C221.338 (9)C35—C361.368 (14)
N6—C181.346 (9)C35—H350.9300
N7—C231.317 (9)C36—C371.393 (12)
N7—C271.352 (8)C36—H360.9300
N8—C321.334 (9)C37—C381.470 (12)
N8—C281.349 (9)C38—C391.393 (11)
N9—C331.318 (10)C39—C401.375 (14)
N9—C371.384 (10)C39—H390.9300
N10—C381.333 (10)C40—C411.360 (14)
N10—C421.353 (11)C40—H400.9300
N11—C431.328 (9)C41—C421.360 (13)
N11—C471.336 (9)C41—H410.9300
N12—C521.347 (10)C42—H420.9300
N12—C481.351 (9)C43—C441.377 (11)
C1—C21.481 (11)C43—H430.9300
C1—H1A0.9700C44—C451.379 (12)
C1—H1B0.9700C44—H440.9300
C2—H2A0.9700C45—C461.363 (11)
C2—H2B0.9700C45—H450.9300
C3—C41.454 (12)C46—C471.391 (9)
C3—H3A0.9700C46—H460.9300
C3—H3B0.9700C47—C481.493 (10)
C4—C51.484 (11)C48—C491.345 (10)
C4—H4A0.9700C49—C501.359 (13)
C4—H4B0.9700C49—H490.9300
C5—H5A0.9700C50—C511.361 (15)
C5—H5B0.9700C50—H500.9300
C8—C9A1.516 (16)C51—C521.366 (13)
C8—C9B1.60 (4)C51—H510.9300
C8—H8A0.9700C52—H520.9300
C8—H8B0.9700Cl1—O7A1.367 (9)
C8—H8C0.9700Cl1—O7B1.385 (13)
C8—H8D0.9700Cl1—O8B1.412 (9)
C9A—C10A1.46 (3)Cl1—O8A1.415 (8)
C9A—H9A0.9700Cl1—O51.422 (6)
C9A—H9B0.9700Cl1—O6B1.429 (15)
C10A—H10A0.9700Cl1—O6A1.434 (17)
C10A—H10B0.9700Cl2—O10A1.348 (11)
C11A—C121.517 (9)Cl2—O11B1.369 (9)
C11A—H11A0.9700Cl2—O12A1.396 (9)
C11A—H11B0.9700Cl2—O10B1.420 (14)
C9B—C10B1.540 (10)Cl2—O91.440 (6)
C9B—H9C0.9700Cl2—O11A1.445 (8)
C9B—H9D0.9700Cl2—O12B1.445 (8)
C10B—H10C0.9700Cl3—O161.350 (7)
C10B—H10D0.9700Cl3—O131.385 (8)
C11B—C121.527 (10)Cl3—O151.425 (9)
C11B—H11C0.9700Cl3—O141.425 (6)
C11B—H11D0.9700Cl4—O191.362 (7)
C12—H12A0.9700Cl4—O201.377 (9)
C12—H12B0.9700Cl4—O181.396 (8)
C12—H12C0.9700Cl4—O171.469 (8)
C12—H12D0.9700
O1—Cu1—O392.45 (18)C12—C11B—H11D110.1
O1—Cu1—N185.9 (2)H11C—C11B—H11D108.4
O1—Cu1—N2175.4 (2)O4—C12—C11A109.6 (7)
O3—Cu1—N1174.3 (3)O4—C12—C11B111.8 (10)
O3—Cu1—N285.02 (19)O4—C12—H12A109.8
N1—Cu1—N296.2 (2)C11A—C12—H12A109.8
O2—Cu2—O492.13 (18)O4—C12—H12B109.8
O2—Cu2—N385.23 (19)C11A—C12—H12B109.8
O2—Cu2—N4173.3 (3)H12A—C12—H12B108.2
O4—Cu2—N3173.6 (2)O4—C12—H12C109.4
O4—Cu2—N485.3 (2)C11B—C12—H12C109.0
N3—Cu2—N496.6 (2)O4—C12—H12D108.9
O1—Cu3—N5103.7 (2)C11B—C12—H12D110.2
O1—Cu3—N692.1 (2)H12C—C12—H12D107.6
O1—Cu3—N793.0 (2)N5—C13—C14123.5 (8)
O1—Cu3—N8152.4 (2)N5—C13—H13118.2
N5—Cu3—N677.8 (2)C14—C13—H13118.2
N5—Cu3—N7101.9 (2)C15—C14—C13116.9 (9)
N5—Cu3—N8103.9 (2)C15—C14—H14121.6
N6—Cu3—N7174.7 (2)C13—C14—H14121.6
N6—Cu3—N894.3 (2)C14—C15—C16121.6 (9)
N7—Cu3—N880.6 (2)C14—C15—H15119.2
O4—Cu4—N994.1 (2)C16—C15—H15119.2
O4—Cu4—N10148.3 (2)C15—C16—C17118.5 (9)
O4—Cu4—N11107.17 (19)C15—C16—H16120.8
O4—Cu4—N1293.9 (2)C17—C16—H16120.8
N9—Cu4—N1080.8 (3)N5—C17—C16121.2 (8)
N9—Cu4—N1198.0 (2)N5—C17—C18116.0 (6)
N9—Cu4—N12171.6 (2)C16—C17—C18122.7 (8)
N10—Cu4—N11104.5 (2)N6—C18—C19119.6 (8)
N10—Cu4—N1293.4 (3)N6—C18—C17115.6 (7)
N11—Cu4—N1277.5 (2)C19—C18—C17124.7 (8)
Cu1—O1—Cu3123.1 (2)C20—C19—C18119.8 (10)
Cu1—O1—C1112.6 (4)C20—C19—H19120.1
Cu3—O1—C1120.8 (4)C18—C19—H19120.1
Cu2—O4—Cu4120.5 (2)C19—C20—C21120.6 (10)
Cu2—O4—C12113.5 (4)C19—C20—H20119.7
Cu4—O4—C12120.9 (4)C21—C20—H20119.7
C6—O2—Cu2109.8 (4)C20—C21—C22118.2 (10)
C7—O3—Cu1110.5 (4)C20—C21—H21120.9
C2—N1—C3122.8 (7)C22—C21—H21120.9
C2—N1—Cu1105.6 (5)N6—C22—C21122.1 (9)
C3—N1—Cu1118.0 (5)N6—C22—H22118.9
C2—N1—H1102.4C21—C22—H22118.9
C3—N1—H1102.4N7—C23—C24122.5 (8)
Cu1—N1—H1102.4N7—C23—H23118.8
C6—N2—C5118.3 (5)C24—C23—H23118.8
C6—N2—Cu1112.9 (4)C23—C24—C25119.7 (8)
C5—N2—Cu1127.9 (4)C23—C24—H24120.2
C7—N3—C8118.1 (5)C25—C24—H24120.2
C7—N3—Cu2113.1 (4)C24—C25—C26119.5 (8)
C8—N3—Cu2128.6 (4)C24—C25—H25120.2
C11A—N4—C10A119.6 (13)C26—C25—H25120.2
C11B—N4—C10B124 (2)C25—C26—C27118.0 (8)
C11A—N4—Cu2106.9 (6)C25—C26—H26121.0
C11B—N4—Cu2109.2 (9)C27—C26—H26121.0
C10A—N4—Cu2116.3 (12)N7—C27—C26121.3 (7)
C10B—N4—Cu2120 (3)N7—C27—C28114.0 (6)
C11A—N4—H4C104.1C26—C27—C28124.7 (7)
C10A—N4—H4C104.1N8—C28—C29120.0 (7)
Cu2—N4—H4C104.1N8—C28—C27115.3 (6)
C11B—N4—H4D101.2C29—C28—C27124.7 (7)
C10B—N4—H4D96.4C30—C29—C28120.1 (8)
Cu2—N4—H4D100.0C30—C29—H29119.9
C13—N5—C17118.3 (7)C28—C29—H29119.9
C13—N5—Cu3129.0 (5)C29—C30—C31120.3 (8)
C17—N5—Cu3111.9 (5)C29—C30—H30119.8
C22—N6—C18119.6 (7)C31—C30—H30119.8
C22—N6—Cu3122.4 (6)C30—C31—C32116.9 (9)
C18—N6—Cu3117.9 (5)C30—C31—H31121.5
C23—N7—C27119.0 (6)C32—C31—H31121.5
C23—N7—Cu3125.2 (5)N8—C32—C31124.2 (8)
C27—N7—Cu3115.8 (5)N8—C32—H32117.9
C32—N8—C28118.3 (6)C31—C32—H32117.9
C32—N8—Cu3127.8 (5)N9—C33—C34123.1 (9)
C28—N8—Cu3113.7 (5)N9—C33—H33118.4
C33—N9—C37119.8 (8)C34—C33—H33118.4
C33—N9—Cu4125.0 (6)C33—C34—C35118.5 (11)
C37—N9—Cu4115.1 (6)C33—C34—H34120.7
C38—N10—C42116.8 (8)C35—C34—H34120.7
C38—N10—Cu4115.1 (6)C36—C35—C34119.3 (11)
C42—N10—Cu4128.0 (6)C36—C35—H35120.3
C43—N11—C47119.2 (6)C34—C35—H35120.3
C43—N11—Cu4129.0 (5)C35—C36—C37120.7 (10)
C47—N11—Cu4111.4 (4)C35—C36—H36119.6
C52—N12—C48118.7 (7)C37—C36—H36119.6
C52—N12—Cu4121.7 (6)N9—C37—C36118.5 (9)
C48—N12—Cu4118.7 (5)N9—C37—C38114.0 (7)
O1—C1—C2108.1 (6)C36—C37—C38127.5 (9)
O1—C1—H1A110.1N10—C38—C39123.2 (9)
C2—C1—H1A110.1N10—C38—C37114.7 (7)
O1—C1—H1B110.1C39—C38—C37122.1 (9)
C2—C1—H1B110.1C40—C39—C38117.8 (10)
H1A—C1—H1B108.4C40—C39—H39121.1
N1—C2—C1115.0 (7)C38—C39—H39121.1
N1—C2—H2A108.5C41—C40—C39119.6 (10)
C1—C2—H2A108.5C41—C40—H40120.2
N1—C2—H2B108.5C39—C40—H40120.2
C1—C2—H2B108.5C42—C41—C40119.5 (11)
H2A—C2—H2B107.5C42—C41—H41120.3
N1—C3—C4116.5 (8)C40—C41—H41120.3
N1—C3—H3A108.2N10—C42—C41123.1 (11)
C4—C3—H3A108.2N10—C42—H42118.5
N1—C3—H3B108.2C41—C42—H42118.5
C4—C3—H3B108.2N11—C43—C44122.0 (8)
H3A—C3—H3B107.3N11—C43—H43119.0
C3—C4—C5116.7 (9)C44—C43—H43119.0
C3—C4—H4A108.1C43—C44—C45118.7 (8)
C5—C4—H4A108.1C43—C44—H44120.7
C3—C4—H4B108.1C45—C44—H44120.7
C5—C4—H4B108.1C46—C45—C44119.9 (8)
H4A—C4—H4B107.3C46—C45—H45120.0
N2—C5—C4113.3 (6)C44—C45—H45120.0
N2—C5—H5A108.9C45—C46—C47118.3 (8)
C4—C5—H5A108.9C45—C46—H46120.9
N2—C5—H5B108.9C47—C46—H46120.9
C4—C5—H5B108.9N11—C47—C46121.9 (7)
H5A—C5—H5B107.7N11—C47—C48116.6 (6)
O2—C6—N2128.2 (6)C46—C47—C48121.5 (7)
O2—C6—C7117.7 (5)C49—C48—N12120.8 (7)
N2—C6—C7114.2 (6)C49—C48—C47125.4 (8)
N3—C7—O3128.6 (6)N12—C48—C47113.8 (7)
N3—C7—C6114.1 (5)C48—C49—C50121.1 (10)
O3—C7—C6117.2 (5)C48—C49—H49119.4
N3—C8—C9A111.8 (8)C50—C49—H49119.4
N3—C8—C9B112.6 (18)C49—C50—C51118.4 (11)
N3—C8—H8A109.2C49—C50—H50120.8
C9A—C8—H8A109.2C51—C50—H50120.8
N3—C8—H8B109.2C50—C51—C52119.8 (10)
C9A—C8—H8B109.2C50—C51—H51120.1
H8A—C8—H8B107.9C52—C51—H51120.1
N3—C8—H8C109.1N12—C52—C51121.1 (9)
C9B—C8—H8C107.0N12—C52—H52119.5
N3—C8—H8D109.4C51—C52—H52119.5
C9B—C8—H8D110.8O7B—Cl1—O8B106.8 (8)
H8C—C8—H8D107.9O7A—Cl1—O8A113.4 (8)
C10A—C9A—C8116.0 (17)O7A—Cl1—O5111.4 (9)
C10A—C9A—H9A108.3O7B—Cl1—O5114.9 (6)
C8—C9A—H9A108.3O8B—Cl1—O5105.0 (6)
C10A—C9A—H9B108.3O8A—Cl1—O5105.4 (6)
C8—C9A—H9B108.3O7B—Cl1—O6B110.9 (8)
H9A—C9A—H9B107.4O8B—Cl1—O6B102.9 (9)
N4—C10A—C9A114.4 (19)O5—Cl1—O6B115.1 (7)
N4—C10A—H10A108.7O7A—Cl1—O6A108.3 (11)
C9A—C10A—H10A108.7O8A—Cl1—O6A109.9 (10)
N4—C10A—H10B108.7O5—Cl1—O6A108.2 (7)
C9A—C10A—H10B108.7O10A—Cl2—O12A115.5 (11)
H10A—C10A—H10B107.6O11B—Cl2—O10B112.8 (9)
N4—C11A—C12108.8 (7)O10A—Cl2—O9115.0 (7)
N4—C11A—H11A109.9O11B—Cl2—O9114.2 (9)
C12—C11A—H11A109.9O12A—Cl2—O9115.0 (8)
N4—C11A—H11B109.9O10B—Cl2—O9106.0 (8)
C12—C11A—H11B109.9O10A—Cl2—O11A104.1 (9)
H11A—C11A—H11B108.3O12A—Cl2—O11A102.1 (10)
C10B—C9B—C8111 (4)O9—Cl2—O11A102.6 (7)
C10B—C9B—H9C109.4O11B—Cl2—O12B114.9 (10)
C8—C9B—H9C109.4O10B—Cl2—O12B106.3 (13)
C10B—C9B—H9D109.4O9—Cl2—O12B101.6 (5)
C8—C9B—H9D109.4O16—Cl3—O13112.9 (6)
H9C—C9B—H9D108.0O16—Cl3—O15110.3 (7)
N4—C10B—C9B114 (3)O13—Cl3—O15103.5 (6)
N4—C10B—H10C108.8O16—Cl3—O14109.2 (4)
C9B—C10B—H10C108.8O13—Cl3—O14111.8 (5)
N4—C10B—H10D108.8O15—Cl3—O14109.0 (5)
C9B—C10B—H10D108.8O19—Cl4—O20112.2 (6)
H10C—C10B—H10D107.7O19—Cl4—O18108.3 (7)
N4—C11B—C12108.0 (9)O20—Cl4—O18108.8 (7)
N4—C11B—H11C110.1O19—Cl4—O17112.8 (6)
C12—C11B—H11C110.1O20—Cl4—O17108.6 (7)
N4—C11B—H11D110.1O18—Cl4—O17105.9 (6)
O3—Cu1—O1—C1174.9 (5)O2—C6—C7—O3180.0 (6)
N1—Cu1—O1—C10.4 (5)N2—C6—C7—O30.0 (9)
O3—Cu1—O1—Cu316.1 (3)C7—N3—C8—C9A172.1 (10)
N1—Cu1—O1—Cu3158.4 (4)Cu2—N3—C8—C9A13.6 (13)
N7—Cu3—O1—C1123.3 (6)C7—N3—C8—C9B149.8 (17)
N6—Cu3—O1—C157.7 (6)Cu2—N3—C8—C9B24.5 (18)
N8—Cu3—O1—C1161.3 (6)N3—C8—C9A—C10A52 (2)
N5—Cu3—O1—C120.3 (6)C11A—N4—C10A—C9A177.8 (16)
N7—Cu3—O1—Cu179.6 (3)Cu2—N4—C10A—C9A51 (2)
N6—Cu3—O1—Cu199.4 (3)C8—C9A—C10A—N476 (3)
N8—Cu3—O1—Cu14.2 (7)C10A—N4—C11A—C12174.9 (14)
N5—Cu3—O1—Cu1177.4 (3)Cu2—N4—C11A—C1240.1 (12)
O4—Cu2—O2—C6171.3 (5)N3—C8—C9B—C10B58 (4)
N3—Cu2—O2—C62.8 (5)C11B—N4—C10B—C9B164 (4)
O1—Cu1—O3—C7172.6 (4)Cu2—N4—C10B—C9B50 (7)
N2—Cu1—O3—C73.5 (4)C8—C9B—C10B—N473 (7)
O2—Cu2—O4—C12173.9 (6)C10B—N4—C11B—C12175 (4)
N4—Cu2—O4—C120.1 (6)Cu2—N4—C11B—C1235 (2)
O2—Cu2—O4—Cu418.7 (3)Cu2—O4—C12—C11A22.4 (9)
N4—Cu2—O4—Cu4155.0 (4)Cu4—O4—C12—C11A132.6 (7)
N9—Cu4—O4—C12123.2 (6)Cu2—O4—C12—C11B19.9 (14)
N12—Cu4—O4—C1254.6 (6)Cu4—O4—C12—C11B174.9 (12)
N10—Cu4—O4—C12157.6 (6)N4—C11A—C12—O441.6 (13)
N11—Cu4—O4—C1223.5 (6)N4—C11B—C12—O436 (2)
N9—Cu4—O4—Cu283.5 (3)C17—N5—C13—C141.2 (12)
N12—Cu4—O4—Cu298.7 (3)Cu3—N5—C13—C14167.9 (6)
N10—Cu4—O4—Cu24.3 (7)N5—C13—C14—C150.3 (14)
N11—Cu4—O4—Cu2176.8 (3)C13—C14—C15—C160.6 (15)
O1—Cu1—N1—C219.8 (7)C14—C15—C16—C170.5 (15)
N2—Cu1—N1—C2156.0 (7)C13—N5—C17—C162.4 (11)
O1—Cu1—N1—C3161.7 (6)Cu3—N5—C17—C16168.5 (6)
N2—Cu1—N1—C314.2 (7)C13—N5—C17—C18179.8 (7)
O3—Cu1—N2—C63.6 (5)Cu3—N5—C17—C189.3 (8)
N1—Cu1—N2—C6170.8 (5)C15—C16—C17—N52.1 (13)
O3—Cu1—N2—C5172.7 (6)C15—C16—C17—C18179.7 (8)
N1—Cu1—N2—C51.7 (6)C22—N6—C18—C190.8 (11)
O2—Cu2—N3—C72.1 (5)Cu3—N6—C18—C19176.3 (6)
N4—Cu2—N3—C7171.5 (5)C22—N6—C18—C17179.8 (6)
O2—Cu2—N3—C8176.6 (6)Cu3—N6—C18—C172.7 (8)
N4—Cu2—N3—C83.1 (7)N5—C17—C18—N68.3 (9)
O4—Cu2—N4—C11A23.0 (7)C16—C17—C18—N6169.4 (7)
N3—Cu2—N4—C11A150.8 (7)N5—C17—C18—C19170.6 (8)
O4—Cu2—N4—C11B20.9 (13)C16—C17—C18—C1911.6 (12)
N3—Cu2—N4—C11B165.3 (13)N6—C18—C19—C201.6 (13)
O4—Cu2—N4—C10A159.5 (13)C17—C18—C19—C20179.5 (9)
N3—Cu2—N4—C10A14.3 (13)C18—C19—C20—C212.1 (16)
O4—Cu2—N4—C10B172 (3)C19—C20—C21—C221.6 (16)
N3—Cu2—N4—C10B14 (3)C18—N6—C22—C210.3 (12)
O1—Cu3—N5—C1395.0 (7)Cu3—N6—C22—C21176.6 (7)
N7—Cu3—N5—C131.1 (7)C20—C21—C22—N60.7 (14)
N6—Cu3—N5—C13175.7 (7)C27—N7—C23—C242.1 (10)
N8—Cu3—N5—C1384.2 (7)Cu3—N7—C23—C24177.7 (5)
O1—Cu3—N5—C1795.3 (5)N7—C23—C24—C251.6 (11)
N7—Cu3—N5—C17168.6 (5)C23—C24—C25—C260.3 (12)
N6—Cu3—N5—C176.1 (5)C24—C25—C26—C270.5 (11)
N8—Cu3—N5—C1785.4 (5)C23—N7—C27—C261.3 (9)
O1—Cu3—N6—C2271.8 (6)Cu3—N7—C27—C26178.5 (5)
N8—Cu3—N6—C2281.4 (6)C23—N7—C27—C28179.8 (5)
N5—Cu3—N6—C22175.3 (6)Cu3—N7—C27—C280.4 (7)
O1—Cu3—N6—C18105.2 (5)C25—C26—C27—N70.0 (10)
N8—Cu3—N6—C18101.7 (5)C25—C26—C27—C28178.8 (7)
N5—Cu3—N6—C181.7 (5)C32—N8—C28—C293.4 (9)
O1—Cu3—N7—C2330.4 (5)Cu3—N8—C28—C29170.8 (5)
N8—Cu3—N7—C23176.6 (6)C32—N8—C28—C27177.1 (6)
N5—Cu3—N7—C2374.2 (5)Cu3—N8—C28—C278.6 (7)
O1—Cu3—N7—C27149.7 (4)N7—C27—C28—N86.1 (8)
N8—Cu3—N7—C273.2 (4)C26—C27—C28—N8172.8 (6)
N5—Cu3—N7—C27105.6 (4)N7—C27—C28—C29173.4 (6)
O1—Cu3—N8—C32101.7 (8)C26—C27—C28—C297.7 (10)
N7—Cu3—N8—C32179.9 (7)N8—C28—C29—C300.8 (11)
N6—Cu3—N8—C321.4 (7)C27—C28—C29—C30179.7 (7)
N5—Cu3—N8—C3279.9 (6)C28—C29—C30—C312.5 (12)
O1—Cu3—N8—C2871.8 (7)C29—C30—C31—C323.0 (13)
N7—Cu3—N8—C286.6 (4)C28—N8—C32—C312.8 (12)
N6—Cu3—N8—C28174.9 (5)Cu3—N8—C32—C31170.5 (6)
N5—Cu3—N8—C28106.6 (5)C30—C31—C32—N80.4 (13)
O4—Cu4—N9—C3331.1 (6)C37—N9—C33—C340.7 (11)
N10—Cu4—N9—C33179.6 (6)Cu4—N9—C33—C34174.5 (6)
N11—Cu4—N9—C3376.9 (6)N9—C33—C34—C350.1 (14)
O4—Cu4—N9—C37153.5 (4)C33—C34—C35—C360.5 (15)
N10—Cu4—N9—C375.0 (4)C34—C35—C36—C370.2 (15)
N11—Cu4—N9—C3798.5 (5)C33—N9—C37—C361.0 (10)
O4—Cu4—N10—C3885.3 (7)Cu4—N9—C37—C36174.6 (5)
N9—Cu4—N10—C382.3 (5)C33—N9—C37—C38177.6 (6)
N12—Cu4—N10—C38171.6 (5)Cu4—N9—C37—C386.7 (7)
N11—Cu4—N10—C3893.7 (5)C35—C36—C37—N90.6 (12)
O4—Cu4—N10—C4291.4 (8)C35—C36—C37—C38177.8 (8)
N9—Cu4—N10—C42174.3 (7)C42—N10—C38—C390.6 (11)
N12—Cu4—N10—C4211.8 (7)Cu4—N10—C38—C39177.6 (6)
N11—Cu4—N10—C4289.7 (7)C42—N10—C38—C37177.7 (7)
O4—Cu4—N11—C4386.4 (6)Cu4—N10—C38—C370.7 (8)
N9—Cu4—N11—C4310.4 (6)N9—C37—C38—N104.8 (9)
N12—Cu4—N11—C43176.7 (6)C36—C37—C38—N10176.7 (7)
N10—Cu4—N11—C4393.0 (6)N9—C37—C38—C39173.5 (6)
O4—Cu4—N11—C47100.2 (5)C36—C37—C38—C395.0 (11)
N9—Cu4—N11—C47162.9 (5)N10—C38—C39—C400.6 (12)
N12—Cu4—N11—C479.9 (4)C37—C38—C39—C40177.6 (8)
N10—Cu4—N11—C4780.4 (5)C38—C39—C40—C410.6 (14)
O4—Cu4—N12—C5271.0 (6)C39—C40—C41—C421.6 (16)
N10—Cu4—N12—C5278.2 (6)C38—N10—C42—C410.5 (13)
N11—Cu4—N12—C52177.7 (6)Cu4—N10—C42—C41176.1 (7)
O4—Cu4—N12—C48120.0 (5)C40—C41—C42—N101.6 (16)
N10—Cu4—N12—C4890.8 (6)C47—N11—C43—C440.3 (11)
N11—Cu4—N12—C4813.3 (5)Cu4—N11—C43—C44173.2 (6)
Cu1—O1—C1—C219.4 (9)N11—C43—C44—C450.4 (12)
Cu3—O1—C1—C2140.0 (6)C43—C44—C45—C460.7 (13)
C3—N1—C2—C1176.6 (8)C44—C45—C46—C470.3 (12)
Cu1—N1—C2—C137.2 (10)C43—N11—C47—C460.7 (10)
O1—C1—C2—N138.7 (12)Cu4—N11—C47—C46174.8 (5)
C2—N1—C3—C4177.8 (9)C43—N11—C47—C48179.9 (6)
Cu1—N1—C3—C447.4 (11)Cu4—N11—C47—C485.8 (7)
N1—C3—C4—C570.7 (13)C45—C46—C47—N110.4 (11)
C6—N2—C5—C4172.5 (8)C45—C46—C47—C48179.8 (7)
Cu1—N2—C5—C418.9 (10)C52—N12—C48—C493.8 (11)
C3—C4—C5—N252.2 (12)Cu4—N12—C48—C49165.5 (6)
Cu2—O2—C6—N2177.0 (6)C52—N12—C48—C47176.5 (7)
Cu2—O2—C6—C73.1 (7)Cu4—N12—C48—C4714.2 (8)
C5—N2—C6—O26.8 (11)N11—C47—C48—C49175.2 (7)
Cu1—N2—C6—O2177.1 (6)C46—C47—C48—C495.4 (12)
C5—N2—C6—C7173.2 (6)N11—C47—C48—N124.5 (9)
Cu1—N2—C6—C73.0 (7)C46—C47—C48—N12174.9 (6)
C8—N3—C7—O32.2 (11)N12—C48—C49—C502.2 (13)
Cu2—N3—C7—O3177.3 (6)C47—C48—C49—C50178.1 (9)
C8—N3—C7—C6176.1 (6)C48—C49—C50—C510.9 (16)
Cu2—N3—C7—C60.9 (7)C49—C50—C51—C522.4 (17)
Cu1—O3—C7—N3175.4 (6)C48—N12—C52—C512.3 (12)
Cu1—O3—C7—C62.8 (7)Cu4—N12—C52—C51166.7 (7)
O2—C6—C7—N31.6 (9)C50—C51—C52—N120.8 (16)
N2—C6—C7—N3178.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O18i0.972.533.228 (12)129
C15—H15···O140.932.493.317 (11)148
C22—H22···O170.932.463.111 (12)127
C31—H31···O13ii0.932.523.396 (13)157
C30—H30···Cg1iii0.932.583.470 (9)160
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu4(C12H22N4O4)(C10H8N2)4](ClO4)4
Mr1563.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.617 (3), 33.273 (7), 13.897 (3)
β (°) 109.39 (3)
V3)6375 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.15 × 0.07 × 0.05
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.799, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
31167, 11536, 6688
Rint0.054
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.188, 1.03
No. of reflections11536
No. of parameters853
No. of restraints20
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0778P)2 + 13.2663P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.75, 0.47

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—O11.915 (4)Cu3—N82.025 (6)
Cu1—O31.970 (4)Cu4—O41.941 (5)
Cu1—N11.977 (6)Cu4—N91.972 (7)
Cu1—N21.930 (5)Cu4—N102.023 (6)
Cu2—O21.960 (4)Cu4—N112.206 (5)
Cu2—O41.905 (4)Cu4—N122.003 (6)
Cu2—N31.936 (5)C6—O21.277 (7)
Cu2—N41.986 (6)C6—N21.284 (8)
Cu3—O11.935 (4)C6—C71.528 (8)
Cu3—N52.184 (6)C7—O31.270 (7)
Cu3—N62.012 (6)C7—N31.266 (8)
Cu3—N71.986 (6)
O1—Cu1—N2175.4 (2)O1—Cu3—N8152.4 (2)
O3—Cu1—N1174.3 (3)N5—Cu3—N677.8 (2)
O3—Cu1—N285.02 (19)N6—Cu3—N7174.7 (2)
N1—Cu1—N296.2 (2)N7—Cu3—N880.6 (2)
O2—Cu2—N4173.3 (3)O4—Cu4—N10148.3 (2)
O4—Cu2—N3173.6 (2)N9—Cu4—N1080.8 (3)
O4—Cu2—N485.3 (2)N9—Cu4—N12171.6 (2)
N3—Cu2—N496.6 (2)N11—Cu4—N1277.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O18i0.972.533.228 (12)129.3
C15—H15···O140.932.493.317 (11)147.7
C22—H22···O170.932.463.111 (12)127.0
C31—H31···O13ii0.932.523.396 (13)156.5
C30—H30···Cg1iii0.932.583.470 (9)159.9
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+1, y, z.
The puckering parameters of some chelate rings in (I) top
No.Size of ringDetermining atomsQθϕ
15Cu1/O1/N1/C1/C20.323 (9)113.9 (11)
25Cu2/O4/N4/C11A/C120.379 (10)115.0 (11)
35Cu2/O4/N4/C11B/C120.334 (15)295.5 (17)
46Cu1/N1/N2/C3–C50.466 (10)128.5 (10)336.1 (12)
56Cu2/N3/N4/C8/C9A/C10A0.52 (2)55.6 (16)208.4 (19)
66Cu2/N3/N4/C8/C9B/C10B0.55 (5)129 (3)18 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds