Download citation
Download citation
link to html
The title complex, [CaCu(C5H6O4)2(H2O)2]n, is the first heterobimetallic complex based on a substituted malonate dianion. The CuII cation and two independent 2,2-dimethyl­malonate (or 2,2-dimethyl­propane­dioate) dianions build up a robust dianionic [Cu(C5H6O4)2]2- complex, which acts as a building block to coordinate to four Ca2+ cations. Each CuII centre is in a four-coordinate square plane of dimethyl­malonate O atoms, while each CaII atom is in an eight-coordinate distorted bicapped trigonal-prismatic environment of six O atoms from four different dimethyl­malonate groups and two water mol­ecules. This arrangement creates a two-dimensional layer connectivity of the structure. The dianionic [Cu(C5H6O4)2]2- units are involved in different inter­mole­cular hydrogen-bonding inter­actions with water mol­ecules via the formation of hydrogen-bonded rings of graph sets R12(8) and R(6) within this layer. The crystal was nonmerohedrally twinned by rotation about [011] with a major twin volume fraction of 0.513 (3).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110020433/sq3244sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110020433/sq3244Isup2.hkl
Contains datablock I

CCDC reference: 786801

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[diaquabis(µ3-2,2-dimethylpropanedioato)calcium(II)copper(II)] top
Crystal data top
[CaCu(C5H6O4)2(H2O)2]Z = 2
Mr = 399.85F(000) = 410
Triclinic, P1Dx = 1.773 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0113 (18) ÅCell parameters from 3569 reflections
b = 9.6052 (19) Åθ = 2.2–27.9°
c = 9.6248 (19) ŵ = 1.85 mm1
α = 79.95 (3)°T = 294 K
β = 72.14 (3)°Plate, blue
γ = 71.40 (3)°0.14 × 0.12 × 0.06 mm
V = 748.8 (3) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2608 independent reflections
Radiation source: rotating anode1622 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.000
Detector resolution: 27.892 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1011
Tmin = 0.783, Tmax = 0.887l = 1011
2608 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0828P)2]
where P = (Fo2 + 2Fc2)/3
2608 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.95 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.50139 (19)0.74114 (16)0.24000 (16)0.0360 (3)
Cu10.68110 (10)0.60676 (9)0.79755 (9)0.0398 (3)
O10.6532 (6)0.8895 (6)0.0625 (6)0.0466 (14)
H1A0.64600.98010.06180.056*
H1B0.68370.86060.02290.056*
O20.3540 (6)0.6420 (6)0.4678 (6)0.0432 (14)
H2A0.35550.56530.43530.052*
H2B0.36770.62730.55360.052*
O30.6702 (7)0.5950 (6)1.0012 (6)0.0457 (14)
O40.6846 (7)0.4778 (6)1.2163 (7)0.0484 (17)
O50.6781 (7)0.4040 (6)0.8127 (6)0.0437 (13)
O60.6657 (7)0.1939 (7)0.9324 (6)0.0479 (17)
C10.7128 (9)0.4766 (8)1.0840 (8)0.0369 (18)
C20.8101 (7)0.3313 (7)1.0119 (9)0.0335 (14)
C30.7120 (9)0.3066 (8)0.9139 (9)0.0376 (19)
C40.9751 (8)0.3513 (9)0.9130 (10)0.061 (2)
H4A1.03430.26590.85960.092*
H4B1.03730.36350.97280.092*
H4C0.95600.43690.84540.092*
C50.8364 (10)0.2031 (9)1.1247 (10)0.064 (2)
H5A0.73350.19821.19080.095*
H5B0.90420.21581.17860.095*
H5C0.88820.11351.07690.095*
O70.6725 (8)0.6245 (7)0.6010 (6)0.0529 (15)
O80.6612 (8)0.7436 (7)0.3870 (7)0.0504 (16)
O90.6695 (9)0.8098 (6)0.7901 (6)0.0591 (17)
O100.6731 (8)1.0297 (7)0.6765 (7)0.0563 (18)
C60.6996 (10)0.7290 (8)0.4991 (8)0.0391 (19)
C70.7890 (8)0.8295 (8)0.5258 (9)0.0396 (15)
C80.7017 (10)0.8968 (8)0.6745 (9)0.0393 (19)
C90.9617 (9)0.7333 (11)0.5366 (10)0.069 (2)
H9A1.01810.79380.55650.103*
H9B1.02160.69040.44560.103*
H9C0.95160.65630.61420.103*
C100.7977 (12)0.9508 (10)0.4016 (9)0.073 (3)
H10A0.69301.02220.41320.110*
H10B0.82920.90900.30970.110*
H10C0.87630.99790.40340.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0443 (7)0.0318 (10)0.0308 (10)0.0068 (7)0.0126 (7)0.0032 (5)
Cu10.0521 (5)0.0354 (6)0.0298 (6)0.0128 (4)0.0105 (4)0.0029 (3)
O10.059 (3)0.046 (3)0.040 (3)0.022 (3)0.015 (3)0.002 (3)
O20.057 (3)0.038 (3)0.041 (3)0.018 (2)0.019 (3)0.000 (3)
O30.063 (4)0.036 (3)0.031 (3)0.015 (3)0.001 (3)0.004 (2)
O40.060 (4)0.041 (4)0.040 (4)0.008 (3)0.029 (3)0.007 (3)
O50.067 (4)0.039 (3)0.033 (3)0.017 (3)0.028 (3)0.008 (2)
O60.071 (4)0.051 (4)0.042 (4)0.045 (3)0.024 (3)0.013 (3)
C10.046 (5)0.021 (4)0.032 (4)0.003 (3)0.003 (4)0.001 (3)
C20.037 (3)0.018 (4)0.046 (5)0.007 (3)0.010 (4)0.010 (3)
C30.043 (4)0.024 (4)0.046 (5)0.005 (3)0.011 (4)0.013 (4)
C40.049 (4)0.060 (6)0.063 (6)0.007 (4)0.014 (4)0.021 (4)
C50.088 (6)0.047 (5)0.063 (6)0.016 (5)0.034 (5)0.005 (4)
O70.083 (4)0.058 (4)0.037 (3)0.045 (3)0.024 (3)0.007 (3)
O80.067 (4)0.054 (4)0.050 (4)0.023 (3)0.045 (3)0.009 (3)
O90.109 (5)0.036 (3)0.026 (3)0.018 (3)0.015 (3)0.003 (3)
O100.077 (5)0.043 (4)0.039 (4)0.026 (3)0.004 (3)0.004 (3)
C60.051 (5)0.033 (4)0.029 (4)0.012 (4)0.001 (4)0.008 (4)
C70.049 (4)0.026 (4)0.032 (5)0.004 (3)0.001 (4)0.003 (3)
C80.045 (4)0.033 (4)0.032 (5)0.005 (3)0.005 (4)0.002 (4)
C90.046 (4)0.104 (8)0.070 (7)0.024 (5)0.014 (4)0.037 (5)
C100.129 (8)0.073 (7)0.037 (5)0.070 (6)0.009 (5)0.002 (4)
Geometric parameters (Å, º) top
Ca1—O4i2.546 (6)C2—C41.551 (9)
Ca1—O6ii2.446 (6)C2—C31.565 (12)
Ca1—O5ii2.647 (5)C4—H4A0.9600
Ca1—O82.315 (6)C4—H4B0.9600
Ca1—O10iii2.366 (7)C4—H4C0.9600
Ca1—O22.402 (5)C5—H5A0.9600
Ca1—O12.405 (5)C5—H5B0.9600
Ca1—O3i2.681 (5)C5—H5C0.9600
Cu1—O71.893 (5)O7—C61.301 (10)
Cu1—O91.909 (5)O8—C61.204 (10)
Cu1—O31.917 (5)O9—C81.286 (10)
Cu1—O51.936 (5)O10—C81.221 (9)
O1—H1A0.8499C6—C71.535 (13)
O1—H1B0.8490C7—C101.519 (9)
O2—H2A0.8445C7—C81.547 (11)
O2—H2B0.8531C7—C91.560 (10)
O3—C11.291 (9)C9—H9A0.9600
O4—C11.222 (9)C9—H9B0.9600
O5—C31.265 (9)C9—H9C0.9600
O6—C31.246 (9)C10—H10A0.9600
C1—C21.543 (10)C10—H10B0.9600
C2—C51.502 (9)C10—H10C0.9600
O8—Ca1—O10iii88.52 (18)C1—O3—Cu1126.6 (5)
O8—Ca1—O280.8 (2)C1—O3—Ca1iv89.8 (4)
O10iii—Ca1—O283.7 (2)Cu1—O3—Ca1iv140.3 (3)
O8—Ca1—O185.5 (2)C1—O4—Ca1iv97.9 (5)
O10iii—Ca1—O184.3 (2)C3—O5—Cu1125.6 (5)
O2—Ca1—O1162.03 (15)C3—O5—Ca1ii90.4 (4)
O8—Ca1—O6ii164.9 (2)Cu1—O5—Ca1ii137.4 (3)
O10iii—Ca1—O6ii80.9 (2)C3—O6—Ca1ii100.5 (5)
O2—Ca1—O6ii108.5 (2)O4—C1—O3121.9 (7)
O1—Ca1—O6ii82.71 (19)O4—C1—C2119.2 (7)
O8—Ca1—O4i81.84 (19)O3—C1—C2118.8 (6)
O10iii—Ca1—O4i166.0 (2)O4—C1—Ca1iv58.1 (4)
O2—Ca1—O4i84.7 (2)O3—C1—Ca1iv64.4 (3)
O1—Ca1—O4i104.9 (2)C2—C1—Ca1iv174.3 (5)
O6ii—Ca1—O4i110.38 (15)C5—C2—C1111.5 (7)
O8—Ca1—O5ii144.8 (2)C5—C2—C4110.6 (6)
O10iii—Ca1—O5ii107.8 (2)C1—C2—C4107.6 (7)
O2—Ca1—O5ii70.57 (18)C5—C2—C3110.4 (7)
O1—Ca1—O5ii126.12 (19)C1—C2—C3107.6 (5)
O6ii—Ca1—O5ii50.00 (17)C4—C2—C3109.1 (7)
O4i—Ca1—O5ii75.58 (18)O6—C3—O5118.7 (7)
O8—Ca1—O3i113.1 (2)O6—C3—C2122.1 (7)
O10iii—Ca1—O3i144.3 (2)O5—C3—C2119.2 (6)
O2—Ca1—O3i126.02 (18)O6—C3—Ca1ii54.9 (4)
O1—Ca1—O3i70.31 (19)O5—C3—Ca1ii64.2 (4)
O6ii—Ca1—O3i71.6 (2)C2—C3—Ca1ii173.6 (5)
O4i—Ca1—O3i49.64 (18)C2—C4—H4A109.5
O5ii—Ca1—O3i71.12 (14)C2—C4—H4B109.5
O8—Ca1—C3ii170.2 (2)H4A—C4—H4B109.5
O10iii—Ca1—C3ii95.7 (2)C2—C4—H4C109.5
O2—Ca1—C3ii90.8 (2)H4A—C4—H4C109.5
O1—Ca1—C3ii103.7 (2)H4B—C4—H4C109.5
O6ii—Ca1—C3ii24.6 (2)C2—C5—H5A109.5
O4i—Ca1—C3ii92.37 (19)C2—C5—H5B109.5
O5ii—Ca1—C3ii25.47 (19)H5A—C5—H5B109.5
O3i—Ca1—C3ii67.85 (19)C2—C5—H5C109.5
O8—Ca1—C1i98.9 (2)H5A—C5—H5C109.5
O10iii—Ca1—C1i170.0 (2)H5B—C5—H5C109.5
O2—Ca1—C1i104.1 (2)C6—O7—Cu1128.0 (5)
O1—Ca1—C1i89.5 (2)C6—O8—Ca1156.5 (6)
O6ii—Ca1—C1i90.5 (2)C8—O9—Cu1126.9 (5)
O4i—Ca1—C1i24.0 (2)C8—O10—Ca1iii150.8 (6)
O5ii—Ca1—C1i69.7 (2)O8—C6—O7121.7 (8)
O3i—Ca1—C1i25.76 (19)O8—C6—C7121.3 (8)
C3ii—Ca1—C1i78.09 (16)O7—C6—C7116.9 (7)
O8—Ca1—H2A92.0C10—C7—C6109.2 (7)
O10iii—Ca1—H2A98.9C10—C7—C8110.3 (7)
O2—Ca1—H2A18.6C6—C7—C8110.8 (5)
O1—Ca1—H2A175.9C10—C7—C9111.7 (7)
O6ii—Ca1—H2A100.3C6—C7—C9108.3 (7)
O4i—Ca1—H2A71.5C8—C7—C9106.4 (7)
O5ii—Ca1—H2A55.4O10—C8—O9123.4 (8)
O3i—Ca1—H2A107.8O10—C8—C7118.0 (7)
C3ii—Ca1—H2A78.6O9—C8—C7118.5 (6)
C1i—Ca1—H2A87.7C7—C9—H9A109.5
O7—Cu1—O992.55 (18)C7—C9—H9B109.5
O7—Cu1—O3175.2 (3)H9A—C9—H9B109.5
O9—Cu1—O386.9 (2)C7—C9—H9C109.5
O7—Cu1—O588.4 (2)H9A—C9—H9C109.5
O9—Cu1—O5176.2 (3)H9B—C9—H9C109.5
O3—Cu1—O591.84 (17)C7—C10—H10A109.5
Ca1—O1—H1A128.9C7—C10—H10B109.5
Ca1—O1—H1B112.4H10A—C10—H10B109.5
H1A—O1—H1B112.8C7—C10—H10C109.5
Ca1—O2—H2A96.0H10A—C10—H10C109.5
Ca1—O2—H2B131.6H10B—C10—H10C109.5
H2A—O2—H2B113.6
O9—Cu1—O3—C1160.8 (7)C4—C2—C3—O558.4 (8)
O5—Cu1—O3—C122.7 (6)O9—Cu1—O7—C617.3 (7)
O9—Cu1—O3—Ca1iv46.4 (4)O5—Cu1—O7—C6166.4 (7)
O5—Cu1—O3—Ca1iv130.0 (4)O10iii—Ca1—O8—C678.8 (15)
O7—Cu1—O5—C3165.8 (7)O2—Ca1—O8—C65.0 (15)
O3—Cu1—O5—C319.0 (6)O1—Ca1—O8—C6163.2 (15)
O7—Cu1—O5—Ca1ii52.0 (4)O6ii—Ca1—O8—C6124.2 (15)
O3—Cu1—O5—Ca1ii123.2 (4)O4i—Ca1—O8—C691.0 (15)
Ca1iv—O4—C1—O39.1 (9)O5ii—Ca1—O8—C640.7 (16)
Ca1iv—O4—C1—C2174.2 (6)O3i—Ca1—O8—C6130.4 (15)
Cu1—O3—C1—O4171.5 (6)C1i—Ca1—O8—C6108.0 (15)
Ca1iv—O3—C1—O48.5 (8)O7—Cu1—O9—C819.5 (7)
Cu1—O3—C1—C211.7 (10)O3—Cu1—O9—C8165.3 (8)
Ca1iv—O3—C1—C2174.7 (6)Ca1—O8—C6—O736.3 (19)
Cu1—O3—C1—Ca1iv163.0 (6)Ca1—O8—C6—C7146.1 (11)
O4—C1—C2—C58.1 (11)Cu1—O7—C6—O8165.7 (6)
O3—C1—C2—C5175.0 (7)Cu1—O7—C6—C716.6 (10)
O4—C1—C2—C4113.3 (8)O8—C6—C7—C106.6 (10)
O3—C1—C2—C463.6 (9)O7—C6—C7—C10175.7 (7)
O4—C1—C2—C3129.3 (8)O8—C6—C7—C8128.3 (8)
O3—C1—C2—C353.8 (8)O7—C6—C7—C854.0 (8)
Ca1ii—O6—C3—O56.6 (8)O8—C6—C7—C9115.3 (8)
Ca1ii—O6—C3—C2173.2 (5)O7—C6—C7—C962.4 (9)
Cu1—O5—C3—O6161.5 (5)Ca1iii—O10—C8—O944.0 (18)
Ca1ii—O5—C3—O66.0 (7)Ca1iii—O10—C8—C7139.1 (10)
Cu1—O5—C3—C218.4 (10)Cu1—O9—C8—O10170.8 (7)
Ca1ii—O5—C3—C2173.8 (6)Cu1—O9—C8—C712.3 (12)
Cu1—O5—C3—Ca1ii155.5 (6)C10—C7—C8—O109.8 (11)
C5—C2—C3—O60.0 (10)C6—C7—C8—O10130.8 (8)
C1—C2—C3—O6121.9 (8)C9—C7—C8—O10111.6 (8)
C4—C2—C3—O6121.7 (8)C10—C7—C8—O9173.2 (8)
C5—C2—C3—O5179.8 (7)C6—C7—C8—O952.2 (9)
C1—C2—C3—O558.0 (8)C9—C7—C8—O965.4 (10)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6v0.852.242.996 (8)149
O1—H1B···O9i0.852.002.806 (8)159
O2—H2A···O7ii0.842.022.851 (7)168
O2—H2B···O4vi0.852.243.012 (8)150
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (v) x, y+1, z1; (vi) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds