Download citation
Download citation
link to html
The mol­ecules of racemic 3-benzoyl­methyl-3-hydroxy­indolin-2-one, C16H13NO3, (I), are linked by a combination of N-H...O and O-H...O hydrogen bonds into a chain of centrosymmetric edge-fused R22(10) and R44(12) rings. Five monosubstituted analogues of (I), namely racemic 3-hydr­oxy-3-[(4-methyl­benzoyl)methyl]indolin-2-one, C17H15NO3, (II), racemic 3-[(4-fluoro­benzoyl)methyl]-3-hydroxy­indolin-2-one, C16H12FNO3, (III), racemic 3-[(4-chloro­benzoyl)methyl]-3-hy­droxy­indolin-2-one, C16H12ClNO3, (IV), racemic 3-[(4-bromo­benzoyl)methyl]-3-hydroxy­indolin-2-one, C16H12BrNO3, (V), and racemic 3-hydr­oxy-3-[(4-nitro­benzoyl)­methyl]­indolin-2-one, C16H12N2O5, (VI), are isomorphous in space group P\overline{1}. In each of compounds (II)-(VI), a combination of N-H...O and O-H...O hydrogen bonds generates a chain of centrosymmetric edge-fused R22(8) and R22(10) rings, and these chains are linked into sheets by an aromatic [pi]-[pi] stacking inter­action. No two of the structures of (II)-(VI) exhibit the same combination of weak hydrogen bonds of C-H...O and C-H...[pi](arene) types. The mol­ecules of racemic 3-hydr­oxy-3-(2-thienylcarbonyl­methyl)indolin-2-one, C14H11NO3S, (VII), form hydrogen-bonded chains very similar to those in (II)-(VI), but here the sheet formation depends upon a weak [pi]-[pi] stacking inter­action between thienyl rings. Comparisons are drawn between the crystal structures of compounds (I)-(VII) and those of some recently reported analogues having no aromatic group in the side chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110001058/sq3233sup1.cif
Contains datablocks global, I, II, III, IV, V, VI, VII

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110001058/sq3233Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110001058/sq3233IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110001058/sq3233IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110001058/sq3233IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110001058/sq3233Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110001058/sq3233VIsup7.hkl
Contains datablock VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110001058/sq3233VIIsup8.hkl
Contains datablock VII

CCDC references: 774031; 774032; 774033; 774034; 774035; 774036; 774037

Comment top

We report here the structures of seven racemic 3-hydroxy-3-(2-aryl-2-oxoethyl)indolin-2-ones, compounds (I)–(VII) (Fig. 1), which we compare with the structures of a number of analogues, (VIII)–(XII), in the recent literature (Luppi et al., 2005, 2006; Xing et al., 2007; Chen et al., 2009). Chalcones are versatile bis-electrophilic reagents widely employed in the synthesis of fused heterocyclic systems, and compounds (I)–(VII) have been prepared as precursors for the formation of chalcones by acid-catalysed dehydration reactions.

Compounds (I)–(VII) were all prepared by reactions of isatin with methyl ketones using basic catalysis (see scheme), as were the analogues (VIII)–(XII). The compounds all contain a stereogenic centre, at atom C3 in (I)–(VII) (Fig. 1), and if an achiral base is employed as the catalytic agent, as here, the products are obtained as racemic mixtures. However, if an enantiomerically pure form of a chiral base is used, then the products are found with a significant excess of one enantiomer over the other, as in the syntheses of (IX) (Luppi et al., 2007), (XI) (Luppi et al., 2006) and (XII) (Xing et al., 2007).

As expected from the method of synthesis, (I)–(VII) all crystallize as racemic mixtures and all crystallize in centrosymmetric space groups. However, while compound (I), which contains an unsubstituted phenyl ring in the side chain (Fig. 1a) crystallizes in the space group P21/c, compounds (II)–(VI), which all contain a single substituent at the 4-position of this ring (Figs. 1b-1f), are all isomorphous in the space group P1. Compound (VII), which contains a 2-thienyl unit rather than an aryl ring in the side chain (Fig. 1g), also crystallizes in space group P1 and the unit-cell repeat distances a, b and c are similar to those in compounds (II)–(VI). The unit-cell angles have approximately complementary values to those in (II)–(VI) and the atom coordinates in (VII) are approximately related to those of the corresponding atoms in (II)–(VI) by the transformation (1 - x, y, 1 - z). However, comparison of the reduced-cell parameters shows that, despite these similarities, compound (VII) is not isomorphous with the series (II)–(VI).

In the crystal structure of (I), molecules related by translation are linked by an N—H···O hydrogen bond (Table 1) to form a C(5) (Bernstein et al., 1995) chain running parallel to the [010] direction. Antiparallel pairs of such chains are linked by an O—H···O hydrogen bond to generate a chain of centrosymmetric edge-fused rings, in which R22(10) rings centred at (1/2, n + 1/2, 1/2), where n represents an integer, alternate with R44(12) rings centred at (1/2, n, 1/2), where n again represents an integer (Fig. 2). Two chains of this type pass through each unit cell but there are no direction-specific interactions of structural significance between adjacent chains.

Although compounds (II)-(VI) are isomorphous, they are not strictly isostructural (Acosta et al., 2009), as the pattern of the weaker hydrogen bonds of C—H···O and C—H..π(arene) types differs between the members of the series, such that no two of (II)–(VI) show an identical array of such interactions. Indeed, no interactions of these types occur in the structure of (II), while some of them are present in the structures of each of (III)–(VI). It is thus convenient to describe first the actions of the N—H···O and O—H···O hydrogen bonds and the aromatic ππ stacking interactions in compound (II), which are in fact the same in each of (II)–(VI), and then briefly to note the actions of the weaker hydrogen bonds in each of (III)–(VI).

In compound (II), symmetry-related pairs of O—H···O hydrogen bonds (Table 1) link the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) to form an R22(10) motif, while similar pairs of N—H···O hydrogen bonds link the molecules at (x, y, z) and (-x, 1 - y, 1 - z) to form an R22(8) motif. Propagation by inversion of these two motifs then generates a chain of edge-fused rings running parallel to the [100] direction, in which the R22(10) rings are centred at (n + 1/2, 1/2, 1/2) and the R22(8) rings are centred at (n, 1/2, 1/2), where in both cases n represents an integer (Fig. 3). This chain of rings differs from that formed by (I) in two important respects. Firstly, both hydrogen bonds in (II) utilize the amidic atom O2 as the acceptor, whereas in (I) the N—H···O hydrogen bond utilizes the hydroxyl atom O3 as the acceptor. Secondly, the chain in (II) is propagated solely by inversion, while a combination of translation and inversion propagates the chain in (I). However, one feature in common between these two chains is that in neither type does the ketonic atom O32 in the side chain participate in the N—H···O or O—H···O hydrogen bonds. The hydrogen-bonded chains in (II) are linked by a single aromatic ππ stacking interaction involving the C321–C326 phenyl rings in the molecules at (x, y, z) and (2 - x, 1 - y, 2 - z) (Table 2). These two molecules form parts of the hydrogen-bonded chains along (x, 1/2, 1/2) and (x, 1/2, 3/2), respectively, so that propagation of this ππ stacking interaction links the hydrogen-bonded chains into a sheet parallel to (010).

The formation of hydrogen-bonded [100] chains containing alternating R22(8) and R22(10) rings and linked by a ππ stacking interaction into sheets parallel to (010) is common to each of (II)–(VI) (Tables 1 and 2), and the sheet formation provides another point of difference between the crystal structures of (II)–(VI) on the one hand and that of (I) on the other. However, the structures of each of (III)–(VI) exhibit further weak interactions, different in each case, and thus different from the structure of (II). In each of (IV), (V) and (VI), although not in (II) or (III), there are C—H···O hydrogen bonds which reinforce, albeit weakly, the chains along [100], and in each of (III) and (IV), but not in (II), (V) or (VI), there is a C—H···π(arene) hydrogen bond which reinforces the linkage of the [100] chains into sheets. Although the structures of both (V) and (VI) contain C—H···O hydrogen bonds, the number of these interactions differs in the two structures (Table 1). In addition, it may be noted that the ketonic atom O32 is involved only in C—H···O interactions in compounds (IV), (V) and (VI), rather than in N—H···O or O—H···O hydrogen bonds. Similarly, the only interaction involving a nitro group O atom in (VI) is of C—H···O type.

In compound (VII), a chain of edge-fused R22(8) and R22(10) rings along [100] is formed (Fig. 4), similar to those in (II)–(VI), but the orientation of the hydrogen-bonded structure relative to the unit cell is different in (VII) from those in (II)–(VI) (Figs. 3 and 4). As with (IV)–(VI), the structure of (VII) contains two C—H···O contacts within the hydrogen-bonded chains; these have rather long H···O distances and only one of them involves the hydroxyl atom O3. However, the chains along [100] are again linked into sheets, this time rather weakly, by a ππ stacking interaction involving the thienyl rings of the molecules at (x, y, z) and (1 - x, 1 - y, -z). These rings are strictly parallel with an interplanar spacing of 3.368 (2) Å; the ring-centroid separation is 3.746 (2) Å, corresponding to a ring-centroid offset of 1.640 (2) Å. These two molecules are components of the hydrogen-bonded chains along (x, 1/2, 1/2) and (x, 1/2, -1/2), respectively, so that this ππ stacking interaction links the hydrogen-bonded chains into a sheet parallel to (010), similar to those in (II)–(VI).

It is of interest to compare the structures of (I)–(VII) with those of some recently reported analogues, (VIII)–(XII), several of which have been reported only briefly, usually on a simple proof-of-constitution or proof-of-configuration basis. Compounds (VIII)–(XII) differ from (I)–(VII) in several respects. Firstly, they have no aryl or heteroaryl group in the side chain, thus reducing the scope for the formation of C—H···O and C—H···π(arene) hydrogen bonds and of aromatic ππ stacking interactions. Secondly, compounds (IX), (XI) and (XII) crystallize in Sohncke space groups so that only a single enantiomer is present in a given crystal (provided that twinning is shown to be absent). Finally, compound (X) is a hemihydrate, while solvent molecules are not found in any other member of this series.

Compound (VIII) [Cambridge Structural Database (CSD; Allen, 2002) refcode MUBMAY; Chen et al., 2009] crystallizes as a racemic mixture in the space group P21/c, and a combination of N—H···O and O—H···O hydrogen bonds generates a chain of alternating R22(10) and R44(12) rings propagated by translation and inversion along the [010] direction, entirely analogous to the chain in (I).

Compounds (IX) (CSD refcode TAWDUR; Luppi et al., 2007) and (X) (CSD refcode TAWFAZ; Luppi et al., 2007) were crystallized from the same solution following reaction of 5-bromoisatin with acetone catalysed by an enantiomerically pure D-prolyl dipeptide. Compound (XI) is the pure R enantiomer crystallizing in the space group P21, while (X) is a hemihydrate of the racemic mixture, which crystallizes in space group C2/c. For (IX), the original report (Luppi et al., 2007) indicated the formation of a hydrogen-bonded chain of rings, although without providing any details, but the structure of (X) was not mentioned at all. Re-examination of the structure of (IX) using the deposited atomic coordinates shows that molecules related by a 21 screw axis along (1/2, y, 0) are linked by N—H···O and O—H···O hydrogen bonds to form a chain of edge-fused R33(11) rings (Fig. 5), with no direction-specific interactions between the chains.

Analysis of the structure of (X) using the deposited atomic coordinates shows that the hydrogen bonding links the molecular components into a three-dimensional framework structure, the formation of which is readily analysed in terms of the actions of the three hydrogen bonds in turn. Enantiomeric pairs of the organic component are linked by pairs of symmetry-related O—H···O hydrogen bonds, forming centrosymmetric R22(10) dimers, analogous to those observed in (II)–(VIII). These dimers are linked by the N—H···O hydrogen bond to form a sheet parallel to (100), containing both R22(10) and R66(22) rings and lying in the domain (0 < x < 1/2) (Fig. 6). The water molecule lies on a twofold rotation axis along (1/2, y, 1/4) and forms pairs of O—H···O hydrogen bonds which link adjacent (100) sheets, so linking all of the molecules into a single three-dimensional structure.

The structure of the (R)-enantiomer of (XI) (CSD refcode TEQVUH; Luppi et al., 2006) was reported as a proof of constitution and configuration, as shown by the value, -0.006 (8), of the Flack x parameter (Flack, 1983), but no description or discussion of the crystal structure was given. This single enantiomer crystallizes in the space group P212121 and examination of the crystal structure using the deposited atomic coordinates shows the formation of a chain of edge-fused R22(9) rings built from molecules related by the 21 screw axis along (x, 3/4, 1) and linked by N—H···O and O—H···O hydrogen bonds (Fig. 7).

Compound (XII) (CSD refcode YIFZIX; Xing et al., 2007) also crystallizes in space group P212121 and the Flack x parameter of 0.03 (8) indicates that only a single enantiomer is present in the crystal selected for data collection. However, the identity of this enantiomer is nowhere specified in the original report, although the deposited coordinates correspond to the (S)-enantiomer, consistent with the reported use of an L-prolyl amide as the catalytic base. The crystal structure was described as consisting of a chain of centrosymmetric R22(9) rings, but this description must be incorrect on two grounds, firstly because centrosymmetric motifs cannot contain an odd number of atoms, and secondly because centrosymmetric motifs cannot be formed in the noncentrosymmetric space group P212121. The packing diagram provided by the authors does not show a chain. In fact, re-examination of this structure shows that it contains a chain of R22(9) rings entirely analogous to the chain in compound (XI), but built from molecules related by the 21 screw axis along (x, 1/4, 1/2) (Fig. 8).

Compounds (I)–(XIII) discussed here exhibit several distinct patterns formed by conventional strong hydrogen bonds of N—H···O and O—H···O types. Thus, (I) and (VIII) form entirely similar hydrogen-bonded chains, despite the differences between the steric requirements of the terminal groups in their side chains, phenyl in (I) and isopropyl in (VIII). A second pattern of chain formation is found in the isomorphous compounds (II)–(VI), as well as in (VII). A third type of chain formation is shared by the enantiomerically pure compounds (XI) and (XII). By contrast, the single enantiomer of compound (IX) forms a chain type unlike those in any of racemic compounds (I)–(VIII), or in the enantiomerically pure compounds (XI) and (XII), while in the racemic hemihydrate (X), where the organic component is the same as in (IX), the N—H···O and O—H···O hydrogen bonds between the organic molecules form a sheet structure unlike any other compound in this series.

For compounds (I)–(VII), the O···O distances in the O—H···O hydrogen bonds are all very similar (Table 1), as are the N···O distances in the N—H···O hydrogen bonds in (II)–(VII). However, wide variations occur across this series in the D···A distances of the weaker interactions, suggesting that many of these may be adventitious contacts rather than significant structure builders.

Experimental top

Samples of compounds (I)–(VII) were prepared following a reported general procedure using piperidine as the catalytic base (Kusanur et al., 2004). Yellow–brown crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, of solutions in a mixture of ethanol and dimethylformamide (1:1, v/v).

Analysis for (I), 3-benzoylmethyl-3-hydroxyindolin-2-one, yield 40%, m.p. 423–425 K (decomposition) (literature value 442–445 K; Lindwall & Maclennan, 1932); MS (EI) m/z (% abundance) 249 (6), 222 (100), 119 (41), 105 (86).

Analysis for (II), 3-hydroxy-3-[(4-methylbenzoyl)methyl]indolin-2-one, yield 43%, m.p. 458 K (decomposition) (literature value 458–460 K; Lindwall & Maclennan, 1932); MS (EI) m/z (% abundance) 281 [M+] (1), 263 (3), 236 (34), 119 (100).

Analysis for (III), 3-[(4-fluorobenzoyl)methyl]-3-hydroxyindolin-2-one, yield 46%, m.p. 489–491 K (decomposition); MS (EI) m/z (% abundance) 285 [M+] (2), 267 (3), 240 (40), 123 (100), 119 (41).

Analysis for (IV), 3-[(4-chlorobenzoyl)methyl]-3-hydroxyindolin-2-one, yield 60%, m.p. 465–467 K (decomposition) (literature value 470–472 K; Popp & Donigan, 1979); MS (EI) m/z (% abundance) 303 [M + 2] (0.6), 301 [M+] (1.4), 285 (1.2), 283 (2.5), 258 (15), 256 (40), 141 (32), 139 (100), 119 (57).

Analysis for (V), 3-[(4-bromobenzoyl)methyl]-3-hydroxyindolin-2-one, yield 55%, m.p. 462–464 K (decomposition) (literature value 448–453 K; Lindwall & Maclennan, 1932); MS (EI) m/z (% abundance) 347 [M + 2] (1.1), 345 [M+] (1.0), 230 (1), 228 (1), 302 (31), 300 (32), 185 (100), 183 (98), 119 (95).

Analysis for (VI), 3-hydroxy-3-[(4-nitrobenzoyl)methyl]indolin-2-one, yield 45%, m.p. 449–451 K (decomposition) (literature value 458–460 K; Popp & Donigan, 1979); MS (EI) m/z (% abundance) 312 [M+] (1.0), 294 (5.6), 267 (6.0), 150 (100), 119 (54).

Analysis for (VII), 3-hydroxy-3-(2-thienylcarbonylmethyl)indolin-2-one, yield 39%, m.p. 476–478 K (decomposition); MS (EI) m/z (% abundance) 273 [M+] (1), 255 (4), 228 (34), 119 (51).

Refinement top

All H atoms were located in difference maps. H atoms bonded to C or N atoms were then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic and thienyl), 0.98 (CH3) or 0.99 Å (CH2), and N—H = 0.88 Å, and with Uiso(H) = kUeq(C,N), where k = 1.5 for the methyl group in compound (II), which was permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C or N atoms. H atoms bonded to O atoms were permitted to ride at the positions deduced from difference maps, with Uiso(H) = 1.5Ueq(O), giving O—H distances in the range 0.82–0.87 Å (Table 1). Compound (IV) was treated as a non-merohedral twin. A modified .hkl file was prepared using the TwinRotMat option in PLATON (Spek, 2009) and used with the HKLF5 option in SHELXL (Sheldrick, 2008), giving twin fractions of 0.269 (2) and 0.731 (2), respectively.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of compounds (I)–(VII), showing the atom-labelling schemes. (a) Compound (I), (b) compound (II), (c) compound (III), (d) compound (IV), (e) compound (V), (f) compound (VI) and (g) compound (VII). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded chain of alternating R22(10) and R44(12) rings along [100]. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded chain of alternating R22(8) and R22(10) rings along [100]. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (VII), showing the formation of a hydrogen-bonded chain of alternating R22(8) and R22(10) rings along [100]. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted. Note the orientations of the unit cell and the chain relative to those in Fig. 3.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (IX) (CSD refcode TAWDUR; Luppi et al., 2007), showing the formation of a hydrogen-bonded chain of edge-fused R33(11) rings along [010]. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (X) (CSD refcode TAWFAZ; Luppi et al., 2007), showing the formation by the organic components of a hydrogen-bonded sheet parallel to (100) and containing R22(10) and R66(22) rings. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (XI) (CSD refcode TEQVUH; Luppi et al., 2006), showing the formation of a hydrogen-bonded chain of edge-fused R22(9) rings along [100]. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of (XII) (CSD refcode YIFZIX; Xing et al., 2007), showing the formation of a hydrogen-bonded chain of edge-fused R22(9) rings along [100]. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted.
(I) 3-benzoylmethyl-3-hydroxyindolin-2-one top
Crystal data top
C16H13NO3F(000) = 560
Mr = 267.27Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2427 reflections
a = 13.876 (3) Åθ = 2.6–26.0°
b = 5.7725 (8) ŵ = 0.10 mm1
c = 16.280 (3) ÅT = 120 K
β = 107.799 (16)°Block, yellow-brown
V = 1241.6 (4) Å30.26 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2427 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 2.6°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 77
Tmin = 0.975, Tmax = 0.982l = 2020
15921 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.034P)2 + 2.5504P]
where P = (Fo2 + 2Fc2)/3
2427 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H13NO3V = 1241.6 (4) Å3
Mr = 267.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.876 (3) ŵ = 0.10 mm1
b = 5.7725 (8) ÅT = 120 K
c = 16.280 (3) Å0.26 × 0.23 × 0.18 mm
β = 107.799 (16)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2427 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1903 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.050
15921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.20Δρmax = 0.25 e Å3
2427 reflectionsΔρmin = 0.29 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.40791 (17)0.3278 (4)0.58214 (15)0.0146 (5)
H10.43180.18550.58670.018*
C20.3847 (2)0.4529 (5)0.50900 (18)0.0143 (6)
C30.3529 (2)0.6970 (5)0.52967 (18)0.0142 (6)
C3a0.3531 (2)0.6688 (5)0.62093 (18)0.0132 (6)
C40.3283 (2)0.8225 (5)0.67536 (18)0.0152 (6)
H40.30170.97080.65520.018*
C50.3425 (2)0.7578 (5)0.76054 (18)0.0168 (6)
H50.32720.86370.79950.020*
C60.3789 (2)0.5404 (5)0.78854 (18)0.0155 (6)
H60.38700.49770.84660.019*
C70.4040 (2)0.3815 (5)0.73413 (18)0.0155 (6)
H70.42980.23250.75400.019*
C7a0.3897 (2)0.4499 (5)0.65032 (18)0.0138 (6)
O20.39414 (14)0.3922 (3)0.44025 (12)0.0160 (4)
O30.42819 (14)0.8585 (3)0.52291 (12)0.0144 (4)
H30.48500.80250.54210.022*
C310.2547 (2)0.7797 (5)0.46707 (18)0.0146 (6)
H31A0.23580.92890.48790.017*
H31B0.26510.80820.41040.017*
C320.1690 (2)0.6124 (5)0.45514 (17)0.0155 (6)
O320.18472 (15)0.4188 (4)0.48581 (14)0.0217 (5)
C3210.0658 (2)0.6845 (5)0.40225 (18)0.0164 (6)
C3220.0473 (2)0.8981 (5)0.36121 (19)0.0207 (7)
H3220.10031.00830.36990.025*
C3230.0485 (2)0.9498 (6)0.3078 (2)0.0235 (7)
H3230.06101.09490.27900.028*
C3240.1259 (2)0.7926 (6)0.2961 (2)0.0233 (7)
H3240.19150.82880.25880.028*
C3250.1088 (2)0.5835 (6)0.3382 (2)0.0236 (7)
H3250.16280.47680.33100.028*
C3260.0134 (2)0.5280 (5)0.39092 (19)0.0206 (7)
H3260.00170.38260.41960.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0178 (12)0.0102 (11)0.0158 (12)0.0025 (10)0.0051 (9)0.0000 (10)
C20.0097 (13)0.0150 (14)0.0169 (14)0.0024 (11)0.0021 (11)0.0006 (12)
C30.0151 (13)0.0114 (14)0.0164 (14)0.0024 (11)0.0054 (11)0.0002 (11)
C3a0.0114 (13)0.0138 (14)0.0145 (13)0.0022 (11)0.0038 (11)0.0005 (11)
C40.0135 (13)0.0134 (14)0.0189 (14)0.0002 (11)0.0052 (11)0.0002 (12)
C50.0156 (14)0.0179 (15)0.0174 (14)0.0014 (12)0.0058 (11)0.0040 (12)
C60.0140 (13)0.0200 (15)0.0124 (13)0.0032 (12)0.0039 (11)0.0002 (12)
C70.0145 (13)0.0139 (14)0.0170 (14)0.0016 (11)0.0033 (11)0.0003 (12)
C7a0.0101 (13)0.0153 (14)0.0168 (14)0.0011 (11)0.0051 (11)0.0017 (12)
O20.0176 (10)0.0165 (10)0.0148 (10)0.0003 (8)0.0065 (8)0.0031 (8)
O30.0107 (9)0.0139 (10)0.0191 (10)0.0003 (8)0.0053 (8)0.0004 (8)
C310.0121 (13)0.0163 (15)0.0148 (13)0.0005 (11)0.0035 (11)0.0002 (12)
C320.0185 (14)0.0157 (15)0.0127 (13)0.0012 (12)0.0055 (11)0.0016 (12)
O320.0202 (11)0.0154 (11)0.0268 (12)0.0001 (9)0.0033 (9)0.0045 (9)
C3210.0168 (14)0.0199 (15)0.0125 (13)0.0009 (12)0.0043 (11)0.0029 (12)
C3220.0193 (15)0.0192 (16)0.0223 (15)0.0000 (13)0.0044 (12)0.0005 (13)
C3230.0248 (16)0.0215 (16)0.0216 (15)0.0032 (13)0.0034 (13)0.0020 (13)
C3240.0155 (15)0.0314 (18)0.0209 (16)0.0049 (13)0.0023 (12)0.0027 (14)
C3250.0159 (14)0.0298 (18)0.0255 (16)0.0049 (13)0.0068 (13)0.0038 (14)
C3260.0209 (15)0.0197 (16)0.0210 (15)0.0008 (13)0.0063 (12)0.0004 (13)
Geometric parameters (Å, º) top
N1—C21.345 (4)O3—H30.8201
N1—C7a1.402 (4)C31—C321.497 (4)
N1—H10.8800C31—H31A0.9900
C2—O21.217 (3)C31—H31B0.9900
C2—C31.544 (4)C32—O321.216 (3)
C3—O31.429 (3)C32—C3211.487 (4)
C3—C3a1.494 (4)C321—C3221.388 (4)
C3—C311.508 (4)C321—C3261.391 (4)
C3a—C41.371 (4)C322—C3231.380 (4)
C3a—C7a1.391 (4)C322—H3220.9500
C4—C51.391 (4)C323—C3241.374 (4)
C4—H40.9500C323—H3230.9500
C5—C61.377 (4)C324—C3251.373 (5)
C5—H50.9500C324—H3240.9500
C6—C71.391 (4)C325—C3261.377 (4)
C6—H60.9500C325—H3250.9500
C7—C7a1.375 (4)C326—H3260.9500
C7—H70.9500
C2—N1—C7a112.3 (2)C3a—C7a—N1108.6 (2)
C2—N1—H1123.9C3—O3—H3110.7
C7a—N1—H1123.9C32—C31—C3113.7 (2)
O2—C2—N1126.5 (3)C32—C31—H31A108.8
O2—C2—C3125.5 (3)C3—C31—H31A108.8
N1—C2—C3107.7 (2)C32—C31—H31B108.8
O3—C3—C3a111.6 (2)C3—C31—H31B108.8
O3—C3—C31105.8 (2)H31A—C31—H31B107.7
C3a—C3—C31115.7 (2)O32—C32—C321121.0 (3)
O3—C3—C2108.3 (2)O32—C32—C31120.2 (3)
C3a—C3—C2101.7 (2)C321—C32—C31118.7 (2)
C31—C3—C2113.6 (2)C322—C321—C326119.4 (3)
C4—C3a—C7a120.2 (3)C322—C321—C32122.1 (3)
C4—C3a—C3130.4 (3)C326—C321—C32118.5 (3)
C7a—C3a—C3109.3 (2)C323—C322—C321119.8 (3)
C3a—C4—C5118.9 (3)C323—C322—H322120.1
C3a—C4—H4120.5C321—C322—H322120.1
C5—C4—H4120.5C324—C323—C322120.4 (3)
C6—C5—C4120.1 (3)C324—C323—H323119.8
C6—C5—H5120.0C322—C323—H323119.8
C4—C5—H5120.0C325—C324—C323120.2 (3)
C5—C6—C7121.8 (3)C325—C324—H324119.9
C5—C6—H6119.1C323—C324—H324119.9
C7—C6—H6119.1C324—C325—C326120.2 (3)
C7a—C7—C6117.0 (3)C324—C325—H325119.9
C7a—C7—H7121.5C326—C325—H325119.9
C6—C7—H7121.5C325—C326—C321120.1 (3)
C7—C7a—C3a121.9 (3)C325—C326—H326119.9
C7—C7a—N1129.4 (3)C321—C326—H326119.9
C7a—N1—C2—O2178.9 (3)C3—C3a—C7a—C7176.0 (2)
C7a—N1—C2—C34.0 (3)C4—C3a—C7a—N1179.3 (2)
O2—C2—C3—O362.9 (3)C3—C3a—C7a—N13.4 (3)
N1—C2—C3—O3112.1 (2)C2—N1—C7a—C7179.9 (3)
O2—C2—C3—C3a179.4 (3)C2—N1—C7a—C3a0.5 (3)
N1—C2—C3—C3a5.6 (3)O3—C3—C31—C32171.3 (2)
O2—C2—C3—C3154.4 (4)C3a—C3—C31—C3264.5 (3)
N1—C2—C3—C31130.6 (2)C2—C3—C31—C3252.6 (3)
O3—C3—C3a—C467.0 (4)C3—C31—C32—O328.9 (4)
C31—C3—C3a—C454.1 (4)C3—C31—C32—C321173.6 (2)
C2—C3—C3a—C4177.7 (3)O32—C32—C321—C322175.1 (3)
O3—C3—C3a—C7a109.9 (3)C31—C32—C321—C3222.4 (4)
C31—C3—C3a—C7a129.1 (3)O32—C32—C321—C3262.1 (4)
C2—C3—C3a—C7a5.4 (3)C31—C32—C321—C326179.6 (3)
C7a—C3a—C4—C51.5 (4)C326—C321—C322—C3231.9 (4)
C3—C3a—C4—C5175.1 (3)C32—C321—C322—C323175.3 (3)
C3a—C4—C5—C61.5 (4)C321—C322—C323—C3241.0 (5)
C4—C5—C6—C71.2 (4)C322—C323—C324—C3250.7 (5)
C5—C6—C7—C7a0.8 (4)C323—C324—C325—C3261.5 (5)
C6—C7—C7a—C3a0.8 (4)C324—C325—C326—C3210.5 (5)
C6—C7—C7a—N1179.8 (3)C322—C321—C326—C3251.1 (4)
C4—C3a—C7a—C71.2 (4)C32—C321—C326—C325176.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.152.918 (3)146
O3—H3···O2ii0.821.972.762 (3)163
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1.
(II) 3-hydroxy-3-[(4-methylbenzoyl)methyl]indolin-2-one top
Crystal data top
C17H15NO3Z = 2
Mr = 281.30F(000) = 296
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.873 (2) ÅCell parameters from 2520 reflections
b = 7.6700 (17) Åθ = 2.7–25.5°
c = 13.394 (5) ŵ = 0.10 mm1
α = 99.48 (2)°T = 120 K
β = 101.68 (3)°Plate, yellow-brown
γ = 96.33 (2)°0.34 × 0.21 × 0.09 mm
V = 674.4 (4) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2520 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.7°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.968, Tmax = 0.992l = 1616
15497 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.3503P]
where P = (Fo2 + 2Fc2)/3
2520 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H15NO3γ = 96.33 (2)°
Mr = 281.30V = 674.4 (4) Å3
Triclinic, P1Z = 2
a = 6.873 (2) ÅMo Kα radiation
b = 7.6700 (17) ŵ = 0.10 mm1
c = 13.394 (5) ÅT = 120 K
α = 99.48 (2)°0.34 × 0.21 × 0.09 mm
β = 101.68 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2520 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1783 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.992Rint = 0.088
15497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2520 reflectionsΔρmin = 0.28 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0627 (3)0.3203 (3)0.57141 (17)0.0215 (5)
H10.05210.35820.55040.026*
C20.2392 (4)0.4009 (3)0.5669 (2)0.0199 (6)
C30.4019 (4)0.2903 (3)0.6046 (2)0.0195 (6)
C3a0.2815 (4)0.1467 (3)0.6389 (2)0.0199 (6)
C40.3367 (4)0.0028 (3)0.6808 (2)0.0232 (6)
H40.47390.01320.69730.028*
C50.1888 (4)0.1184 (4)0.6983 (2)0.0266 (7)
H50.22460.21670.72920.032*
C60.0094 (4)0.0972 (3)0.6714 (2)0.0256 (7)
H60.10920.18280.68300.031*
C70.0681 (4)0.0460 (3)0.6277 (2)0.0229 (6)
H70.20550.05970.60830.028*
C7a0.0811 (4)0.1661 (3)0.6141 (2)0.0199 (6)
O20.2693 (3)0.5361 (2)0.52997 (14)0.0237 (5)
O30.4674 (3)0.2124 (2)0.51594 (14)0.0235 (5)
H30.53540.29180.49570.035*
C310.5790 (4)0.4009 (3)0.6840 (2)0.0222 (6)
H31A0.67790.32100.70350.027*
H31B0.64350.48980.65030.027*
C320.5359 (4)0.4987 (3)0.7816 (2)0.0205 (6)
O320.3636 (3)0.5034 (2)0.78916 (15)0.0285 (5)
C3210.7069 (4)0.5905 (3)0.8661 (2)0.0216 (6)
C3220.9024 (4)0.6020 (3)0.8533 (2)0.0239 (6)
H3220.92890.54610.78970.029*
C3231.0577 (4)0.6935 (4)0.9317 (2)0.0263 (7)
H3231.19080.70130.92130.032*
C3241.0251 (4)0.7747 (3)1.0259 (2)0.0244 (7)
C3250.8302 (4)0.7590 (4)1.0393 (2)0.0275 (7)
H3250.80420.81121.10380.033*
C3260.6748 (4)0.6695 (3)0.9611 (2)0.0263 (7)
H3260.54190.66100.97190.032*
C3271.1965 (4)0.8748 (4)1.1100 (2)0.0320 (7)
H32A1.32160.83301.09910.048*
H32B1.17450.85431.17750.048*
H32C1.20591.00281.10880.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0199 (12)0.0170 (11)0.0287 (14)0.0077 (9)0.0018 (10)0.0087 (10)
C20.0265 (15)0.0147 (13)0.0184 (14)0.0050 (11)0.0040 (12)0.0028 (11)
C30.0219 (14)0.0163 (13)0.0219 (15)0.0086 (11)0.0055 (12)0.0037 (11)
C3a0.0246 (14)0.0148 (13)0.0210 (15)0.0053 (11)0.0056 (12)0.0037 (11)
C40.0286 (15)0.0188 (13)0.0231 (15)0.0082 (11)0.0055 (12)0.0041 (11)
C50.0375 (17)0.0183 (14)0.0273 (16)0.0106 (12)0.0098 (13)0.0060 (12)
C60.0339 (16)0.0147 (13)0.0319 (17)0.0041 (12)0.0137 (13)0.0071 (12)
C70.0257 (15)0.0176 (13)0.0257 (16)0.0060 (11)0.0061 (12)0.0027 (11)
C7a0.0269 (15)0.0141 (13)0.0192 (14)0.0065 (11)0.0048 (12)0.0027 (11)
O20.0279 (11)0.0173 (10)0.0298 (11)0.0081 (8)0.0078 (9)0.0105 (8)
O30.0271 (10)0.0188 (9)0.0274 (11)0.0070 (8)0.0099 (9)0.0056 (8)
C310.0236 (14)0.0175 (13)0.0281 (16)0.0077 (11)0.0057 (12)0.0088 (12)
C320.0238 (15)0.0138 (13)0.0278 (16)0.0066 (11)0.0078 (12)0.0100 (11)
O320.0253 (11)0.0261 (11)0.0343 (12)0.0081 (8)0.0073 (9)0.0028 (9)
C3210.0271 (15)0.0152 (13)0.0249 (16)0.0059 (11)0.0064 (12)0.0084 (12)
C3220.0309 (16)0.0197 (14)0.0224 (15)0.0064 (12)0.0063 (13)0.0058 (12)
C3230.0233 (15)0.0245 (15)0.0324 (17)0.0081 (12)0.0047 (13)0.0089 (13)
C3240.0310 (16)0.0182 (14)0.0248 (16)0.0073 (12)0.0029 (13)0.0081 (12)
C3250.0335 (17)0.0245 (15)0.0257 (16)0.0084 (13)0.0082 (13)0.0040 (13)
C3260.0303 (16)0.0223 (14)0.0302 (17)0.0098 (12)0.0102 (13)0.0081 (13)
C3270.0337 (17)0.0277 (16)0.0324 (18)0.0067 (13)0.0014 (14)0.0055 (13)
Geometric parameters (Å, º) top
N1—C21.317 (3)C31—C321.498 (4)
N1—C7a1.402 (3)C31—H31A0.9900
N1—H10.8800C31—H31B0.9900
C2—O21.235 (3)C32—O321.212 (3)
C2—C31.532 (4)C32—C3211.475 (4)
C3—O31.418 (3)C321—C3221.384 (4)
C3—C3a1.493 (4)C321—C3261.387 (4)
C3—C311.511 (4)C322—C3231.368 (4)
C3a—C41.374 (3)C322—H3220.9500
C3a—C7a1.380 (4)C323—C3241.384 (4)
C4—C51.384 (4)C323—H3230.9500
C4—H40.9500C324—C3251.383 (4)
C5—C61.372 (4)C324—C3271.492 (4)
C5—H50.9500C325—C3261.363 (4)
C6—C71.388 (4)C325—H3250.9500
C6—H60.9500C326—H3260.9500
C7—C7a1.363 (4)C327—H32A0.9800
C7—H70.9500C327—H32B0.9800
O3—H30.8400C327—H32C0.9800
C2—N1—C7a111.3 (2)C32—C31—H31A108.1
C2—N1—H1124.3C3—C31—H31A108.1
C7a—N1—H1124.3C32—C31—H31B108.1
O2—C2—N1125.9 (2)C3—C31—H31B108.1
O2—C2—C3124.4 (2)H31A—C31—H31B107.3
N1—C2—C3109.4 (2)O32—C32—C321121.6 (3)
O3—C3—C3a108.5 (2)O32—C32—C31120.0 (2)
O3—C3—C31109.6 (2)C321—C32—C31118.4 (2)
C3a—C3—C31117.3 (2)C322—C321—C326118.1 (3)
O3—C3—C2107.0 (2)C322—C321—C32121.6 (2)
C3a—C3—C2101.0 (2)C326—C321—C32120.3 (2)
C31—C3—C2112.9 (2)C323—C322—C321120.4 (3)
C4—C3a—C7a119.7 (2)C323—C322—H322119.8
C4—C3a—C3131.1 (2)C321—C322—H322119.8
C7a—C3a—C3109.0 (2)C322—C323—C324121.4 (3)
C3a—C4—C5118.7 (3)C322—C323—H323119.3
C3a—C4—H4120.6C324—C323—H323119.3
C5—C4—H4120.6C325—C324—C323118.0 (3)
C6—C5—C4120.3 (3)C325—C324—C327121.5 (3)
C6—C5—H5119.9C323—C324—C327120.5 (3)
C4—C5—H5119.9C326—C325—C324120.7 (3)
C5—C6—C7121.7 (3)C326—C325—H325119.6
C5—C6—H6119.1C324—C325—H325119.6
C7—C6—H6119.1C325—C326—C321121.3 (3)
C7a—C7—C6116.7 (2)C325—C326—H326119.4
C7a—C7—H7121.6C321—C326—H326119.4
C6—C7—H7121.6C324—C327—H32A109.5
C7—C7a—C3a122.8 (2)C324—C327—H32B109.5
C7—C7a—N1128.1 (2)H32A—C327—H32B109.5
C3a—C7a—N1109.1 (2)C324—C327—H32C109.5
C3—O3—H3109.5H32A—C327—H32C109.5
C32—C31—C3116.8 (2)H32B—C327—H32C109.5
C7a—N1—C2—O2177.5 (2)C4—C3a—C7a—N1179.1 (2)
C7a—N1—C2—C33.2 (3)C3—C3a—C7a—N13.7 (3)
O2—C2—C3—O366.1 (3)C2—N1—C7a—C7177.6 (3)
N1—C2—C3—O3108.3 (2)C2—N1—C7a—C3a0.3 (3)
O2—C2—C3—C3a179.4 (2)O3—C3—C31—C32178.0 (2)
N1—C2—C3—C3a5.1 (3)C3a—C3—C31—C3257.9 (3)
O2—C2—C3—C3154.5 (3)C2—C3—C31—C3258.9 (3)
N1—C2—C3—C31131.1 (2)C3—C31—C32—O328.3 (3)
O3—C3—C3a—C467.6 (4)C3—C31—C32—C321172.9 (2)
C31—C3—C3a—C457.1 (4)O32—C32—C321—C322172.7 (2)
C2—C3—C3a—C4179.8 (3)C31—C32—C321—C3226.1 (3)
O3—C3—C3a—C7a107.1 (2)O32—C32—C321—C3266.8 (4)
C31—C3—C3a—C7a128.2 (2)C31—C32—C321—C326174.4 (2)
C2—C3—C3a—C7a5.2 (3)C326—C321—C322—C3231.8 (4)
C7a—C3a—C4—C50.9 (4)C32—C321—C322—C323177.7 (2)
C3—C3a—C4—C5175.1 (3)C321—C322—C323—C3240.8 (4)
C3a—C4—C5—C61.9 (4)C322—C323—C324—C3250.9 (4)
C4—C5—C6—C71.1 (4)C322—C323—C324—C327179.6 (2)
C5—C6—C7—C7a0.8 (4)C323—C324—C325—C3261.5 (4)
C6—C7—C7a—C3a1.9 (4)C327—C324—C325—C326179.0 (2)
C6—C7—C7a—N1179.5 (3)C324—C325—C326—C3210.4 (4)
C4—C3a—C7a—C71.1 (4)C322—C321—C326—C3251.2 (4)
C3—C3a—C7a—C7174.3 (2)C32—C321—C326—C325178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.881.992.838 (3)162
O3—H3···O2ii0.841.902.729 (3)169
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
(III) 3-hydroxy-3-[(4-fluorobenzoyl)methyl]indolin-2-one top
Crystal data top
C16H12FNO3Z = 2
Mr = 285.27F(000) = 296
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8858 (7) ÅCell parameters from 2528 reflections
b = 7.7074 (8) Åθ = 2.7–26.0°
c = 12.7010 (9) ŵ = 0.11 mm1
α = 98.229 (7)°T = 120 K
β = 103.667 (7)°Block, yellow-brown
γ = 96.034 (9)°0.57 × 0.32 × 0.20 mm
V = 641.43 (10) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2528 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 2.7°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.939, Tmax = 0.978l = 1515
15674 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.3321P]
where P = (Fo2 + 2Fc2)/3
2528 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H12FNO3γ = 96.034 (9)°
Mr = 285.27V = 641.43 (10) Å3
Triclinic, P1Z = 2
a = 6.8858 (7) ÅMo Kα radiation
b = 7.7074 (8) ŵ = 0.11 mm1
c = 12.7010 (9) ÅT = 120 K
α = 98.229 (7)°0.57 × 0.32 × 0.20 mm
β = 103.667 (7)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2528 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1664 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.978Rint = 0.054
15674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.11Δρmax = 0.29 e Å3
2528 reflectionsΔρmin = 0.33 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0665 (3)0.3209 (2)0.57578 (16)0.0224 (5)
H10.04890.36080.55400.027*
C20.2446 (4)0.4007 (3)0.57078 (19)0.0222 (5)
C30.4086 (3)0.2876 (3)0.61206 (19)0.0228 (5)
C3a0.2888 (4)0.1426 (3)0.64738 (19)0.0229 (5)
C40.3438 (4)0.0031 (3)0.6909 (2)0.0263 (6)
H40.48150.02050.70980.032*
C50.1951 (4)0.1246 (3)0.7069 (2)0.0285 (6)
H50.23100.22540.73790.034*
C60.0051 (4)0.1001 (3)0.6779 (2)0.0267 (6)
H60.10500.18560.68890.032*
C70.0643 (4)0.0454 (3)0.63341 (19)0.0246 (6)
H70.20220.06150.61310.030*
C7a0.0861 (4)0.1654 (3)0.62006 (18)0.0219 (5)
O20.2742 (2)0.5356 (2)0.53256 (13)0.0266 (4)
O30.4692 (2)0.2111 (2)0.51872 (13)0.0241 (4)
H30.53640.29070.50080.036*
C310.5908 (3)0.3927 (3)0.69646 (19)0.0231 (5)
H31A0.68450.30960.72200.028*
H31B0.66120.47490.65970.028*
C320.5497 (3)0.4983 (3)0.7951 (2)0.0222 (5)
O320.3775 (2)0.5030 (2)0.80313 (14)0.0295 (4)
C3210.7247 (4)0.5995 (3)0.88164 (19)0.0232 (5)
C3220.9199 (4)0.6077 (3)0.8692 (2)0.0251 (6)
H3220.94400.54500.80460.030*
C3231.0783 (4)0.7057 (3)0.9494 (2)0.0281 (6)
H3231.21200.71330.94070.034*
C3241.0393 (4)0.7919 (3)1.0418 (2)0.0296 (6)
F341.1973 (2)0.8857 (2)1.12187 (12)0.0411 (4)
C3250.8506 (4)0.7859 (3)1.0593 (2)0.0324 (6)
H3250.82910.84621.12530.039*
C3260.6933 (4)0.6889 (3)0.9776 (2)0.0291 (6)
H3260.56010.68300.98700.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0212 (11)0.0214 (10)0.0256 (11)0.0051 (8)0.0063 (9)0.0055 (8)
C20.0254 (13)0.0216 (12)0.0182 (12)0.0025 (10)0.0054 (10)0.0000 (10)
C30.0235 (13)0.0233 (13)0.0225 (13)0.0047 (10)0.0072 (10)0.0041 (10)
C3a0.0257 (13)0.0212 (13)0.0221 (12)0.0039 (10)0.0076 (10)0.0018 (10)
C40.0283 (14)0.0248 (13)0.0266 (13)0.0067 (11)0.0081 (11)0.0027 (10)
C50.0376 (15)0.0230 (13)0.0261 (13)0.0051 (11)0.0091 (12)0.0057 (11)
C60.0298 (14)0.0242 (13)0.0250 (13)0.0013 (11)0.0088 (11)0.0015 (10)
C70.0234 (13)0.0263 (13)0.0220 (13)0.0019 (10)0.0045 (10)0.0010 (10)
C7a0.0274 (13)0.0207 (12)0.0167 (12)0.0022 (10)0.0061 (10)0.0005 (9)
O20.0261 (10)0.0247 (9)0.0309 (10)0.0033 (7)0.0090 (8)0.0086 (8)
O30.0249 (9)0.0239 (9)0.0245 (9)0.0029 (7)0.0095 (7)0.0022 (7)
C310.0211 (13)0.0241 (13)0.0235 (13)0.0035 (10)0.0041 (10)0.0051 (10)
C320.0222 (13)0.0199 (12)0.0272 (13)0.0040 (10)0.0085 (10)0.0079 (10)
O320.0254 (10)0.0330 (10)0.0287 (10)0.0046 (8)0.0061 (8)0.0015 (8)
C3210.0232 (13)0.0223 (13)0.0243 (13)0.0039 (10)0.0048 (10)0.0064 (10)
C3220.0255 (13)0.0273 (13)0.0223 (13)0.0023 (10)0.0058 (10)0.0056 (10)
C3230.0231 (13)0.0326 (14)0.0293 (14)0.0022 (11)0.0075 (11)0.0074 (11)
C3240.0274 (14)0.0276 (14)0.0273 (14)0.0002 (11)0.0037 (11)0.0040 (11)
F340.0312 (9)0.0495 (10)0.0314 (9)0.0054 (7)0.0031 (7)0.0028 (7)
C3250.0334 (15)0.0330 (15)0.0275 (14)0.0055 (12)0.0048 (12)0.0012 (12)
C3260.0273 (14)0.0295 (14)0.0312 (14)0.0070 (11)0.0085 (11)0.0036 (11)
Geometric parameters (Å, º) top
N1—C21.333 (3)O3—H30.8203
N1—C7a1.400 (3)C31—C321.495 (3)
N1—H10.8800C31—H31A0.9900
C2—O21.227 (3)C31—H31B0.9900
C2—C31.539 (3)C32—O321.217 (3)
C3—O31.419 (3)C32—C3211.483 (3)
C3—C3a1.501 (3)C321—C3221.386 (3)
C3—C311.511 (3)C321—C3261.387 (3)
C3a—C41.371 (3)C322—C3231.371 (4)
C3a—C7a1.393 (3)C322—H3220.9500
C4—C51.385 (3)C323—C3241.362 (4)
C4—H40.9500C323—H3230.9500
C5—C61.381 (4)C324—F341.357 (3)
C5—H50.9500C324—C3251.366 (4)
C6—C71.383 (3)C325—C3261.373 (4)
C6—H60.9500C325—H3250.9500
C7—C7a1.372 (3)C326—H3260.9500
C7—H70.9500
C2—N1—C7a111.5 (2)C3a—C7a—N1109.4 (2)
C2—N1—H1124.3C3—O3—H3107.0
C7a—N1—H1124.3C32—C31—C3116.11 (19)
O2—C2—N1126.4 (2)C32—C31—H31A108.3
O2—C2—C3124.5 (2)C3—C31—H31A108.3
N1—C2—C3108.9 (2)C32—C31—H31B108.3
O3—C3—C3a107.67 (18)C3—C31—H31B108.3
O3—C3—C31109.31 (18)H31A—C31—H31B107.4
C3a—C3—C31117.5 (2)O32—C32—C321121.2 (2)
O3—C3—C2106.85 (18)O32—C32—C31120.9 (2)
C3a—C3—C2101.44 (18)C321—C32—C31118.0 (2)
C31—C3—C2113.37 (19)C322—C321—C326118.8 (2)
C4—C3a—C7a119.7 (2)C322—C321—C32121.7 (2)
C4—C3a—C3131.6 (2)C326—C321—C32119.5 (2)
C7a—C3a—C3108.5 (2)C323—C322—C321120.5 (2)
C3a—C4—C5118.8 (2)C323—C322—H322119.8
C3a—C4—H4120.6C321—C322—H322119.8
C5—C4—H4120.6C324—C323—C322118.4 (2)
C6—C5—C4120.4 (2)C324—C323—H323120.8
C6—C5—H5119.8C322—C323—H323120.8
C4—C5—H5119.8F34—C324—C323118.1 (2)
C5—C6—C7121.8 (2)F34—C324—C325118.3 (2)
C5—C6—H6119.1C323—C324—C325123.6 (2)
C7—C6—H6119.1C324—C325—C326117.3 (2)
C7a—C7—C6116.7 (2)C324—C325—H325121.4
C7a—C7—H7121.6C326—C325—H325121.4
C6—C7—H7121.6C325—C326—C321121.4 (2)
C7—C7a—C3a122.5 (2)C325—C326—H326119.3
C7—C7a—N1128.0 (2)C321—C326—H326119.3
C7a—N1—C2—O2177.4 (2)C4—C3a—C7a—N1179.1 (2)
C7a—N1—C2—C32.2 (3)C3—C3a—C7a—N13.7 (3)
O2—C2—C3—O366.8 (3)C2—N1—C7a—C7177.0 (2)
N1—C2—C3—O3108.6 (2)C2—N1—C7a—C3a0.9 (3)
O2—C2—C3—C3a179.4 (2)O3—C3—C31—C32173.64 (18)
N1—C2—C3—C3a4.1 (2)C3a—C3—C31—C3263.4 (3)
O2—C2—C3—C3153.7 (3)C2—C3—C31—C3254.6 (3)
N1—C2—C3—C31131.0 (2)C3—C31—C32—O322.9 (3)
O3—C3—C3a—C467.2 (3)C3—C31—C32—C321178.3 (2)
C31—C3—C3a—C456.6 (3)O32—C32—C321—C322174.3 (2)
C2—C3—C3a—C4179.2 (2)C31—C32—C321—C3224.6 (3)
O3—C3—C3a—C7a107.4 (2)O32—C32—C321—C3265.5 (3)
C31—C3—C3a—C7a128.7 (2)C31—C32—C321—C326175.6 (2)
C2—C3—C3a—C7a4.6 (2)C326—C321—C322—C3231.4 (4)
C7a—C3a—C4—C50.1 (3)C32—C321—C322—C323178.5 (2)
C3—C3a—C4—C5174.3 (2)C321—C322—C323—C3241.0 (4)
C3a—C4—C5—C60.9 (3)C322—C323—C324—F34178.7 (2)
C4—C5—C6—C70.6 (4)C322—C323—C324—C3250.2 (4)
C5—C6—C7—C7a0.5 (3)F34—C324—C325—C326179.5 (2)
C6—C7—C7a—C3a1.3 (3)C323—C324—C325—C3260.9 (4)
C6—C7—C7a—N1179.0 (2)C324—C325—C326—C3210.6 (4)
C4—C3a—C7a—C71.0 (4)C322—C321—C326—C3250.6 (4)
C3—C3a—C7a—C7174.4 (2)C32—C321—C326—C325179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.881.992.842 (2)163
O3—H3···O2ii0.821.932.746 (2)172
C325—H325···Cg1iii0.952.693.614 (3)164
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+2.
(IV) 3-hydroxy-3-[(4-chlorobenzoyl)methyl]indolin-2-one top
Crystal data top
C16H12ClNO3Z = 2
Mr = 301.72F(000) = 312
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.987 (2) ÅCell parameters from 2720 reflections
b = 7.689 (4) Åθ = 3.1–26.0°
c = 12.907 (4) ŵ = 0.30 mm1
α = 99.30 (3)°T = 120 K
β = 101.82 (4)°Plate, yellow-brown
γ = 96.33 (3)°0.34 × 0.22 × 0.10 mm
V = 662.4 (5) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2604 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.1°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.920, Tmax = 0.971l = 1515
2604 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.4161P]
where P = (Fo2 + 2Fc2)/3
2604 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C16H12ClNO3γ = 96.33 (3)°
Mr = 301.72V = 662.4 (5) Å3
Triclinic, P1Z = 2
a = 6.987 (2) ÅMo Kα radiation
b = 7.689 (4) ŵ = 0.30 mm1
c = 12.907 (4) ÅT = 120 K
α = 99.30 (3)°0.34 × 0.22 × 0.10 mm
β = 101.82 (4)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2604 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2051 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.971Rint = 0.000
2604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
2604 reflectionsΔρmin = 0.40 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0637 (3)0.3242 (2)0.57555 (15)0.0198 (4)
H10.04860.36520.55710.024*
C20.2389 (3)0.4025 (3)0.56735 (18)0.0187 (5)
C30.3969 (3)0.2882 (3)0.60392 (18)0.0182 (5)
C3a0.2787 (3)0.1435 (3)0.63915 (18)0.0195 (5)
C40.3314 (4)0.0039 (3)0.67840 (18)0.0219 (5)
H40.46540.02360.69180.026*
C50.1862 (4)0.1234 (3)0.69815 (19)0.0241 (5)
H50.22080.22460.72720.029*
C60.0086 (4)0.0960 (3)0.67581 (19)0.0238 (5)
H60.10660.17920.68980.029*
C70.0648 (3)0.0495 (3)0.63360 (18)0.0218 (5)
H70.19940.06650.61650.026*
C7a0.0821 (3)0.1679 (3)0.61746 (17)0.0191 (5)
O20.2681 (2)0.5370 (2)0.52970 (13)0.0219 (4)
O30.4575 (2)0.2122 (2)0.51023 (12)0.0210 (4)
H30.54980.29150.50200.032*
C310.5768 (3)0.3936 (3)0.68514 (18)0.0201 (5)
H31A0.67050.31030.70470.024*
H31B0.64260.47990.64960.024*
C320.5399 (3)0.4941 (3)0.78720 (19)0.0200 (5)
O320.3728 (2)0.5017 (2)0.79844 (13)0.0268 (4)
C3210.7157 (3)0.5886 (3)0.87034 (18)0.0199 (5)
C3220.9053 (4)0.5893 (3)0.85359 (19)0.0223 (5)
H3220.92430.52450.78820.027*
C3231.0668 (4)0.6823 (3)0.9300 (2)0.0240 (5)
H3231.19620.68350.91750.029*
C3241.0370 (4)0.7728 (3)1.02429 (19)0.0228 (5)
Cl341.24115 (9)0.88843 (8)1.11917 (5)0.03051 (19)
C3250.8504 (4)0.7723 (3)1.0448 (2)0.0258 (5)
H3250.83270.83461.11120.031*
C3260.6909 (4)0.6798 (3)0.96712 (19)0.0243 (5)
H3260.56170.67840.98010.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0132 (9)0.0232 (10)0.0244 (10)0.0049 (8)0.0046 (8)0.0063 (8)
C20.0168 (11)0.0205 (12)0.0178 (11)0.0033 (9)0.0032 (9)0.0016 (9)
C30.0159 (11)0.0196 (12)0.0209 (12)0.0057 (9)0.0061 (9)0.0040 (9)
C3a0.0169 (11)0.0209 (12)0.0206 (12)0.0041 (9)0.0052 (9)0.0013 (9)
C40.0212 (12)0.0215 (12)0.0229 (12)0.0073 (10)0.0042 (10)0.0027 (9)
C50.0286 (13)0.0195 (12)0.0264 (13)0.0065 (10)0.0086 (11)0.0059 (10)
C60.0243 (13)0.0215 (12)0.0261 (13)0.0001 (10)0.0098 (10)0.0029 (10)
C70.0185 (12)0.0232 (12)0.0232 (12)0.0018 (10)0.0064 (10)0.0015 (10)
C7a0.0201 (12)0.0209 (12)0.0162 (11)0.0046 (9)0.0041 (9)0.0021 (9)
O20.0167 (8)0.0229 (9)0.0280 (9)0.0044 (7)0.0049 (7)0.0094 (7)
O30.0168 (8)0.0223 (8)0.0243 (9)0.0022 (7)0.0082 (7)0.0011 (7)
C310.0161 (11)0.0232 (12)0.0221 (12)0.0057 (9)0.0042 (9)0.0061 (10)
C320.0190 (12)0.0183 (11)0.0248 (12)0.0043 (9)0.0059 (10)0.0076 (9)
O320.0161 (9)0.0337 (10)0.0296 (10)0.0056 (7)0.0062 (7)0.0007 (8)
C3210.0181 (12)0.0193 (12)0.0225 (12)0.0044 (9)0.0028 (10)0.0060 (9)
C3220.0207 (12)0.0268 (12)0.0202 (12)0.0057 (10)0.0058 (10)0.0035 (10)
C3230.0173 (12)0.0282 (13)0.0284 (13)0.0046 (10)0.0060 (10)0.0088 (10)
C3240.0203 (12)0.0217 (12)0.0237 (12)0.0011 (10)0.0010 (10)0.0057 (10)
Cl340.0247 (3)0.0338 (4)0.0277 (3)0.0007 (3)0.0012 (3)0.0030 (3)
C3250.0266 (13)0.0273 (13)0.0228 (13)0.0064 (11)0.0060 (10)0.0008 (10)
C3260.0204 (12)0.0270 (13)0.0280 (13)0.0075 (10)0.0086 (10)0.0053 (10)
Geometric parameters (Å, º) top
N1—C21.336 (3)O3—H30.8726
N1—C7a1.403 (3)C31—C321.501 (3)
N1—H10.8800C31—H31A0.9900
C2—O21.227 (3)C31—H31B0.9900
C2—C31.532 (3)C32—O321.212 (3)
C3—O31.421 (3)C32—C3211.483 (3)
C3—C3a1.497 (3)C321—C3261.384 (3)
C3—C311.516 (3)C321—C3221.385 (3)
C3a—C41.370 (3)C322—C3231.376 (3)
C3a—C7a1.384 (3)C322—H3220.9500
C4—C51.384 (3)C323—C3241.368 (4)
C4—H40.9500C323—H3230.9500
C5—C61.380 (3)C324—C3251.382 (4)
C5—H50.9500C324—Cl341.726 (3)
C6—C71.381 (3)C325—C3261.375 (4)
C6—H60.9500C325—H3250.9500
C7—C7a1.367 (3)C326—H3260.9500
C7—H70.9500
C2—N1—C7a111.1 (2)C3a—C7a—N1109.5 (2)
C2—N1—H1124.4C3—O3—H3105.8
C7a—N1—H1124.4C32—C31—C3116.39 (19)
O2—C2—N1126.0 (2)C32—C31—H31A108.2
O2—C2—C3125.0 (2)C3—C31—H31A108.2
N1—C2—C3108.88 (19)C32—C31—H31B108.2
O3—C3—C3a108.34 (18)C3—C31—H31B108.2
O3—C3—C31108.62 (18)H31A—C31—H31B107.3
C3a—C3—C31117.46 (19)O32—C32—C321122.2 (2)
O3—C3—C2106.75 (18)O32—C32—C31120.8 (2)
C3a—C3—C2101.63 (18)C321—C32—C31117.0 (2)
C31—C3—C2113.39 (19)C326—C321—C322118.7 (2)
C4—C3a—C7a119.8 (2)C326—C321—C32119.6 (2)
C4—C3a—C3131.3 (2)C322—C321—C32121.7 (2)
C7a—C3a—C3108.7 (2)C323—C322—C321121.2 (2)
C3a—C4—C5118.9 (2)C323—C322—H322119.4
C3a—C4—H4120.6C321—C322—H322119.4
C5—C4—H4120.6C324—C323—C322118.6 (2)
C6—C5—C4120.1 (2)C324—C323—H323120.7
C6—C5—H5119.9C322—C323—H323120.7
C4—C5—H5119.9C323—C324—C325121.9 (2)
C5—C6—C7121.6 (2)C323—C324—Cl34118.0 (2)
C5—C6—H6119.2C325—C324—Cl34120.2 (2)
C7—C6—H6119.2C326—C325—C324118.6 (2)
C7a—C7—C6117.0 (2)C326—C325—H325120.7
C7a—C7—H7121.5C324—C325—H325120.7
C6—C7—H7121.5C325—C326—C321121.0 (2)
C7—C7a—C3a122.4 (2)C325—C326—H326119.5
C7—C7a—N1128.0 (2)C321—C326—H326119.5
C7a—N1—C2—O2177.1 (2)C4—C3a—C7a—N1178.4 (2)
C7a—N1—C2—C31.8 (3)C3—C3a—C7a—N13.1 (3)
O2—C2—C3—O365.3 (3)C2—N1—C7a—C7177.4 (2)
N1—C2—C3—O3110.0 (2)C2—N1—C7a—C3a0.8 (3)
O2—C2—C3—C3a178.7 (2)O3—C3—C31—C32176.17 (17)
N1—C2—C3—C3a3.4 (2)C3a—C3—C31—C3260.5 (3)
O2—C2—C3—C3154.3 (3)C2—C3—C31—C3257.7 (3)
N1—C2—C3—C31130.4 (2)C3—C31—C32—O326.3 (3)
O3—C3—C3a—C466.2 (3)C3—C31—C32—C321176.27 (19)
C31—C3—C3a—C457.3 (3)O32—C32—C321—C3264.1 (3)
C2—C3—C3a—C4178.4 (2)C31—C32—C321—C326178.5 (2)
O3—C3—C3a—C7a108.4 (2)O32—C32—C321—C322175.4 (2)
C31—C3—C3a—C7a128.2 (2)C31—C32—C321—C3222.0 (3)
C2—C3—C3a—C7a3.8 (2)C326—C321—C322—C3231.6 (3)
C7a—C3a—C4—C51.6 (3)C32—C321—C322—C323177.9 (2)
C3—C3a—C4—C5175.7 (2)C321—C322—C323—C3240.9 (4)
C3a—C4—C5—C61.7 (4)C322—C323—C324—C3250.4 (4)
C4—C5—C6—C70.0 (4)C322—C323—C324—Cl34179.96 (18)
C5—C6—C7—C7a1.6 (3)C323—C324—C325—C3260.9 (4)
C6—C7—C7a—C3a1.7 (3)Cl34—C324—C325—C326179.56 (18)
C6—C7—C7a—N1179.7 (2)C324—C325—C326—C3210.1 (4)
C4—C3a—C7a—C70.1 (4)C322—C321—C326—C3251.1 (3)
C3—C3a—C7a—C7175.2 (2)C32—C321—C326—C325178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.002.843 (3)160
O3—H3···O2ii0.871.882.752 (3)174
C31—H31B···O2ii0.992.503.276 (3)135
C323—H323···O32iii0.952.513.281 (4)138
C325—H325···Cg1iv0.952.973.890 (3)164
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+2.
(V) 3-[(4-bromobenzoyl)methyl]-3-hydroxyindolin-2-one top
Crystal data top
C16H12BrNO3Z = 2
Mr = 346.18F(000) = 348
Triclinic, P1Dx = 1.701 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.016 (3) ÅCell parameters from 2800 reflections
b = 7.7349 (12) Åθ = 2.7–26.5°
c = 13.052 (6) ŵ = 3.05 mm1
α = 99.69 (3)°T = 120 K
β = 101.51 (4)°Block, yellow-brown
γ = 96.70 (3)°0.46 × 0.25 × 0.22 mm
V = 675.8 (4) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2800 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 2.7°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.385, Tmax = 0.553l = 1616
18834 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.5649P]
where P = (Fo2 + 2Fc2)/3
2800 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C16H12BrNO3γ = 96.70 (3)°
Mr = 346.18V = 675.8 (4) Å3
Triclinic, P1Z = 2
a = 7.016 (3) ÅMo Kα radiation
b = 7.7349 (12) ŵ = 3.05 mm1
c = 13.052 (6) ÅT = 120 K
α = 99.69 (3)°0.46 × 0.25 × 0.22 mm
β = 101.51 (4)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2800 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2215 reflections with I > 2σ(I)
Tmin = 0.385, Tmax = 0.553Rint = 0.075
18834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.09Δρmax = 0.57 e Å3
2800 reflectionsΔρmin = 0.73 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0634 (4)0.3254 (3)0.5748 (2)0.0164 (6)
H10.04850.36560.55720.020*
C20.2370 (5)0.4033 (4)0.5659 (2)0.0156 (7)
C30.3941 (5)0.2896 (4)0.6001 (2)0.0156 (6)
C3a0.2761 (5)0.1450 (4)0.6348 (2)0.0162 (7)
C40.3294 (5)0.0031 (4)0.6718 (2)0.0175 (7)
H40.46190.02430.68200.021*
C50.1851 (5)0.1201 (4)0.6938 (3)0.0204 (7)
H50.21960.22010.72250.025*
C60.0073 (5)0.0928 (4)0.6743 (3)0.0213 (7)
H60.10440.17550.68910.026*
C70.0637 (5)0.0520 (4)0.6337 (2)0.0190 (7)
H70.19760.06910.61860.023*
C7a0.0825 (4)0.1698 (4)0.6163 (2)0.0152 (6)
O20.2665 (3)0.5371 (3)0.52888 (17)0.0188 (5)
O30.4545 (3)0.2144 (3)0.50721 (16)0.0172 (5)
H30.52980.29040.48620.026*
C310.5741 (4)0.3945 (4)0.6810 (2)0.0163 (7)
H31A0.66670.31130.69920.020*
H31B0.64020.48100.64640.020*
C320.5389 (5)0.4934 (4)0.7827 (2)0.0177 (7)
O320.3737 (3)0.5021 (3)0.79489 (18)0.0242 (5)
C3210.7157 (5)0.5854 (4)0.8656 (2)0.0180 (7)
C3220.9027 (5)0.5873 (4)0.8470 (3)0.0205 (7)
H3220.91990.52520.78110.025*
C3231.0650 (5)0.6781 (4)0.9229 (3)0.0204 (7)
H3231.19350.67960.90970.025*
C3241.0375 (5)0.7661 (4)1.0177 (3)0.0203 (7)
Br341.26306 (5)0.88941 (4)1.11883 (3)0.02613 (13)
C3250.8537 (5)0.7636 (4)1.0397 (3)0.0225 (7)
H3250.83760.82321.10650.027*
C3260.6939 (5)0.6729 (4)0.9628 (3)0.0206 (7)
H3260.56600.67040.97690.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0163 (14)0.0131 (12)0.0209 (14)0.0047 (10)0.0034 (11)0.0062 (10)
C20.0196 (17)0.0142 (15)0.0131 (15)0.0013 (12)0.0051 (13)0.0017 (12)
C30.0172 (16)0.0142 (14)0.0160 (16)0.0023 (12)0.0043 (13)0.0040 (12)
C3a0.0194 (17)0.0151 (14)0.0125 (15)0.0008 (12)0.0041 (13)0.0003 (12)
C40.0207 (18)0.0157 (15)0.0156 (16)0.0058 (13)0.0021 (13)0.0024 (12)
C50.0288 (19)0.0120 (14)0.0211 (17)0.0035 (13)0.0054 (14)0.0051 (13)
C60.028 (2)0.0135 (15)0.0229 (18)0.0005 (13)0.0103 (15)0.0020 (13)
C70.0203 (18)0.0165 (15)0.0198 (17)0.0021 (13)0.0061 (13)0.0004 (13)
C7a0.0184 (17)0.0129 (14)0.0143 (15)0.0030 (12)0.0031 (13)0.0031 (12)
O20.0203 (12)0.0151 (11)0.0224 (12)0.0034 (9)0.0046 (9)0.0078 (9)
O30.0194 (12)0.0159 (10)0.0173 (11)0.0004 (9)0.0088 (9)0.0025 (9)
C310.0157 (17)0.0155 (14)0.0189 (16)0.0030 (12)0.0042 (13)0.0066 (12)
C320.0230 (19)0.0102 (14)0.0224 (17)0.0036 (12)0.0070 (14)0.0073 (12)
O320.0190 (13)0.0274 (12)0.0255 (13)0.0050 (10)0.0065 (10)0.0005 (10)
C3210.0221 (18)0.0125 (15)0.0223 (18)0.0064 (13)0.0071 (14)0.0068 (13)
C3220.0266 (19)0.0168 (15)0.0195 (17)0.0048 (13)0.0068 (14)0.0044 (13)
C3230.0208 (18)0.0210 (16)0.0217 (17)0.0042 (14)0.0065 (14)0.0074 (13)
C3240.0237 (19)0.0159 (15)0.0209 (17)0.0022 (13)0.0019 (14)0.0067 (13)
Br340.0285 (2)0.02281 (18)0.02227 (19)0.00138 (13)0.00189 (13)0.00392 (13)
C3250.030 (2)0.0193 (16)0.0192 (17)0.0059 (14)0.0065 (15)0.0036 (13)
C3260.0206 (18)0.0192 (16)0.0234 (18)0.0055 (13)0.0061 (14)0.0047 (13)
Geometric parameters (Å, º) top
N1—C21.330 (4)O3—H30.8599
N1—C7a1.409 (4)C31—C321.497 (4)
N1—H10.8800C31—H31A0.9900
C2—O21.227 (3)C31—H31B0.9900
C2—C31.532 (4)C32—O321.209 (4)
C3—O31.419 (4)C32—C3211.488 (4)
C3—C3a1.498 (4)C321—C3221.380 (5)
C3—C311.519 (4)C321—C3261.380 (4)
C3a—C7a1.373 (4)C322—C3231.378 (5)
C3a—C41.378 (4)C322—H3220.9500
C4—C51.384 (4)C323—C3241.368 (5)
C4—H40.9500C323—H3230.9500
C5—C61.371 (5)C324—C3251.375 (5)
C5—H50.9500C324—Br341.883 (3)
C6—C71.383 (4)C325—C3261.373 (5)
C6—H60.9500C325—H3250.9500
C7—C7a1.371 (4)C326—H3260.9500
C7—H70.9500
C2—N1—C7a110.9 (3)C3a—C7a—N1109.7 (3)
C2—N1—H1124.5C3—O3—H3112.4
C7a—N1—H1124.5C32—C31—C3116.6 (3)
O2—C2—N1126.1 (3)C32—C31—H31A108.1
O2—C2—C3124.7 (3)C3—C31—H31A108.1
N1—C2—C3109.0 (2)C32—C31—H31B108.1
O3—C3—C3a108.4 (2)C3—C31—H31B108.1
O3—C3—C31108.5 (2)H31A—C31—H31B107.3
C3a—C3—C31117.0 (3)O32—C32—C321121.9 (3)
O3—C3—C2107.4 (2)O32—C32—C31121.1 (3)
C3a—C3—C2101.5 (2)C321—C32—C31117.0 (3)
C31—C3—C2113.4 (2)C322—C321—C326118.8 (3)
C7a—C3a—C4120.0 (3)C322—C321—C32121.3 (3)
C7a—C3a—C3108.8 (3)C326—C321—C32119.9 (3)
C4—C3a—C3130.9 (3)C323—C322—C321120.9 (3)
C3a—C4—C5118.4 (3)C323—C322—H322119.6
C3a—C4—H4120.8C321—C322—H322119.6
C5—C4—H4120.8C324—C323—C322118.7 (3)
C6—C5—C4120.5 (3)C324—C323—H323120.6
C6—C5—H5119.8C322—C323—H323120.6
C4—C5—H5119.8C323—C324—C325121.9 (3)
C5—C6—C7121.7 (3)C323—C324—Br34117.3 (3)
C5—C6—H6119.2C325—C324—Br34120.8 (3)
C7—C6—H6119.2C326—C325—C324118.5 (3)
C7a—C7—C6116.9 (3)C326—C325—H325120.8
C7a—C7—H7121.5C324—C325—H325120.8
C6—C7—H7121.5C325—C326—C321121.3 (3)
C7—C7a—C3a122.4 (3)C325—C326—H326119.4
C7—C7a—N1127.9 (3)C321—C326—H326119.4
C7a—N1—C2—O2177.3 (3)C4—C3a—C7a—N1177.5 (3)
C7a—N1—C2—C32.3 (3)C3—C3a—C7a—N12.1 (3)
O2—C2—C3—O364.7 (4)C2—N1—C7a—C7177.9 (3)
N1—C2—C3—O3110.4 (3)C2—N1—C7a—C3a0.2 (3)
O2—C2—C3—C3a178.4 (3)O3—C3—C31—C32176.6 (2)
N1—C2—C3—C3a3.3 (3)C3a—C3—C31—C3260.4 (4)
O2—C2—C3—C3155.2 (4)C2—C3—C31—C3257.3 (3)
N1—C2—C3—C31129.7 (3)C3—C31—C32—O326.7 (4)
O3—C3—C3a—C7a109.7 (3)C3—C31—C32—C321175.6 (2)
C31—C3—C3a—C7a127.2 (3)O32—C32—C321—C322174.2 (3)
C2—C3—C3a—C7a3.2 (3)C31—C32—C321—C3223.5 (4)
O3—C3—C3a—C465.1 (4)O32—C32—C321—C3264.9 (5)
C31—C3—C3a—C458.0 (4)C31—C32—C321—C326177.4 (3)
C2—C3—C3a—C4178.0 (3)C326—C321—C322—C3231.4 (4)
C7a—C3a—C4—C52.7 (4)C32—C321—C322—C323177.7 (3)
C3—C3a—C4—C5177.0 (3)C321—C322—C323—C3240.3 (5)
C3a—C4—C5—C62.9 (5)C322—C323—C324—C3251.2 (5)
C4—C5—C6—C70.7 (5)C322—C323—C324—Br34179.7 (2)
C5—C6—C7—C7a1.6 (5)C323—C324—C325—C3261.4 (5)
C6—C7—C7a—C3a1.8 (5)Br34—C324—C325—C326179.5 (2)
C6—C7—C7a—N1179.3 (3)C324—C325—C326—C3210.2 (5)
C4—C3a—C7a—C70.4 (5)C322—C321—C326—C3251.2 (5)
C3—C3a—C7a—C7175.8 (3)C32—C321—C326—C325178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.012.851 (4)160
O3—H3···O2ii0.861.902.746 (3)167
C31—H31B···O2ii0.992.493.257 (4)134
C323—H323···O32iii0.952.493.271 (4)140
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
(VI) 3-hydroxy-3-[(4-nitrobenzoyl)methyl]indolin-2-one top
Crystal data top
C16H12N2O5Z = 2
Mr = 312.28F(000) = 324
Triclinic, P1Dx = 1.519 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.026 (1) ÅCell parameters from 2683 reflections
b = 7.598 (3) Åθ = 3.7–26.0°
c = 13.365 (4) ŵ = 0.12 mm1
α = 97.54 (3)°T = 120 K
β = 102.67 (2)°Block, yellow-brown
γ = 96.46 (2)°0.27 × 0.17 × 0.12 mm
V = 682.7 (3) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2683 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.7°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.970, Tmax = 0.986l = 1616
19392 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.3346P]
where P = (Fo2 + 2Fc2)/3
2683 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H12N2O5γ = 96.46 (2)°
Mr = 312.28V = 682.7 (3) Å3
Triclinic, P1Z = 2
a = 7.026 (1) ÅMo Kα radiation
b = 7.598 (3) ŵ = 0.12 mm1
c = 13.365 (4) ÅT = 120 K
α = 97.54 (3)°0.27 × 0.17 × 0.12 mm
β = 102.67 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2683 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1528 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.986Rint = 0.096
19392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
2683 reflectionsΔρmin = 0.33 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0655 (3)0.3211 (3)0.57180 (18)0.0253 (6)
H10.04610.36330.55250.030*
C20.2408 (4)0.4009 (4)0.5653 (2)0.0261 (7)
C30.3976 (4)0.2833 (4)0.6037 (2)0.0237 (7)
C3a0.2778 (4)0.1366 (4)0.6373 (2)0.0251 (7)
C40.3303 (4)0.0124 (4)0.6790 (2)0.0293 (7)
H40.46420.03120.69600.035*
C50.1825 (4)0.1341 (4)0.6955 (2)0.0307 (7)
H50.21530.23700.72510.037*
C60.0116 (4)0.1072 (4)0.6695 (2)0.0306 (7)
H60.11060.19310.68080.037*
C70.0659 (4)0.0408 (4)0.6277 (2)0.0266 (7)
H70.20010.05850.60950.032*
C7a0.0817 (4)0.1612 (4)0.6134 (2)0.0243 (7)
O20.2716 (3)0.5375 (3)0.52828 (15)0.0277 (5)
O30.4593 (3)0.2086 (3)0.51530 (15)0.0272 (5)
H30.53780.29010.49960.041*
C310.5773 (4)0.3853 (4)0.6834 (2)0.0254 (7)
H31A0.66770.29860.70440.030*
H31B0.64660.47140.64910.030*
C320.5422 (4)0.4864 (4)0.7794 (2)0.0245 (7)
O320.3772 (3)0.4957 (3)0.79150 (16)0.0317 (5)
C3210.7201 (4)0.5813 (4)0.8598 (2)0.0236 (7)
C3220.9068 (4)0.5751 (4)0.8453 (2)0.0263 (7)
H3220.92430.50750.78380.032*
C3231.0697 (4)0.6664 (4)0.9194 (2)0.0284 (7)
H3231.19910.66300.90950.034*
C3241.0392 (4)0.7618 (4)1.0072 (2)0.0252 (7)
C3250.8545 (4)0.7693 (4)1.0248 (2)0.0302 (7)
H3250.83800.83531.08700.036*
C3260.6945 (4)0.6790 (4)0.9502 (2)0.0299 (7)
H3260.56540.68330.96040.036*
N341.2127 (4)0.8555 (3)1.08607 (19)0.0311 (6)
O331.3745 (3)0.8340 (4)1.07444 (19)0.0526 (7)
O341.1852 (3)0.9505 (4)1.16011 (18)0.0506 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0228 (13)0.0272 (14)0.0266 (14)0.0059 (10)0.0047 (10)0.0068 (11)
C20.0305 (17)0.0285 (17)0.0195 (16)0.0046 (13)0.0084 (13)0.0006 (13)
C30.0250 (16)0.0227 (16)0.0250 (16)0.0058 (12)0.0079 (12)0.0040 (13)
C3a0.0269 (16)0.0238 (16)0.0235 (16)0.0043 (12)0.0063 (12)0.0015 (13)
C40.0288 (17)0.0306 (18)0.0287 (17)0.0083 (14)0.0050 (13)0.0054 (14)
C50.0407 (19)0.0257 (17)0.0283 (17)0.0092 (14)0.0093 (14)0.0082 (14)
C60.0334 (18)0.0301 (18)0.0300 (18)0.0007 (14)0.0143 (14)0.0031 (14)
C70.0248 (16)0.0288 (17)0.0262 (16)0.0033 (13)0.0079 (13)0.0012 (13)
C7a0.0285 (16)0.0225 (16)0.0220 (15)0.0055 (12)0.0065 (12)0.0017 (12)
O20.0277 (11)0.0257 (12)0.0315 (12)0.0037 (9)0.0078 (9)0.0101 (10)
O30.0273 (11)0.0266 (11)0.0278 (12)0.0018 (9)0.0102 (9)0.0009 (9)
C310.0235 (15)0.0294 (17)0.0238 (16)0.0056 (12)0.0053 (12)0.0051 (13)
C320.0255 (16)0.0230 (16)0.0264 (17)0.0050 (12)0.0065 (13)0.0072 (13)
O320.0267 (12)0.0350 (13)0.0326 (13)0.0063 (9)0.0075 (9)0.0002 (10)
C3210.0221 (15)0.0243 (16)0.0253 (16)0.0038 (12)0.0057 (12)0.0067 (13)
C3220.0287 (17)0.0270 (17)0.0246 (16)0.0061 (13)0.0082 (13)0.0039 (13)
C3230.0260 (16)0.0322 (18)0.0290 (17)0.0059 (13)0.0095 (13)0.0055 (14)
C3240.0247 (16)0.0257 (17)0.0239 (16)0.0038 (12)0.0025 (13)0.0046 (13)
C3250.0304 (17)0.0355 (18)0.0246 (17)0.0095 (14)0.0064 (13)0.0001 (14)
C3260.0254 (16)0.0358 (18)0.0297 (18)0.0090 (13)0.0079 (13)0.0031 (14)
N340.0290 (15)0.0376 (16)0.0254 (15)0.0073 (12)0.0037 (11)0.0032 (12)
O330.0250 (13)0.0722 (18)0.0498 (16)0.0065 (12)0.0042 (11)0.0203 (13)
O340.0376 (14)0.0720 (18)0.0334 (14)0.0064 (12)0.0059 (11)0.0172 (13)
Geometric parameters (Å, º) top
N1—C21.336 (4)C31—C321.490 (4)
N1—C7a1.406 (4)C31—H31A0.9900
N1—H10.8800C31—H31B0.9900
C2—O21.225 (3)C32—O321.214 (3)
C2—C31.539 (4)C32—C3211.497 (4)
C3—O31.418 (3)C321—C3221.372 (4)
C3—C3a1.496 (4)C321—C3261.390 (4)
C3—C311.518 (4)C322—C3231.385 (4)
C3a—C41.378 (4)C322—H3220.9500
C3a—C7a1.385 (4)C323—C3241.367 (4)
C4—C51.385 (4)C323—H3230.9500
C4—H40.9500C324—C3251.375 (4)
C5—C61.377 (4)C324—N341.466 (4)
C5—H50.9500C325—C3261.372 (4)
C6—C71.375 (4)C325—H3250.9500
C6—H60.9500C326—H3260.9500
C7—C7a1.367 (4)N34—O331.206 (3)
C7—H70.9500N34—O341.211 (3)
O3—H30.8600
C2—N1—C7a111.5 (2)C32—C31—C3117.0 (2)
C2—N1—H1124.2C32—C31—H31A108.0
C7a—N1—H1124.2C3—C31—H31A108.0
O2—C2—N1126.3 (3)C32—C31—H31B108.0
O2—C2—C3125.1 (3)C3—C31—H31B108.0
N1—C2—C3108.4 (2)H31A—C31—H31B107.3
O3—C3—C3a108.2 (2)O32—C32—C31121.9 (3)
O3—C3—C31108.5 (2)O32—C32—C321121.0 (3)
C3a—C3—C31117.1 (2)C31—C32—C321117.0 (2)
O3—C3—C2106.7 (2)C322—C321—C326119.7 (3)
C3a—C3—C2101.7 (2)C322—C321—C32121.2 (3)
C31—C3—C2114.0 (2)C326—C321—C32119.1 (2)
C4—C3a—C7a119.8 (3)C321—C322—C323120.6 (3)
C4—C3a—C3131.1 (3)C321—C322—H322119.7
C7a—C3a—C3108.9 (2)C323—C322—H322119.7
C3a—C4—C5118.2 (3)C324—C323—C322118.2 (3)
C3a—C4—H4120.9C324—C323—H323120.9
C5—C4—H4120.9C322—C323—H323120.9
C6—C5—C4120.6 (3)C323—C324—C325122.7 (3)
C6—C5—H5119.7C323—C324—N34117.8 (3)
C4—C5—H5119.7C325—C324—N34119.4 (3)
C7—C6—C5121.8 (3)C326—C325—C324118.3 (3)
C7—C6—H6119.1C326—C325—H325120.8
C5—C6—H6119.1C324—C325—H325120.8
C7a—C7—C6117.0 (3)C325—C326—C321120.4 (3)
C7a—C7—H7121.5C325—C326—H326119.8
C6—C7—H7121.5C321—C326—H326119.8
C7—C7a—C3a122.6 (3)O33—N34—O34123.4 (3)
C7—C7a—N1128.2 (3)O33—N34—C324118.8 (3)
C3a—C7a—N1109.2 (2)O34—N34—C324117.7 (2)
C3—O3—H3108.3
C7a—N1—C2—O2176.7 (3)C2—N1—C7a—C7177.2 (3)
C7a—N1—C2—C31.6 (3)C2—N1—C7a—C3a1.2 (3)
O2—C2—C3—O365.4 (4)O3—C3—C31—C32175.4 (2)
N1—C2—C3—O3109.8 (2)C3a—C3—C31—C3261.8 (3)
O2—C2—C3—C3a178.7 (3)C2—C3—C31—C3256.7 (3)
N1—C2—C3—C3a3.5 (3)C3—C31—C32—O324.0 (4)
O2—C2—C3—C3154.4 (4)C3—C31—C32—C321177.7 (2)
N1—C2—C3—C31130.4 (2)O32—C32—C321—C322178.2 (3)
O3—C3—C3a—C467.6 (4)C31—C32—C321—C3220.1 (4)
C31—C3—C3a—C455.3 (4)O32—C32—C321—C3261.0 (4)
C2—C3—C3a—C4179.8 (3)C31—C32—C321—C326179.3 (3)
O3—C3—C3a—C7a108.0 (3)C326—C321—C322—C3230.5 (4)
C31—C3—C3a—C7a129.1 (3)C32—C321—C322—C323178.7 (3)
C2—C3—C3a—C7a4.2 (3)C321—C322—C323—C3240.3 (4)
C7a—C3a—C4—C50.1 (4)C322—C323—C324—C3250.4 (4)
C3—C3a—C4—C5175.1 (3)C322—C323—C324—N34178.9 (2)
C3a—C4—C5—C60.8 (4)C323—C324—C325—C3260.9 (4)
C4—C5—C6—C70.7 (5)N34—C324—C325—C326179.4 (3)
C5—C6—C7—C7a0.3 (4)C324—C325—C326—C3210.6 (5)
C6—C7—C7a—C3a1.3 (4)C322—C321—C326—C3250.0 (4)
C6—C7—C7a—N1179.5 (3)C32—C321—C326—C325179.2 (3)
C4—C3a—C7a—C71.2 (4)C323—C324—N34—O335.6 (4)
C3—C3a—C7a—C7175.0 (3)C325—C324—N34—O33173.0 (3)
C4—C3a—C7a—N1179.8 (3)C323—C324—N34—O34174.6 (3)
C3—C3a—C7a—N13.6 (3)C325—C324—N34—O346.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.881.992.848 (3)164
O3—H3···O2ii0.861.902.756 (3)175
C31—H31B···O2ii0.992.553.330 (4)135
C323—H323···O32iii0.952.523.308 (4)140
C326—H326···O33iv0.952.493.304 (4)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z.
(VII) 3-hydroxy-3-(2-thienylcarbonylmethyl)indolin-2-one top
Crystal data top
C14H11NO3SZ = 2
Mr = 273.30F(000) = 284
Triclinic, P1Dx = 1.508 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5958 (7) ÅCell parameters from 2355 reflections
b = 7.9577 (14) Åθ = 3.3–26.0°
c = 12.045 (3) ŵ = 0.27 mm1
α = 78.51 (2)°T = 120 K
β = 76.555 (13)°Block, yellow-brown
γ = 84.559 (15)°0.41 × 0.23 × 0.14 mm
V = 601.8 (2) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2355 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.3°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.885, Tmax = 0.963l = 1414
14010 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.4932P]
where P = (Fo2 + 2Fc2)/3
2355 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H11NO3Sγ = 84.559 (15)°
Mr = 273.30V = 601.8 (2) Å3
Triclinic, P1Z = 2
a = 6.5958 (7) ÅMo Kα radiation
b = 7.9577 (14) ŵ = 0.27 mm1
c = 12.045 (3) ÅT = 120 K
α = 78.51 (2)°0.41 × 0.23 × 0.14 mm
β = 76.555 (13)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2355 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1798 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.963Rint = 0.058
14010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
2355 reflectionsΔρmin = 0.31 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.0025 (3)0.3142 (2)0.42275 (17)0.0200 (4)
H11.10190.34770.44990.024*
C20.8172 (3)0.3972 (3)0.4230 (2)0.0210 (5)
C30.6810 (3)0.2928 (3)0.3776 (2)0.0193 (5)
C3a0.8353 (3)0.1527 (3)0.3393 (2)0.0193 (5)
C40.8135 (4)0.0171 (3)0.2889 (2)0.0244 (5)
H40.68800.00610.26570.029*
C50.9794 (4)0.1041 (3)0.2727 (2)0.0257 (6)
H50.96910.19700.23580.031*
C61.1574 (4)0.0898 (3)0.3097 (2)0.0250 (6)
H61.26740.17530.29950.030*
C71.1820 (4)0.0461 (3)0.3616 (2)0.0222 (5)
H71.30540.05530.38740.027*
C7a1.0186 (3)0.1660 (3)0.3735 (2)0.0196 (5)
O20.7576 (2)0.5298 (2)0.46143 (15)0.0237 (4)
O30.5315 (2)0.21687 (19)0.47558 (14)0.0219 (4)
H30.46400.29310.50710.033*
C310.5704 (3)0.4007 (3)0.2889 (2)0.0210 (5)
H31A0.49990.32330.25670.025*
H31B0.46090.47560.32900.025*
C320.7085 (4)0.5113 (3)0.1902 (2)0.0210 (5)
O320.8952 (2)0.5129 (2)0.18401 (15)0.0269 (4)
S3210.75166 (10)0.75473 (8)0.00821 (6)0.0300 (2)
C3220.6065 (4)0.6202 (3)0.1052 (2)0.0213 (5)
C3230.3989 (4)0.6329 (3)0.0999 (2)0.0227 (5)
H3230.29410.56740.15450.027*
C3240.3607 (4)0.7549 (3)0.0035 (2)0.0269 (6)
H3240.22700.78150.01410.032*
C3250.5370 (4)0.8295 (3)0.0608 (2)0.0300 (6)
H3250.54000.91510.12850.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0191 (10)0.0182 (10)0.0255 (11)0.0004 (8)0.0075 (8)0.0082 (8)
C20.0226 (12)0.0185 (12)0.0210 (13)0.0012 (9)0.0033 (10)0.0033 (10)
C30.0184 (11)0.0174 (11)0.0226 (13)0.0007 (9)0.0040 (9)0.0060 (10)
C3a0.0209 (11)0.0151 (11)0.0216 (12)0.0001 (9)0.0040 (9)0.0040 (9)
C40.0257 (12)0.0227 (12)0.0266 (14)0.0027 (10)0.0062 (10)0.0073 (10)
C50.0308 (13)0.0170 (12)0.0291 (14)0.0013 (10)0.0031 (11)0.0077 (10)
C60.0268 (13)0.0170 (12)0.0284 (14)0.0018 (10)0.0019 (11)0.0040 (10)
C70.0214 (12)0.0200 (12)0.0228 (13)0.0005 (9)0.0019 (10)0.0017 (10)
C7a0.0222 (12)0.0160 (11)0.0197 (12)0.0019 (9)0.0020 (10)0.0041 (9)
O20.0232 (8)0.0197 (8)0.0307 (10)0.0009 (7)0.0062 (7)0.0108 (7)
O30.0222 (8)0.0186 (8)0.0239 (9)0.0011 (6)0.0024 (7)0.0055 (7)
C310.0200 (11)0.0198 (12)0.0242 (13)0.0015 (9)0.0061 (10)0.0061 (10)
C320.0247 (13)0.0165 (11)0.0243 (13)0.0015 (9)0.0065 (10)0.0097 (10)
O320.0220 (9)0.0252 (9)0.0335 (10)0.0008 (7)0.0063 (7)0.0049 (8)
S3210.0298 (4)0.0278 (4)0.0303 (4)0.0033 (3)0.0051 (3)0.0014 (3)
C3220.0242 (12)0.0176 (11)0.0222 (13)0.0005 (9)0.0025 (10)0.0073 (10)
C3230.0270 (12)0.0197 (12)0.0228 (13)0.0016 (10)0.0061 (10)0.0081 (10)
C3240.0318 (14)0.0236 (13)0.0282 (14)0.0032 (10)0.0103 (11)0.0094 (11)
C3250.0399 (15)0.0245 (13)0.0268 (14)0.0024 (11)0.0119 (12)0.0041 (11)
Geometric parameters (Å, º) top
N1—C21.333 (3)C7—C7a1.371 (3)
N1—C7a1.407 (3)C7—H70.9500
N1—H10.8800O3—H30.8202
C2—O21.230 (3)C31—C321.500 (3)
C2—C31.533 (3)C31—H31A0.9900
C3—O31.420 (3)C31—H31B0.9900
C3—C3a1.504 (3)C32—O321.218 (3)
C3—C311.514 (3)C32—C3221.452 (3)
C3a—C41.372 (3)S321—C3251.693 (3)
C3a—C7a1.385 (3)S321—C3221.713 (2)
C4—C51.393 (3)C322—C3231.379 (3)
C4—H40.9500C323—C3241.412 (3)
C5—C61.371 (3)C323—H3230.9500
C5—H50.9500C324—C3251.354 (4)
C6—C71.392 (3)C324—H3240.9500
C6—H60.9500C325—H3250.9500
C2—N1—C7a111.20 (19)C7—C7a—C3a122.7 (2)
C2—N1—H1124.4C7—C7a—N1128.1 (2)
C7a—N1—H1124.4C3a—C7a—N1109.22 (19)
O2—C2—N1126.0 (2)C3—O3—H3108.9
O2—C2—C3124.7 (2)C32—C31—C3115.01 (18)
N1—C2—C3109.14 (19)C32—C31—H31A108.5
O3—C3—C3a107.73 (17)C3—C31—H31A108.5
O3—C3—C31109.67 (17)C32—C31—H31B108.5
C3a—C3—C31117.8 (2)C3—C31—H31B108.5
O3—C3—C2106.60 (18)H31A—C31—H31B107.5
C3a—C3—C2101.11 (17)O32—C32—C322122.1 (2)
C31—C3—C2113.09 (18)O32—C32—C31121.5 (2)
C4—C3a—C7a120.0 (2)C322—C32—C31116.4 (2)
C4—C3a—C3131.0 (2)C325—S321—C32291.38 (12)
C7a—C3a—C3108.8 (2)C323—C322—C32129.0 (2)
C3a—C4—C5118.6 (2)C323—C322—S321111.50 (18)
C3a—C4—H4120.7C32—C322—S321119.49 (17)
C5—C4—H4120.7C322—C323—C324111.9 (2)
C6—C5—C4120.2 (2)C322—C323—H323124.0
C6—C5—H5119.9C324—C323—H323124.0
C4—C5—H5119.9C325—C324—C323112.2 (2)
C5—C6—C7122.0 (2)C325—C324—H324123.9
C5—C6—H6119.0C323—C324—H324123.9
C7—C6—H6119.0C324—C325—S321113.1 (2)
C7a—C7—C6116.5 (2)C324—C325—H325123.5
C7a—C7—H7121.8S321—C325—H325123.5
C6—C7—H7121.8
C7a—N1—C2—O2179.3 (2)C3—C3a—C7a—C7173.2 (2)
C7a—N1—C2—C34.4 (3)C4—C3a—C7a—N1179.7 (2)
O2—C2—C3—O369.5 (3)C3—C3a—C7a—N15.1 (3)
N1—C2—C3—O3105.6 (2)C2—N1—C7a—C7177.8 (2)
O2—C2—C3—C3a178.1 (2)C2—N1—C7a—C3a0.4 (3)
N1—C2—C3—C3a6.9 (2)O3—C3—C31—C32170.28 (18)
O2—C2—C3—C3151.1 (3)C3a—C3—C31—C3266.1 (3)
N1—C2—C3—C31133.8 (2)C2—C3—C31—C3251.5 (3)
O3—C3—C3a—C469.3 (3)C3—C31—C32—O320.5 (3)
C31—C3—C3a—C455.3 (3)C3—C31—C32—C322178.3 (2)
C2—C3—C3a—C4179.1 (2)O32—C32—C322—C323179.8 (2)
O3—C3—C3a—C7a104.5 (2)C31—C32—C322—C3232.4 (4)
C31—C3—C3a—C7a130.8 (2)O32—C32—C322—S3210.5 (3)
C2—C3—C3a—C7a7.1 (2)C31—C32—C322—S321178.26 (16)
C7a—C3a—C4—C50.5 (3)C325—S321—C322—C3230.89 (19)
C3—C3a—C4—C5173.8 (2)C325—S321—C322—C32179.7 (2)
C3a—C4—C5—C61.9 (4)C32—C322—C323—C324179.8 (2)
C4—C5—C6—C71.6 (4)S321—C322—C323—C3240.8 (3)
C5—C6—C7—C7a0.3 (3)C322—C323—C324—C3250.3 (3)
C6—C7—C7a—C3a1.8 (3)C323—C324—C325—S3210.4 (3)
C6—C7—C7a—N1179.8 (2)C322—S321—C325—C3240.7 (2)
C4—C3a—C7a—C71.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.002.843 (3)160
O3—H3···O2ii0.821.962.736 (2)158
C7—H7···O3iii0.952.583.443 (3)151
C31—H31B···O2ii0.992.593.382 (3)137
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC16H13NO3C17H15NO3C16H12FNO3C16H12ClNO3
Mr267.27281.30285.27301.72
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)120120120120
a, b, c (Å)13.876 (3), 5.7725 (8), 16.280 (3)6.873 (2), 7.6700 (17), 13.394 (5)6.8858 (7), 7.7074 (8), 12.7010 (9)6.987 (2), 7.689 (4), 12.907 (4)
α, β, γ (°)90, 107.799 (16), 9099.48 (2), 101.68 (3), 96.33 (2)98.229 (7), 103.667 (7), 96.034 (9)99.30 (3), 101.82 (4), 96.33 (3)
V3)1241.6 (4)674.4 (4)641.43 (10)662.4 (5)
Z4222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.100.100.110.30
Crystal size (mm)0.26 × 0.23 × 0.180.34 × 0.21 × 0.090.57 × 0.32 × 0.200.34 × 0.22 × 0.10
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.975, 0.9820.968, 0.9920.939, 0.9780.920, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
15921, 2427, 1903 15497, 2520, 1783 15674, 2528, 1664 2604, 2604, 2051
Rint0.0500.0880.0540.000
(sin θ/λ)max1)0.6170.6060.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.144, 1.20 0.062, 0.159, 1.05 0.053, 0.151, 1.11 0.043, 0.114, 1.07
No. of reflections2427252025282604
No. of parameters181191190191
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.290.33, 0.280.29, 0.330.25, 0.40


(V)(VI)(VII)
Crystal data
Chemical formulaC16H12BrNO3C16H12N2O5C14H11NO3S
Mr346.18312.28273.30
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)120120120
a, b, c (Å)7.016 (3), 7.7349 (12), 13.052 (6)7.026 (1), 7.598 (3), 13.365 (4)6.5958 (7), 7.9577 (14), 12.045 (3)
α, β, γ (°)99.69 (3), 101.51 (4), 96.70 (3)97.54 (3), 102.67 (2), 96.46 (2)78.51 (2), 76.555 (13), 84.559 (15)
V3)675.8 (4)682.7 (3)601.8 (2)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)3.050.120.27
Crystal size (mm)0.46 × 0.25 × 0.220.27 × 0.17 × 0.120.41 × 0.23 × 0.14
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.385, 0.5530.970, 0.9860.885, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
18834, 2800, 2215 19392, 2683, 1528 14010, 2355, 1798
Rint0.0750.0960.058
(sin θ/λ)max1)0.6280.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.087, 1.09 0.057, 0.158, 1.07 0.045, 0.113, 1.04
No. of reflections280026832355
No. of parameters190208172
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.730.29, 0.330.31, 0.31

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (I)–(VII) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N1—H1···O3i0.882.152.918 (3)146
O3—H3···O2ii0.821.972.762 (3)163
(II)N1—H1···O2iii0.881.992.838 (3)162
O3—H3···O2ii0.841.902.729 (3)169
(III)N1—H1···O2iii0.881.992.842 (2)163
O3—H3···O2ii0.821.932.746 (2)172
C325—H325···Cg1iv0.952.693.614 (3)164
(IV)N1—H1···O2iii0.882.002.843 (3)160
O3—H3···O2ii0.871.882.752 (3)174
C31—H31B···O2ii0.992.503.276 (3)135
C323—H323···O32v0.952.513.281 (4)138
C325—H325···Cg1a,iv0.952.973.890 (3)164
(V)N1—H1···O2iii0.882.012.851 (4)160
O3—H3···O2ii0.861.902.746 (3)167
C31—H31B···O2ii0.992.493.257 (4)134
C323—H323···O32v0.952.493.271 (4)140
(VI)N1—H1···O2iii0.881.992.848 (3)164
O3—H3···O2ii0.861.902.756 (3)175
C31—H31B···O2ii0.992.553.330 (4)135
C323—H323···O32v0.952.523.308 (4)140
C326—H326···O33vi0.952.493.304 (4)143
(VII)N1—H1···O2vii0.882.002.843 (3)160
O3—H3···O2ii0.821.962.736 (2)158
C7—H7···O3v0.952.583.443 (3)151
C31—H31B···O2ii0.992.593.382 (3)137
Cg1 represents the centroid of the C3a/C4–C7/C7a ring. Symmetry codes: (i) x, -1 + y, z; (ii) 1 - x, 1 - y, 1 - z; (iii) -x, 1 - y, 1 - z; (iv) 1 - x, 1 - y, 2 - z; (v) 1 + x, y, z; (vi) -1 + x, y, z; (vii) 2 - x, 1 - y, 1 - z.
Parameters (Å) for interactions between the substituted aryl rings (C321–C326) in the molecules at (x, y, z) and (2 - x, 1 - y, 1 - z) in compounds (II)–(VI) top
CompoundD1D2D3
(II)3.553 (2)3.820 (2)1.403 (2)
(III)3.421 (2)3.704 (2)1.420 (2)
(IV)3.435 (2)3.708 (2)1.396 (2)
(V)3.490 (3)3.739 (3)1.342 (3)
(VI)3.408 (2)3.691 (2)1.417 (2)
D1 represents the interplanar spacing, D2 represents the ring-centroid separation and D3 represents the ring-centroid offset (slippage).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds