Download citation
Download citation
link to html
The asymmetric unit of the title salt, 2NH4+·B10H102-·1.5H2O or (NH4)2B10H10·1.5H2O, (I), contains two B10H102- anions, four NH4+ cations and three water mol­ecules. (I) was converted to the anhydrous compound (NH4)2B10H10, (II), by heating to 343 K and its X-ray powder pattern was obtained. The extended structure of (I) shows two types of hydrogen-bonding interactions (N-H...O and O-H...O) and two types of dihydrogen-bonding interactions (N-H...H-B and O-H...H-B). The N-H...H-B dihydrogen bonding forms a two-dimensional sheet structure, and hydrogen bonding (N-H...O and O-H...O) and O-H...H-B dihydrogen bonding link the respective sheets to form a three-dimensional polymeric network structure. Compound (II) has been shown to form a polymer with the accompanying loss of H2 at a faster rate than (NH4)2B12H12 and we believe that this is due to the stronger dihydrogen-bonding inter­actions shown in the hydrate (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109040815/sq3215sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109040815/sq3215Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270109040815/sq3215sup3.pdf
Supplementary material

CCDC reference: 765455

Comment top

Dihydrogen-bonded compounds such as NH3BH3 (Klooster et al.,1999) and (NH3)2Mg(BH4)2 (Soloveichik et al., 2008) give off H2 when heated. Since the ammonium cation in (NH4)2B10H10 has protonic hydrogen and the B—H hydrogen on the boron cage (B10H102−) is hydridic, it is a potential material for hydrogen storage. (NH4)2B10H10 has been mentioned in the literature as an additive in rocket fuel (Goddard et al., 1978), a hydrogen generator for a fuel cell (Kelly et al., 2005; Goddard et al., 1978), and its polymeric product as a neutron shield material (Yolles et al., 1969). The syntheses of anhydrous (NH4)2B10H10 (Muetterties et al., 1964) and dihydrate (NH4)2B10H10·2H2O (Ivanov et al., 1992) have been reported but their structures remain unknown. The reported synthesis of anhydrous (NH4)2B10H10 involves a sulfur-containing precursor (B10H12·2SMe2) which is undesirable for hydrogen-storage materials because the sulfur poisons the fuel cell catalyst. The single-crystal X-ray structure of the reported B12 analogue, (NH4)2B12H12, has weak N—H···H—B dihydrogen-bonding interactions (Titritis & Schleid, 2003). We report here the synthesis of the sulfur-free dihydrogen-bonded compound (NH4)2B10H10·1.5H2O, (I), and its anhydrous analogue (NH4)2B10H10, (II), and their characterization by NMR, IR, single-crystal X-ray diffraction analysis, powder X-ray diffraction analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

To determine whether the single-crystal structure of (I) is representative of the bulk sample, X-ray powder diffraction of (I) was done. The experimental and the calculated powder patterns are similar. The small difference in 2θ values is attributed to the temperature difference between the single-crystal collection temperature (150 K) and powder diffraction (297 K) (see supplementary files). The water molecules in (I) were removed by heating to 343 K for 2 h to form (II) where the loss of water was confirmed by IR, DSC and 1HNMR. 1H and 11BNMR also confirmed that no hydrogen was lost as a result of heating of (I) to 343 K. The powder X-ray diffraction pattern of (II) is different from that of (I).

The asymmetric unit of (I) contains two crystallographically independent B10H102−anions, four NH4+ cations and three water molecules (Fig. 1) and the unit cell contains four asymmetric units (Fig. 2). There are nine different N—H···H—B dihydrogen-bonding interactions (Table 2) that lead to the formation of a two-dimensional dihydrogen-bonded sheet which lies parallel to the ab plane (Fig. 3, supplementary figures S3 and S4). The range of H···H distances in these interactions is 1.99 (3)–2.27 (3) Å and either two (N2) or three (N1 and N3) of the four H atoms of the ammonium cation are involved. In addition, four different O—H···H—B interactions are observed, with H···H distances in the range 2.06 (3)–2.23 (3) Å. An examination of 18 X-ray structures from the Cambridge Structural Database (CSD, Version 5.30, November 2008 release; Allen, 2002) containing either substituted ammonium ions or open-cage boron compounds found that the H···H distances in the N—H···H—B dihydrogen bonds are in the range of 1.7–2.2 Å, and H—H—B and H—H—N bond angles are clustered in the ranges 95–115° and 150–170°, respectively. The H—H—B and H—H—N bond angles of the nine dihydrogen-bonded interactions in (I) are similarly clustered in the ranges 90–110° and 130–160° with 5° (H—H—B) and 15° (H—H—N) shifts to smaller angles compared to the 18 X-ray structures from the CSD organic structure database. In comparison with the closely related cage compound (NH4)2B12H12, the N—H···H—B dihydrogen-bond distances in (I) are much shorter than those in (NH4)2B12H12, which are all the same by symmetry (2.36 Å) and close to the sum of the van der Waals radii of H atoms (~2.4 Å) (Titritis et al., 2003).

In the two-dimensional sheet (Fig. 3), two B10H102−anions and two ammonium cations form a dihydrogen-bonded 14-membered ring and this unit is repeated in the two-dimensional sheet. The third dihydrogen bond on N1, H1B···H13, extends the two-dimensional sheet parallel to the a axis and connects two two-dimensional sheets together. The H2C proton on N2 has a bifurcated dihydrogen bond to two B—H protons (H2 and H5, Fig. 3) on the same B10H102−. Two sets of N—H···H—B dihydrogen-bonded two-dimensional sheets are connected to another two sets of two-dimensional sheets by four different (O—H···H—B) dihydrogen-bonding interactions combined with six hydrogen-bonding interactions (four N—H···O and two O—H···H) (Tables 1 and 2) to form a three-dimensional extended network (Fig. S4). The B15—H15 hydridic protons have a bifurcated dihydrogen bond with two different water molecules and the O—H···H—B dihydrogen bonds form a one-dimensional zigzag chain (B—H···H—O—H···H—B) connecting the bottom and upper two-dimensional layers (Fig. S4). The hydrogen bonds also form a continuous one-dimensional chain of H—N—H···O···H—O···H—N—H···O along the b axis. Along the hydrogen-bonded one-dimensional chain (Fig. 4), additional ammonium ions and water molecules hydrogen bond with water on the main chain (O···H—N and O—H···O···H—N) and the end-group ammonium protons link the two two-dimensional sheets from above and below by dihydrogen bonding with B—H. The significance of this study is that since the dihydrogen bonds in (I) are stronger than those in (NH4)2B12H12, the kinetics of hydrogen release should be faster. In fact, Yolles et al.(1969) has reported that (NH4)2B10H10 releases hydrogen much faster than (NH4)2B12H12 when heated under the same conditions.

Related literature top

For related literature, see: Goddard et al. (1978); Hawthorne & Pilling (1967); Kelly et al. (2005); Klooster et al. (1999); Macrae et al. (2006); Muetterties et al. (1964); Nonius (2000); Otwinowski & Minor (1997); Sheldrick (2008); Soloveichik et al. (2008); Yolles (1969).

Experimental top

Infrared spectra were recorded on a BrukerTensor 27 spectrometer. 1H and 11B NMR spectroscopy were performed on a DPX-400 spectrometer (at 250.1/400.1 and 62.9/100.6 MHz, respectively) or a Bruker DPX-250 spectrometer at 80.25 MHz [pls check spectrometer details are given correctly - different to previous version]. Boron spectra were externally referenced to BF3·OEt2 in C6D6 (d = 0 p.p.m.). Thermogravimetric analysis was done using a Perkin Elmer TGA 7 analyzer with a TAC 7/DS thermal analysis instrument controller and samples were loaded on a quartz crucible. Powder X-ray diffraction patterns were collected on a Bruker D8 Advanced X-ray diffractometer (40 kV, 50 mA, Cu Kα1 radiation) equipped with an incident beam Ge 1 1 1 vario monochromator and a Lynxeye super speed detector. The sample of (I) was loaded in a sealed 1 mm capillary tube in a glove box. Mercury version 2.2 (Macrae et al., 2006) was used to generate one-, two- and three-dimensional structures.

For the synthesis of (I), (NEt3H)2B10H10 (synthesized from decaborane according to Hawthorne & Pilling, 1967) (5.0 g, 15.51 mmol) was passed through an acid exchange resin to form the acidic (H3O)2B10H10. To the water solution of (H3O)2B10H10, excess ammonia gas was bubbled for 2 min and (NH4)2B10H10·1.5H2O was crystallized from water by evaporation to give colorless plate-shaped crystals. For the synthesis of (II), compound (I) (NH4)2B10H10·1.5H2O) was heated at 343 K for 2 h to give the anhydrous compound (II) [(NH4)2B10H10]. Spectroscopic (IR and 1H and 11B NMR) and thermogravimetric analysis data are available in the archived CIF.

Refinement top

The structure of (I) was solved by direct methods and refined using SHELXS97 (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008) (difference electron-density calculations and full-matrix least-squares refinements). Non-H atoms were located and refined anisotropically. H atoms were also located and refined isotropically.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the asymmetric unit of (I) with 25% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along the b axis. (In the electronic version of this paper, the dotted green and dotted red lines represent dihydrogen bonding and hydrogen bonding, respectively.)
[Figure 3] Fig. 3. The two-dimensional sheet structure of (I) showing N—H···H—B dihydrogen-bonding interactions. (In the electronic version of this paper, the red dotted lines show the contacts for the extended structure.) Symmmetry codes: (i) 1/2 − x, 1/2 + y, 1/2 − z; (ii) 1.5 − x, 1/2 + y, 1/2 − z; (iii) 1/2 + x, 1.5 − y, −0.5 - z; (iv) x, 1 + y, z; (v) 1/2 − x, 1.5 + y, 1/2 − z; (vi) 1.5 − x, 1.5 + y, 1/2 − z; (vii) 1/2 + x, 2.5 − y, −1/2 + z.
[Figure 4] Fig. 4. A one-dimensional chain of O–H···O and N–H···O hydrogen bonding. (In the electronic version of this paper, the dotted red line represents the main chain of hydrogen bonding and dotted green lines represent hydrogen bonding branching from the main chain.) Symmetry codes: (i) 1.5 − x, −1/2 + y, 1/2 − z; (ii) 1/2 − x, 1/2 + y, 1/2 − z; (iii) x − 1, y, z; (iv) x, 1 + y, z; (v) 1,5 − x, 1/2 + y, 1/2 − z; (vi) 1/2 − x, 1.5 + y, 1/2 − z; (vii) x − 1, 1 + y, z.
diammonium closo-decahydrodecaborate sesquihydrate top
Crystal data top
2NH4+·B10H102·1.5H2OF(000) = 776
Mr = 181.29Dx = 1.039 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 10211 reflections
a = 11.674 (2) Åθ = 2.5–27.5°
b = 8.6230 (17) ŵ = 0.06 mm1
c = 23.318 (5) ÅT = 150 K
β = 98.97 (3)°Plate, colorless
V = 2318.6 (8) Å30.38 × 0.31 × 0.12 mm
Z = 8
Data collection top
Nonius Kappa CCD
diffractometer
5318 independent reflections
Radiation source: fine-focus sealed tube3637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
h = 1515
Tmin = 0.978, Tmax = 0.993k = 1011
10211 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
5318 reflections(Δ/σ)max < 0.001
412 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
2NH4+·B10H102·1.5H2OV = 2318.6 (8) Å3
Mr = 181.29Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.674 (2) ŵ = 0.06 mm1
b = 8.6230 (17) ÅT = 150 K
c = 23.318 (5) Å0.38 × 0.31 × 0.12 mm
β = 98.97 (3)°
Data collection top
Nonius Kappa CCD
diffractometer
5318 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
3637 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.993Rint = 0.042
10211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121All H-atom parameters refined
S = 1.02Δρmax = 0.35 e Å3
5318 reflectionsΔρmin = 0.26 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Infrared spectra were recorded on a BrukerTensor 27 spectrometer. 1H and 11B NMR spectroscopy were performed on a DPX-400 spectrometer (at 250.1/400.1 and 62.9/100.6 MHz, respectively) or a Bruker DPX-250 spectrometer at 80.25 MHz [pls check spectrometer details are given correctly - different to previous version]. Boron spectra were externally referenced to BF3·OEt2 in C6D6 (d = 0 p.p.m.). Thermogravimetric analysis was done using a Perkin Elmer TGA 7 analyzer with a TAC 7/DS thermal analysis instrument controller and samples were loaded on a quartz crucible. Powder X-ray diffraction patterns were collected on a Bruker D8 Advanced X-ray diffractometer (40 kV, 50 mA, Cu Kα1 radiation) equipped with an incident beam Ge 1 1 1 vario monochromator and a Lynxeye super speed detector. The sample of (I) was loaded in a sealed 1 mm capillary tube in a glove box. Mercury version 2.2 (Macrae et al., 2006) was used to generate one-, two- and three-dimensional structures.

1HNMR (D2O, p.p.m.) 4.5 (s, H2O + NH4), 3.2 (q, axial B—H), 0.03 (q, B—H equatorial B—H) 11BNMR (D2O, p.p.m.) −1.3 (d, axial B), −30.2 (d, equatorial B) IR (KBr, cm−1) 3552 (sh, OH), 3164 (s, N—H), 2539 (m, B—H), 2482 (s, B—H), 1632 (OH), 1401 (s, N—H), 1030 (m, v-B—B), 663 (m, B—B) PXRD [2θ(°), %I] 7.63 (5), 12.1, 14.29 (61),15.31 (58),15.38 (76), 15.48 (100), 16.12 (24), 17.92 (12), 18.16(14.2), 19.06 (39),19.32 (9), 19.53 (28), 20.03 (25), 20.46 (49), 20.79 (10), 21.69 (14), 21.87 (15),22.02 (21), 22.89 (21), 22.92 (12), 23.32 (12), 23.56 (11), 24.01 (11), 25.34 (18),25.63 (16), 26.12 (13), 26.19 (8), 27.36 (8), 27.78 (8), 30.83 (12), 31.17 (9), 31.84 (9), 32.34 (8), 32.52 (11),33.09 (16), 34.41 (10), 34.48 (11), 35.6 (8), 37.24 (9), 38.59 (7), 40.49 (5),41.67 (6), 42.36 (5). PXRD (calcd) [(2θ(°), %I] 7.69 (4), 12.85 (3), 14.34 (38), 15.4 (85), 15.6 (100), 16.1 (20), 18.1 (10), 18.28 (13), 19.16 (39), 19.44 (21), 19.64 (40), 20.06 (25), 20.64 (55), 21 (10), 21.9 (16), 22.18 (28), 22.9 (31), 23.16 (9), 23.52 (6), 23.78 (7), 24.24 (9), 25.5 (21), 25.86 (13), 26.28 (9), 27.66 (7), 27.86 (5), 31.24 (10),31.48 (7), 31.74 (3), 32.14 (8), 32.46 (4), 32.62 (5), 32.82 (10), 33.3 (13), 34.68 (13), 34.92 (16), 35.44 (3), 35.68 (9), 35.98 (7), 37.38 (9), 38.94 (6), 40.88 (6), 41.84 (6), 42.76 (6) T GA (K) 343–375 (−1.5H2O), 563–579 (−2H2) DSC (K) 353 (–H2O), 376 (endotherm), 563, 593, 653 (exotherm).

1HNMR (CD3CN, p.p.m.) 5.98 (s, NH4), 3.2 (q, ax B—H), 0.01 (q, B—H eqB-H) 11BNMR (D2O, p.p.m.) −1.3 (d, ax B), −30.2 (d,eq B) IR (KBr, cm−1) 3223 (s, N—H), 2555 (m, B—H), 2471 (s, B—H),1399 (s, N—H), 1025 (m, B—B) PXRD [2θ(°), %I] 13.366 (11), 13.83 (16), 14.81 (37),15.48 (100), 16.70 (10), 19.35 (13), 20.07 (21), 20.78 (17), 21.51 (29), 23.03 (13), 24.21 (10), 24.29 (10), 25.47 (10), 26.94 (9), 27.80 (8), 29.007(0.8), 28.91 (8),30.81 (7), 33.79 (7), 34.21 (8), 35.03 (8), 37.38 (5), 38.62 (4) DSC (K) 563(exotherm).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.50260 (12)0.74496 (17)0.50414 (6)0.0224 (3)
H1B0.546 (2)0.811 (3)0.5238 (10)0.082 (8)*
H1A0.475 (2)0.686 (3)0.5291 (11)0.086 (8)*
H1C0.545 (2)0.693 (3)0.4826 (10)0.090 (8)*
H1D0.441 (2)0.789 (3)0.4804 (10)0.099 (8)*
N30.09434 (13)0.49302 (16)0.41548 (6)0.0243 (3)
H3D0.1127 (15)0.4749 (19)0.3770 (8)0.044 (5)*
H3C0.022 (2)0.506 (2)0.4165 (9)0.066 (7)*
H3B0.1221 (19)0.424 (3)0.4387 (10)0.073 (7)*
H3A0.1320 (19)0.585 (3)0.4274 (9)0.076 (7)*
N40.37466 (13)0.35786 (18)0.28534 (6)0.0262 (3)
H4D0.3669 (15)0.373 (2)0.2488 (9)0.045 (5)*
H4C0.423 (2)0.436 (3)0.3002 (9)0.072 (7)*
H4B0.4110 (16)0.261 (2)0.2927 (8)0.053 (6)*
H4A0.3079 (18)0.364 (2)0.2985 (8)0.055 (6)*
O50.48361 (11)0.05537 (13)0.29082 (5)0.0293 (3)
H5A0.4597 (19)0.002 (2)0.3169 (10)0.065 (7)*
H5B0.554 (2)0.039 (2)0.2934 (9)0.062 (7)*
O60.77673 (10)0.48608 (16)0.19975 (5)0.0313 (3)
H6B0.753 (2)0.524 (3)0.2294 (11)0.077 (8)*
H6A0.7755 (17)0.392 (3)0.2051 (9)0.063 (7)*
B110.59525 (14)0.61791 (18)0.32814 (7)0.0210 (4)
H110.5276 (12)0.6772 (16)0.2966 (6)0.029 (4)*
B120.66991 (13)0.68148 (18)0.39249 (7)0.0188 (3)
H120.6538 (12)0.8008 (16)0.4079 (6)0.026 (4)*
B130.57921 (14)0.50808 (18)0.38701 (7)0.0184 (3)
H130.4923 (13)0.4908 (15)0.3982 (6)0.022 (4)*
B140.65159 (13)0.43552 (18)0.32726 (7)0.0192 (3)
H140.6197 (11)0.3572 (15)0.2901 (6)0.023 (4)*
B150.74202 (14)0.60926 (18)0.33330 (7)0.0195 (3)
H150.7870 (12)0.6688 (17)0.3005 (6)0.030 (4)*
B160.70005 (13)0.52662 (18)0.44566 (7)0.0184 (3)
H160.6824 (12)0.5459 (15)0.4905 (6)0.023 (4)*
B170.68552 (13)0.35330 (18)0.39961 (7)0.0187 (3)
H170.6537 (12)0.2342 (16)0.4071 (6)0.023 (4)*
B180.80128 (13)0.42475 (18)0.36154 (7)0.0191 (3)
H180.8672 (12)0.3660 (16)0.3377 (6)0.029 (4)*
B190.81446 (13)0.59910 (18)0.40780 (7)0.0193 (3)
H190.8879 (12)0.6788 (15)0.4207 (6)0.025 (4)*
B200.81566 (14)0.41657 (19)0.43527 (7)0.0206 (3)
H200.8839 (12)0.3602 (17)0.4678 (6)0.031 (4)*
B10.34250 (14)0.61601 (19)0.05067 (7)0.0199 (3)
H10.3760 (12)0.6951 (16)0.0201 (6)0.031 (4)*
B20.38720 (13)0.57238 (18)0.12155 (7)0.0183 (3)
H20.4672 (13)0.6272 (17)0.1452 (6)0.031 (4)*
B30.24181 (13)0.64555 (17)0.09475 (6)0.0174 (3)
H30.1986 (11)0.7642 (16)0.0974 (5)0.022 (4)*
B40.22521 (13)0.49764 (17)0.03766 (6)0.0175 (3)
H40.1658 (12)0.4946 (14)0.0064 (6)0.021 (4)*
B50.37022 (13)0.42424 (19)0.06443 (7)0.0189 (3)
H50.4349 (11)0.3652 (15)0.0417 (6)0.020 (4)*
B60.26794 (13)0.52766 (18)0.16009 (7)0.0180 (3)
H60.2688 (12)0.5862 (16)0.2031 (6)0.024 (4)*
B70.15265 (13)0.47462 (18)0.10038 (6)0.0176 (3)
H70.0562 (12)0.4875 (15)0.0939 (6)0.022 (4)*
B80.24402 (13)0.31905 (18)0.07939 (7)0.0185 (3)
H80.2222 (11)0.2078 (15)0.0556 (5)0.016 (3)*
B90.35908 (14)0.37127 (18)0.13857 (7)0.0200 (3)
H90.4276 (12)0.3014 (16)0.1631 (6)0.028 (4)*
B100.21909 (14)0.34163 (19)0.14876 (7)0.0210 (4)
H100.1825 (11)0.2580 (16)0.1779 (6)0.021 (3)*
N20.65139 (12)0.52968 (17)0.08650 (6)0.0222 (3)
H2D0.6859 (15)0.5115 (18)0.1246 (9)0.042 (5)*
H2C0.572 (2)0.515 (2)0.0842 (9)0.071 (7)*
H2B0.682 (2)0.471 (2)0.0635 (10)0.073 (7)*
H2A0.6631 (17)0.628 (3)0.0755 (9)0.064 (6)*
O70.13364 (10)0.40354 (14)0.30424 (5)0.0309 (3)
H7A0.1079 (19)0.308 (3)0.3030 (10)0.088 (8)*
H7B0.093 (2)0.453 (3)0.2734 (11)0.078 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0185 (7)0.0228 (7)0.0256 (7)0.0011 (6)0.0024 (6)0.0002 (6)
N30.0186 (7)0.0232 (7)0.0309 (8)0.0002 (6)0.0036 (6)0.0005 (6)
N40.0222 (7)0.0341 (9)0.0211 (7)0.0022 (7)0.0001 (6)0.0040 (6)
O50.0260 (7)0.0349 (7)0.0281 (6)0.0049 (5)0.0077 (5)0.0019 (5)
O60.0410 (7)0.0292 (7)0.0245 (6)0.0042 (5)0.0078 (5)0.0032 (5)
B110.0218 (8)0.0223 (8)0.0189 (8)0.0007 (7)0.0030 (7)0.0026 (7)
B120.0190 (8)0.0171 (8)0.0208 (8)0.0005 (7)0.0052 (6)0.0002 (6)
B130.0155 (8)0.0197 (8)0.0206 (8)0.0005 (6)0.0051 (6)0.0008 (6)
B140.0183 (8)0.0218 (8)0.0182 (8)0.0030 (7)0.0050 (6)0.0024 (7)
B150.0214 (8)0.0180 (8)0.0204 (8)0.0010 (7)0.0070 (6)0.0001 (6)
B160.0178 (8)0.0208 (8)0.0171 (8)0.0009 (6)0.0043 (6)0.0002 (6)
B170.0185 (8)0.0170 (8)0.0213 (8)0.0000 (6)0.0052 (6)0.0008 (6)
B180.0181 (8)0.0176 (8)0.0224 (8)0.0000 (6)0.0058 (6)0.0022 (6)
B190.0172 (8)0.0191 (8)0.0220 (8)0.0016 (7)0.0045 (6)0.0052 (7)
B200.0173 (8)0.0221 (8)0.0225 (8)0.0024 (7)0.0028 (6)0.0001 (7)
B10.0207 (8)0.0199 (8)0.0197 (8)0.0025 (7)0.0047 (6)0.0022 (6)
B20.0147 (8)0.0201 (8)0.0202 (8)0.0000 (6)0.0029 (6)0.0062 (6)
B30.0185 (8)0.0162 (8)0.0171 (8)0.0006 (6)0.0011 (6)0.0013 (6)
B40.0169 (8)0.0195 (8)0.0158 (7)0.0010 (6)0.0020 (6)0.0022 (6)
B50.0141 (8)0.0229 (8)0.0195 (8)0.0003 (7)0.0025 (6)0.0063 (7)
B60.0167 (8)0.0215 (8)0.0155 (7)0.0030 (6)0.0017 (6)0.0013 (6)
B70.0153 (8)0.0188 (8)0.0189 (8)0.0004 (6)0.0027 (6)0.0020 (6)
B80.0156 (8)0.0174 (8)0.0212 (8)0.0019 (6)0.0009 (6)0.0019 (7)
B90.0173 (8)0.0207 (8)0.0205 (8)0.0031 (7)0.0020 (6)0.0023 (7)
B100.0210 (8)0.0207 (8)0.0213 (8)0.0012 (7)0.0030 (7)0.0016 (7)
N20.0170 (7)0.0245 (7)0.0258 (7)0.0017 (6)0.0052 (5)0.0019 (6)
O70.0312 (6)0.0308 (7)0.0311 (6)0.0040 (5)0.0057 (5)0.0069 (5)
Geometric parameters (Å, º) top
N1—H1B0.85 (2)B18—B191.843 (2)
N1—H1A0.87 (3)B18—H181.137 (15)
N1—H1C0.88 (3)B19—B201.699 (2)
N1—H1D0.92 (3)B19—H191.103 (14)
N3—H3D0.968 (19)B20—H201.122 (15)
N3—H3C0.86 (2)B1—B21.696 (2)
N3—H3B0.84 (2)B1—B41.697 (2)
N3—H3A0.93 (2)B1—B31.697 (2)
N4—H4D0.85 (2)B1—B51.706 (2)
N4—H4C0.91 (2)B1—H11.101 (15)
N4—H4B0.94 (2)B2—B61.812 (2)
N4—H4A0.88 (2)B2—B91.820 (2)
O5—H5A0.84 (2)B2—B31.827 (2)
O5—H5B0.82 (2)B2—B51.834 (2)
O6—H6B0.85 (2)B2—H21.113 (14)
O6—H6A0.82 (2)B3—B61.817 (2)
B11—B151.700 (2)B3—B71.821 (2)
B11—B131.702 (2)B3—B41.832 (2)
B11—B121.704 (2)B3—H31.147 (14)
B11—B141.706 (2)B4—B71.812 (2)
B11—H111.116 (14)B4—B81.817 (2)
B12—B191.814 (2)B4—B51.824 (2)
B12—B161.819 (2)B4—H41.146 (14)
B12—B131.825 (2)B5—B81.810 (2)
B12—B151.834 (2)B5—B91.812 (2)
B12—H121.115 (14)B5—H51.111 (13)
B13—B161.812 (2)B6—B101.709 (2)
B13—B171.815 (2)B6—B91.835 (2)
B13—B141.848 (2)B6—B71.837 (2)
B13—H131.097 (15)B6—H61.122 (14)
B14—B181.807 (2)B7—B101.708 (2)
B14—B171.816 (2)B7—B81.827 (2)
B14—B151.825 (2)B7—H71.119 (14)
B14—H141.116 (13)B8—B101.699 (2)
B15—B191.812 (2)B8—B91.826 (2)
B15—B181.817 (2)B8—H81.118 (13)
B15—H151.117 (15)B9—B101.707 (2)
B16—B201.698 (2)B9—H91.090 (14)
B16—B191.822 (2)B10—H101.121 (14)
B16—B171.833 (2)N2—H2D0.93 (2)
B16—H161.109 (14)N2—H2C0.93 (2)
B17—B201.704 (2)N2—H2B0.86 (2)
B17—B181.835 (2)N2—H2A0.90 (2)
B17—H171.115 (14)O7—H7A0.87 (2)
B18—B201.703 (2)O7—H7B0.90 (3)
H1B—N1—H1A107 (2)B19—B20—B1799.11 (11)
H1B—N1—H1C108 (2)B18—B20—B1765.19 (10)
H1A—N1—H1C112 (2)B16—B20—H20129.9 (8)
H1B—N1—H1D113 (2)B19—B20—H20128.3 (7)
H1A—N1—H1D108 (2)B18—B20—H20130.5 (8)
H1C—N1—H1D109 (2)B17—B20—H20132.6 (7)
H3D—N3—H3C114.1 (18)B2—B1—B499.09 (11)
H3D—N3—H3B111.5 (17)B2—B1—B365.16 (9)
H3C—N3—H3B111 (2)B4—B1—B365.34 (9)
H3D—N3—H3A104.6 (17)B2—B1—B565.24 (9)
H3C—N3—H3A107.9 (18)B4—B1—B564.82 (9)
H3B—N3—H3A107 (2)B3—B1—B599.24 (11)
H4D—N4—H4C103.2 (17)B2—B1—H1133.0 (7)
H4D—N4—H4B107.0 (16)B4—B1—H1128.0 (7)
H4C—N4—H4B110.9 (17)B3—B1—H1130.4 (7)
H4D—N4—H4A112.0 (16)B5—B1—H1130.3 (7)
H4C—N4—H4A110.5 (18)B1—B2—B6112.77 (11)
H4B—N4—H4A112.8 (17)B1—B2—B9112.66 (11)
H5A—O5—H5B107 (2)B6—B2—B960.70 (9)
H6B—O6—H6A103.9 (19)B1—B2—B357.44 (9)
B15—B11—B1398.91 (11)B6—B2—B359.91 (8)
B15—B11—B1265.19 (10)B9—B2—B3102.36 (10)
B13—B11—B1264.80 (9)B1—B2—B557.64 (9)
B15—B11—B1464.81 (10)B6—B2—B5101.98 (10)
B13—B11—B1465.66 (9)B9—B2—B559.46 (9)
B12—B11—B1499.32 (11)B3—B2—B590.15 (10)
B15—B11—H11131.9 (7)B1—B2—H2119.7 (8)
B13—B11—H11129.2 (8)B6—B2—H2119.6 (8)
B12—B11—H11130.2 (7)B9—B2—H2117.5 (8)
B14—B11—H11130.4 (7)B3—B2—H2133.3 (8)
B11—B12—B19112.31 (11)B5—B2—H2130.0 (8)
B11—B12—B16112.47 (11)B1—B3—B6112.47 (11)
B19—B12—B1660.21 (9)B1—B3—B7112.33 (11)
B11—B12—B1357.54 (9)B6—B3—B760.66 (9)
B19—B12—B13101.81 (10)B1—B3—B257.40 (9)
B16—B12—B1359.65 (9)B6—B3—B259.64 (9)
B11—B12—B1557.31 (9)B7—B3—B2101.93 (10)
B19—B12—B1559.55 (9)B1—B3—B457.32 (9)
B16—B12—B15101.59 (10)B6—B3—B4101.81 (10)
B13—B12—B1589.91 (10)B7—B3—B459.47 (8)
B11—B12—H12119.5 (7)B2—B3—B489.74 (10)
B19—B12—H12119.7 (7)B1—B3—H3121.2 (7)
B16—B12—H12118.8 (7)B6—B3—H3118.2 (7)
B13—B12—H12130.8 (7)B7—B3—H3117.2 (7)
B15—B12—H12132.6 (7)B2—B3—H3133.1 (6)
B11—B13—B16112.89 (11)B4—B3—H3131.5 (6)
B11—B13—B17112.41 (11)B1—B4—B7112.79 (11)
B16—B13—B1760.70 (9)B1—B4—B8112.79 (11)
B11—B13—B1257.66 (9)B7—B4—B860.48 (9)
B16—B13—B1260.00 (8)B1—B4—B557.83 (9)
B17—B13—B12102.51 (10)B7—B4—B5102.21 (10)
B11—B13—B1457.28 (9)B8—B4—B559.62 (8)
B16—B13—B14101.84 (10)B1—B4—B357.34 (9)
B17—B13—B1459.43 (8)B7—B4—B359.96 (8)
B12—B13—B1490.10 (10)B8—B4—B3102.16 (10)
B11—B13—H13119.3 (7)B5—B4—B390.31 (10)
B16—B13—H13118.2 (7)B1—B4—H4122.2 (7)
B17—B13—H13119.8 (7)B7—B4—H4115.3 (7)
B12—B13—H13130.0 (7)B8—B4—H4117.8 (6)
B14—B13—H13133.0 (7)B5—B4—H4134.3 (7)
B11—B14—B18112.96 (11)B3—B4—H4130.4 (6)
B11—B14—B17112.18 (11)B1—B5—B8112.70 (11)
B18—B14—B1760.87 (9)B1—B5—B9112.59 (11)
B11—B14—B1557.44 (9)B8—B5—B960.54 (9)
B18—B14—B1560.02 (9)B1—B5—B457.35 (9)
B17—B14—B15102.06 (10)B8—B5—B460.00 (8)
B11—B14—B1357.06 (9)B9—B5—B4102.31 (11)
B18—B14—B13102.02 (10)B1—B5—B257.13 (9)
B17—B14—B1359.39 (8)B8—B5—B2102.02 (11)
B15—B14—B1389.47 (10)B9—B5—B259.90 (9)
B11—B14—H14119.0 (7)B4—B5—B289.79 (10)
B18—B14—H14119.7 (7)B1—B5—H5118.5 (7)
B17—B14—H14118.9 (7)B8—B5—H5119.8 (7)
B15—B14—H14132.5 (7)B9—B5—H5119.6 (7)
B13—B14—H14130.8 (7)B4—B5—H5131.3 (7)
B11—B15—B19112.62 (11)B2—B5—H5131.3 (7)
B11—B15—B18112.75 (11)B10—B6—B2112.75 (11)
B19—B15—B1861.04 (9)B10—B6—B3112.77 (11)
B11—B15—B1457.75 (9)B2—B6—B360.45 (9)
B19—B15—B14102.25 (11)B10—B6—B957.44 (9)
B18—B15—B1459.49 (9)B2—B6—B959.86 (9)
B11—B15—B1257.50 (9)B3—B6—B9102.15 (10)
B19—B15—B1259.69 (9)B10—B6—B757.44 (8)
B18—B15—B12102.60 (11)B2—B6—B7101.88 (10)
B14—B15—B1290.52 (10)B3—B6—B759.77 (8)
B11—B15—H15120.5 (7)B9—B6—B789.84 (10)
B19—B15—H15118.6 (7)B10—B6—H6121.1 (7)
B18—B15—H15117.2 (8)B2—B6—H6116.6 (7)
B14—B15—H15130.7 (7)B3—B6—H6118.4 (7)
B12—B15—H15132.7 (8)B9—B6—H6130.6 (7)
B20—B16—B13112.68 (11)B7—B6—H6133.9 (7)
B20—B16—B12112.75 (11)B10—B7—B4112.68 (11)
B13—B16—B1260.34 (9)B10—B7—B3112.67 (11)
B20—B16—B1957.57 (9)B4—B7—B360.57 (8)
B13—B16—B19101.99 (10)B10—B7—B857.32 (9)
B12—B16—B1959.77 (9)B4—B7—B859.89 (9)
B20—B16—B1757.56 (9)B3—B7—B8102.17 (11)
B13—B16—B1759.72 (8)B10—B7—B657.52 (9)
B12—B16—B17102.05 (10)B4—B7—B6101.83 (10)
B19—B16—B1790.21 (10)B3—B7—B659.58 (8)
B20—B16—H16119.1 (7)B8—B7—B689.80 (10)
B13—B16—H16119.2 (7)B10—B7—H7120.0 (7)
B12—B16—H16119.2 (7)B4—B7—H7117.9 (7)
B19—B16—H16131.5 (7)B3—B7—H7119.0 (7)
B17—B16—H16131.3 (7)B8—B7—H7130.9 (7)
B20—B17—B13112.25 (11)B6—B7—H7132.9 (7)
B20—B17—B14112.16 (11)B10—B8—B5113.06 (11)
B13—B17—B1461.18 (9)B10—B8—B4112.87 (11)
B20—B17—B1657.24 (9)B5—B8—B460.39 (9)
B13—B17—B1659.58 (9)B10—B8—B957.80 (9)
B14—B17—B16102.29 (10)B5—B8—B959.80 (9)
B20—B17—B1857.37 (9)B4—B8—B9102.07 (10)
B13—B17—B18102.20 (10)B10—B8—B757.79 (9)
B14—B17—B1859.34 (9)B5—B8—B7102.15 (10)
B16—B17—B1890.10 (10)B4—B8—B759.63 (8)
B20—B17—H17120.8 (7)B9—B8—B790.45 (10)
B13—B17—H17117.8 (7)B10—B8—H8120.7 (7)
B14—B17—H17118.4 (7)B5—B8—H8117.7 (7)
B16—B17—H17131.5 (7)B4—B8—H8117.6 (6)
B18—B17—H17132.3 (7)B9—B8—H8132.1 (6)
B20—B18—B14112.65 (11)B7—B8—H8131.7 (6)
B20—B18—B15111.97 (11)B10—B9—B5112.53 (11)
B14—B18—B1560.49 (9)B10—B9—B2112.46 (11)
B20—B18—B1757.44 (9)B5—B9—B260.64 (9)
B14—B18—B1759.80 (9)B10—B9—B857.37 (9)
B15—B18—B17101.64 (10)B5—B9—B859.66 (9)
B20—B18—B1957.09 (9)B2—B9—B8101.92 (10)
B14—B18—B19101.75 (10)B10—B9—B657.56 (9)
B15—B18—B1959.34 (9)B5—B9—B6101.91 (11)
B17—B18—B1989.50 (10)B2—B9—B659.44 (9)
B20—B18—H18120.5 (7)B8—B9—B689.90 (10)
B14—B18—H18119.2 (7)B10—B9—H9119.0 (8)
B15—B18—H18117.5 (7)B5—B9—H9119.0 (8)
B17—B18—H18133.9 (7)B2—B9—H9119.9 (7)
B19—B18—H18130.5 (7)B8—B9—H9130.9 (7)
B20—B19—B15112.43 (11)B6—B9—H9132.2 (7)
B20—B19—B12112.94 (11)B8—B10—B964.83 (10)
B15—B19—B1260.76 (9)B8—B10—B764.88 (9)
B20—B19—B1657.53 (9)B9—B10—B798.83 (11)
B15—B19—B16102.32 (10)B8—B10—B698.75 (11)
B12—B19—B1660.02 (8)B9—B10—B665.00 (9)
B20—B19—B1857.30 (9)B7—B10—B665.04 (9)
B15—B19—B1859.62 (8)B8—B10—H10130.0 (7)
B12—B19—B18102.36 (10)B9—B10—H10130.2 (7)
B16—B19—B1890.18 (10)B7—B10—H10131.0 (7)
B20—B19—H19120.9 (7)B6—B10—H10131.3 (7)
B15—B19—H19117.2 (7)H2D—N2—H2C108.1 (16)
B12—B19—H19118.0 (7)H2D—N2—H2B109.9 (18)
B16—B19—H19132.8 (7)H2C—N2—H2B113.0 (19)
B18—B19—H19131.1 (7)H2D—N2—H2A111.6 (16)
B16—B20—B1964.90 (9)H2C—N2—H2A108.0 (16)
B16—B20—B1899.53 (11)H2B—N2—H2A106.4 (19)
B19—B20—B1865.61 (9)H7A—O7—H7B106.2 (19)
B16—B20—B1765.20 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···O60.93 (2)1.91 (2)2.837 (2)171.7 (15)
N3—H3D···O70.968 (19)1.855 (19)2.8117 (19)168.8 (15)
N4—H4B···O50.94 (2)1.96 (2)2.896 (2)168.5 (16)
N4—H4A···O70.88 (2)2.09 (2)2.942 (2)162.7 (17)
O5—H5B···O6i0.82 (2)2.01 (2)2.8357 (18)176.5 (19)
O7—H7B···O5ii0.90 (3)1.85 (3)2.7487 (18)177 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2NH4+·B10H102·1.5H2O
Mr181.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.674 (2), 8.6230 (17), 23.318 (5)
β (°) 98.97 (3)
V3)2318.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.38 × 0.31 × 0.12
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10211, 5318, 3637
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.02
No. of reflections5318
No. of parameters412
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.35, 0.26

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···O60.93 (2)1.91 (2)2.837 (2)171.7 (15)
N3—H3D···O70.968 (19)1.855 (19)2.8117 (19)168.8 (15)
N4—H4B···O50.94 (2)1.96 (2)2.896 (2)168.5 (16)
N4—H4A···O70.88 (2)2.09 (2)2.942 (2)162.7 (17)
O5—H5B···O6i0.82 (2)2.01 (2)2.8357 (18)176.5 (19)
O7—H7B···O5ii0.90 (3)1.85 (3)2.7487 (18)177 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Table 2. Dihydrogen-bond geometry (Å, °) of (I). top
D—H···H-XH···H<(H···H-X)<(H···H-D)
N1—H1A···H13—B13i2.27 (3)154 (2)105 (1)
N1—H1C···H16—B162.03 (3)141 (2)106 (1)
N1—H1D···H8—B8ii2.08 (3)133 (1)92 (1)
N2—H2A···H20—B20iii2.27 (3)157 (2)89 (1)
N2—H2C···H2—B22.24 (3)123 (2)90 (1)
N2—H2C···H5—B52.17 (2)140 (2)91.0 (9)
N3—H3A···H8—B8ii1.99 (3)150 (2)104 (1)
N3—H3B···H1—B1v2.19 (3)154 (2)105 (1)
N3—H3C···H19—B19vi2.17 (3)144 (2)95 (1)
O5—H5A···H7—B7v2.12 (3)146 (2)97 (1)
O6—H6A···H15—B15iv2.06 (3)158 (2)106 (1)
O6—H6B···H15—B152.06 (3)147 (2)103 (1)
O7—H7A···H2—B2v2.23 (3)143 (2)101 (2)
Symmetry codes: (i) 1 − x, 1 − y,1 − z; (ii) 0.5 − x, 0.5 + y, 0.5 − z; (iii) 1.5 − x, 0.5 + y, 0.5 − z; (iv) 1.5 − x, −0.5 + y, 0.5 − z; (v) 0.5 − x, −0.5 + y, 0.5 − z; (vi) −1 + x, y, z
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds