Download citation
Download citation
link to html
The compounds tricarbonyl([eta]5-1-iodo­cyclo­penta­dienyl)­man­gan­ese(I), [Mn(C5H4I)(CO)3], (I), and tricarbonyl([eta]5-1-iodo­cyclo­penta­dienyl)rhenium(I), [Re(C5H4I)(CO)3], (III), are isostructural and isomorphous. The compounds [[mu]-1,2([eta]5)-acetyl­enedicyclo­penta­dienyl]bis­[tricarbonyl­manganese(I)] or bis­(cymantrenyl)acetyl­ene, [Mn2(C12H8)(CO)6], (II), and [[mu]-1,2([eta]5)-acetyl­enedicyclo­penta­dienyl]bis­[tri­carbonyl­rhenium(I)], [Re2(C12H8)(CO)6], (IV), are isostructural and isomorphous, and their mol­ecules display inversion symmetry about the mid-point of the ligand C[triple bond]C bond, with the (CO)3M(C5H4) (M = Mn and Re) moieties adopting a transoid conformation. The mol­ecules in all four compounds form zigzag chains due to the formation of strong attractive I...O [in (I) and (III)] or [pi](CO)-[pi](CO) [in (I) and (IV)] inter­actions along the crystallographic b axis. The zigzag chains are bound to each other by weak inter­molecular C-H...O hydrogen bonds for (I) and (III), while for (II) and (IV) the chains are bound to each other by a combination of weak C-H...O hydrogen bonds and [pi](Csp2)-[pi](Csp2) stacking inter­actions between pairs of mol­ecules. The [pi](CO)-[pi](CO) contacts in (II) and (IV) between carbonyl groups of neighboring mol­ecules, forming pairwise inter­actions in a sheared anti­parallel dimer motif, are encountered in only 35% of all carbonyl inter­actions for transition metal-carbonyl compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109035902/sq3211sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109035902/sq3211Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109035902/sq3211IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109035902/sq3211IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109035902/sq3211IVsup5.hkl
Contains datablock IV

CCDC references: 760062; 760063; 760064; 760065

Comment top

One of the rapidly growing fields in metalloorganic chemistry is the synthesis of new materials. Such examples include dendrimers (Tomalia et al., 1990; Stulgies et al., 2004; Astruc et al., 2008), staffanes (Kaszynski et al., 1992), Diederich's carbon nets (Diederich & Rubin, 1992), and various novel electronic, photonic and magnetic materials (Barlow & O'Hare, 1997; Elschenbroich et al., 2005; Kinnibrugh et al., 2009). Because of the increasing interest in this area, we have focused our studies on structural investigations of the title compounds, (I)–(IV) (Figs. 1 and 2), which can be used as starting compounds for the construction of new materials (Sterzo et al., 1989). This work reports the first structural studies of monohalogenated derivatives of (η5-C5H4X)M(CO)3 [for (I), M = Mn and X = I; for (III), M = Re and X = I] and the dinuclear [(CO)3MC5H4]CC[C5H4M(CO)3] compounds [for (II), M = Mn; for (IV), M = Re].

The mean values of the geometric parameters for compounds (I)–(IV) are in accordance with those previously reported (Table 1) for 89 mono-substituted cymantrenes and 27 (η5-C5H4X)Re(CO)3 compounds, which were retrieved from the 2009 version of the Cambridge Structural Database (CSD; Allen, 2002) using ConQuest (Version 1.11; Macrae et al., 2006), as well as with the unsubstituted compounds C5H5M(CO)3 (M = Mn, Re) (Fitzpatrick, Le Page & Butler, 1981 or Fitzpatrick, Le Page et al., 1981; Cowie et al., 1990). The mono-substituted complexes (η5-C5H4X)M(CO)3 (X is any atom, M = Mn, Re) were considered with the following search criteria: (a) three-dimensional coordinates and R < 0.10; (b) no errors; (c) no crystallographic disorder; (d) no polymer structures. The (O)C—Mn—C(O) angle is in accord with a tendency for decreasing the pyramidality of the M(CO)3 fragment with increasing π-donor capacity of the cyclic polyene (Fitzpatrick, Le Page & Butler, 1981 or Fitzpatrick, Le Page et al., 1981): (C6H6)Cr(CO)3 88.22 (8)° (Rees & Coppens, 1973), CpRe(CO)3 90.0 (2)° (Fitzpatrick, Le Page & Butler, 1981 or Fitzpatrick, Le Page et al., 1981), CpMn(CO)3 92.02 (5)° (Cowie et al., 1990), (C4H4)Fe(CO)3 95.6° (Hall et al., 1975) and (C4Ph4)Fe(CO)3 97.03 (3)° (Dodge & Schomaker, 1965). The M—C—O bond angles do not differ significantly from 180°.

The M(CO)3 (M = Mn, Re) fragment possess approximate C3v symmetry, while coordination to the η5-C5H4X ring lowers the molecular symmetry to C1 (Fig. 3). Compounds (I)–(IV) possess different mutual dispositions of the carbonyl groups and η5-C5H4X rings: the C6O1 carbonyl group for (I) and (III) is in an eclipsed position relative to the substituted C atom of the η5-C5H4I ring, while the C7O1 carbonyl group of (II) and (IV) is in the transoid position to the substitutent-bearing C atom (Figs. 3 and 4).

Compounds (II) and (IV) crystallize with the molecules occupying a special position on an inversion center. Each molecule consists of two identical [(CO)3M(C5H4)C] (M = Mn, Re) parts with the M(CO)3 moieties in transoid positions. We suggest that (II) and (IV) adopt the transoid structure due to the realisation of strong attractive intermolecular π(CO)–π(CO) interactions in the sheared parallel packing motif (see below). In contrast, the only analogous compound found in the literature, [(CO)3Mn(C5H4)CC(C7H5)Cr(CO)3]BF4, possesses a syn-facial (cisoid) conformation of M(CO)3 moieties, due to the formation of strong attractive intermolecular π(CO)–π(CO) interactions with a perpendicular packing motif (Tamm et al., 2000). The conformation of [(CO)3M(C5H4)] moieties thus appears to depend, at least in part, on the type of π(CO)–π(CO) interactions formed.

The molecules in all four structures form zigzag chains due to the formation of strong attractive interactions. For (I) and (III), the zigzag chains implemented along the crystallographic b axis involve strong attractive I···O interactions [I1···O2A(2 - x, -1/2 + y, 3/2 - z) = 3.233 (2) Å and I1···O2A–C7A = 112.1 (2)° for (I), and I1···O2A(2 - x, -1/2 + y, 3/2 - z) = 3.231 (4) Å and I1···O2A–C7A 110.6 (3)° for (III)] (Fig. 5). The attractive nature of halogen···oxygen interactions is caused by electrostatic effects, polarization, charge transfer and dispersion contributions. The tendency to form short X···E (E = O, N) interactions (X = I > Br > Cl) increases with the magnitude of their polarizabilities (Lommerse et al., 1996). The directionality of that type of interaction has been interpreted in terms of charge transfer between the highest occupied molecular orbital of E and the lowest unoccupied molecular orbital of X (Ramasubbu et al., 1986). The strength of halogen–carbonyl interactions has been characterized as a function of two geometric parameters, the halogen–oxygen distance (X···O) and the halogen–oxygen–carbon angle (X···O—C). The interaction energy of the most strongly bound system was found to be 2.39 kcal mol-1 (1 kcal mol-1 = 4.184 kJ mol-1) (iodobenzene–formaldehyde; I···O = 3.2 Å and I···O—C 110°), of the same magnitude as those for C—H···O hydrogen bonds (Riley & Merz, 2007). The observed interactions in (I) and (III) are consistent in geometry with these calculated strong interactions.

According to a systematic CSD analysis (Allen et al., 1998) of interactions between ketonic (C2—CO) carbonyl groups, three types of interaction motifs were identified: a predominant slightly sheared antiparallel motif, a perpendicular motif, and a highly sheared parallel motif. For transition metal carbonyls, a higher percentage of the perpendicular motif has been reported (Allen et al., 2006). Compounds (II) and (IV) contain strong attractive antiparallel intermolecular π(CO)–π(CO) interactions between the carbonyl groups of neighboring molecules [O2···C8A(2 - x, -y, z) = 3.138 (2) Å, C8—O2···C8A = 105.00 (10)° for (II), and O2···C8A(2 - x, -y, z) = 3.211 (6) Å and C8—O2···C8A = 101.8 (3)° for (IV)], forming pairwise interactions in a sheared antiparallel dimer motif along the crystallographic b axis (Fig. 6). These antiparallel π(CO)–π(CO) interactions are a driving force for the formation of zigzag chains along the b axis. Comparison of the parameters obtained for (II) and (IV) with distances and angles reported for similar interactions in other transition metal carbonyls (2.95–3.60 Å/80–135°) indicates that the π(CO)–π(CO) interactions are relatively strong in (II) and (IV) (Allen et al., 2006). Also, intermolecular π(CO)–π(CO) interactions are not rare, and sheared antiparallel and perpendicular motifs can be found for 14 of the 89 hits for mono-substituted cymantrenes and for 3 of the 27 hits for (η5-C5H4X)Re(CO)3 compounds in the CSD search (see above). The mean van der Waals radii used to identify intermolecular interactions and contacts were taken as C = 1.53, O = 1.42 and I = 2.04 Å (Bondi, 1964).

The zigzag chains in (I) and (III) are bound to each other by weak intermolecular C—H···O hydrogen bonds, while those in (II) and (IV) associate by a combination of weak C—H···O hydrogen bonds and π(Csp2)–π(Csp2) and π(Csp2)–π(Csp) stacking interactions between pairs of inversion-related molecules (C···C distances ca 3.4 Å), leading to a ladder-type packing (Fig. 7).

Experimental top

Compounds (I)–(IV) were prepared according to the standard literature procedure (Sterzo et al., 1989). Crystals of (I) and (III) were obtained by slow evaporation of hexane solutions. Crystals of (II) and (IV) were grown by slow evaporation of chloroform solutions at room temperature.

Refinement top

All H atoms were positioned geometrically, with C—H = 1.00 Å, and included in riding mode, with Uiso(H) = 1.2Ueq(C).

Structure description top

One of the rapidly growing fields in metalloorganic chemistry is the synthesis of new materials. Such examples include dendrimers (Tomalia et al., 1990; Stulgies et al., 2004; Astruc et al., 2008), staffanes (Kaszynski et al., 1992), Diederich's carbon nets (Diederich & Rubin, 1992), and various novel electronic, photonic and magnetic materials (Barlow & O'Hare, 1997; Elschenbroich et al., 2005; Kinnibrugh et al., 2009). Because of the increasing interest in this area, we have focused our studies on structural investigations of the title compounds, (I)–(IV) (Figs. 1 and 2), which can be used as starting compounds for the construction of new materials (Sterzo et al., 1989). This work reports the first structural studies of monohalogenated derivatives of (η5-C5H4X)M(CO)3 [for (I), M = Mn and X = I; for (III), M = Re and X = I] and the dinuclear [(CO)3MC5H4]CC[C5H4M(CO)3] compounds [for (II), M = Mn; for (IV), M = Re].

The mean values of the geometric parameters for compounds (I)–(IV) are in accordance with those previously reported (Table 1) for 89 mono-substituted cymantrenes and 27 (η5-C5H4X)Re(CO)3 compounds, which were retrieved from the 2009 version of the Cambridge Structural Database (CSD; Allen, 2002) using ConQuest (Version 1.11; Macrae et al., 2006), as well as with the unsubstituted compounds C5H5M(CO)3 (M = Mn, Re) (Fitzpatrick, Le Page & Butler, 1981 or Fitzpatrick, Le Page et al., 1981; Cowie et al., 1990). The mono-substituted complexes (η5-C5H4X)M(CO)3 (X is any atom, M = Mn, Re) were considered with the following search criteria: (a) three-dimensional coordinates and R < 0.10; (b) no errors; (c) no crystallographic disorder; (d) no polymer structures. The (O)C—Mn—C(O) angle is in accord with a tendency for decreasing the pyramidality of the M(CO)3 fragment with increasing π-donor capacity of the cyclic polyene (Fitzpatrick, Le Page & Butler, 1981 or Fitzpatrick, Le Page et al., 1981): (C6H6)Cr(CO)3 88.22 (8)° (Rees & Coppens, 1973), CpRe(CO)3 90.0 (2)° (Fitzpatrick, Le Page & Butler, 1981 or Fitzpatrick, Le Page et al., 1981), CpMn(CO)3 92.02 (5)° (Cowie et al., 1990), (C4H4)Fe(CO)3 95.6° (Hall et al., 1975) and (C4Ph4)Fe(CO)3 97.03 (3)° (Dodge & Schomaker, 1965). The M—C—O bond angles do not differ significantly from 180°.

The M(CO)3 (M = Mn, Re) fragment possess approximate C3v symmetry, while coordination to the η5-C5H4X ring lowers the molecular symmetry to C1 (Fig. 3). Compounds (I)–(IV) possess different mutual dispositions of the carbonyl groups and η5-C5H4X rings: the C6O1 carbonyl group for (I) and (III) is in an eclipsed position relative to the substituted C atom of the η5-C5H4I ring, while the C7O1 carbonyl group of (II) and (IV) is in the transoid position to the substitutent-bearing C atom (Figs. 3 and 4).

Compounds (II) and (IV) crystallize with the molecules occupying a special position on an inversion center. Each molecule consists of two identical [(CO)3M(C5H4)C] (M = Mn, Re) parts with the M(CO)3 moieties in transoid positions. We suggest that (II) and (IV) adopt the transoid structure due to the realisation of strong attractive intermolecular π(CO)–π(CO) interactions in the sheared parallel packing motif (see below). In contrast, the only analogous compound found in the literature, [(CO)3Mn(C5H4)CC(C7H5)Cr(CO)3]BF4, possesses a syn-facial (cisoid) conformation of M(CO)3 moieties, due to the formation of strong attractive intermolecular π(CO)–π(CO) interactions with a perpendicular packing motif (Tamm et al., 2000). The conformation of [(CO)3M(C5H4)] moieties thus appears to depend, at least in part, on the type of π(CO)–π(CO) interactions formed.

The molecules in all four structures form zigzag chains due to the formation of strong attractive interactions. For (I) and (III), the zigzag chains implemented along the crystallographic b axis involve strong attractive I···O interactions [I1···O2A(2 - x, -1/2 + y, 3/2 - z) = 3.233 (2) Å and I1···O2A–C7A = 112.1 (2)° for (I), and I1···O2A(2 - x, -1/2 + y, 3/2 - z) = 3.231 (4) Å and I1···O2A–C7A 110.6 (3)° for (III)] (Fig. 5). The attractive nature of halogen···oxygen interactions is caused by electrostatic effects, polarization, charge transfer and dispersion contributions. The tendency to form short X···E (E = O, N) interactions (X = I > Br > Cl) increases with the magnitude of their polarizabilities (Lommerse et al., 1996). The directionality of that type of interaction has been interpreted in terms of charge transfer between the highest occupied molecular orbital of E and the lowest unoccupied molecular orbital of X (Ramasubbu et al., 1986). The strength of halogen–carbonyl interactions has been characterized as a function of two geometric parameters, the halogen–oxygen distance (X···O) and the halogen–oxygen–carbon angle (X···O—C). The interaction energy of the most strongly bound system was found to be 2.39 kcal mol-1 (1 kcal mol-1 = 4.184 kJ mol-1) (iodobenzene–formaldehyde; I···O = 3.2 Å and I···O—C 110°), of the same magnitude as those for C—H···O hydrogen bonds (Riley & Merz, 2007). The observed interactions in (I) and (III) are consistent in geometry with these calculated strong interactions.

According to a systematic CSD analysis (Allen et al., 1998) of interactions between ketonic (C2—CO) carbonyl groups, three types of interaction motifs were identified: a predominant slightly sheared antiparallel motif, a perpendicular motif, and a highly sheared parallel motif. For transition metal carbonyls, a higher percentage of the perpendicular motif has been reported (Allen et al., 2006). Compounds (II) and (IV) contain strong attractive antiparallel intermolecular π(CO)–π(CO) interactions between the carbonyl groups of neighboring molecules [O2···C8A(2 - x, -y, z) = 3.138 (2) Å, C8—O2···C8A = 105.00 (10)° for (II), and O2···C8A(2 - x, -y, z) = 3.211 (6) Å and C8—O2···C8A = 101.8 (3)° for (IV)], forming pairwise interactions in a sheared antiparallel dimer motif along the crystallographic b axis (Fig. 6). These antiparallel π(CO)–π(CO) interactions are a driving force for the formation of zigzag chains along the b axis. Comparison of the parameters obtained for (II) and (IV) with distances and angles reported for similar interactions in other transition metal carbonyls (2.95–3.60 Å/80–135°) indicates that the π(CO)–π(CO) interactions are relatively strong in (II) and (IV) (Allen et al., 2006). Also, intermolecular π(CO)–π(CO) interactions are not rare, and sheared antiparallel and perpendicular motifs can be found for 14 of the 89 hits for mono-substituted cymantrenes and for 3 of the 27 hits for (η5-C5H4X)Re(CO)3 compounds in the CSD search (see above). The mean van der Waals radii used to identify intermolecular interactions and contacts were taken as C = 1.53, O = 1.42 and I = 2.04 Å (Bondi, 1964).

The zigzag chains in (I) and (III) are bound to each other by weak intermolecular C—H···O hydrogen bonds, while those in (II) and (IV) associate by a combination of weak C—H···O hydrogen bonds and π(Csp2)–π(Csp2) and π(Csp2)–π(Csp) stacking interactions between pairs of inversion-related molecules (C···C distances ca 3.4 Å), leading to a ladder-type packing (Fig. 7).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atom-numbering scheme. The Re analog, (III), is isostructural. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II), with the atom-numbering scheme. The Re analog, (IV), is isostructural. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled with the suffix A are at the symmetry position (2 - x, 1 - y, -z).
[Figure 3] Fig. 3. The conformation of (I), showing one CO group eclipsed by the halogen substituent on the C5 ring.
[Figure 4] Fig. 4. The conformation of (II), showing the CO group in a transoid position relative to the substituent on the C5 ring.
[Figure 5] Fig. 5. The zigzag chains formed along the b axis for (I). Dashed lines indicate the I···O interactions. [Symmetry codes: (A) 2 - x, -1/2 + y, 3/2 - z; (B) ?; (AA) ? Please complete]
[Figure 6] Fig. 6. The zigzag chains formed along the b axis for (II). Dashed lines indicate the π(CO)–π(CO) interactions. [Symmetry codes: (A) 2 - x, -y, z; (B) ?; (C) ? Please complete]
[Figure 7] Fig. 7. The π(Csp2)–π(Csp) stacking interactions (dashed lines) between pairs of molecules in (II). [Symmetry codes: (A) 1 - x, 1 - y, -z; (B) ?; (C) ?; (D) ?; (E) ?; (AA) ? Please complete]
(I) Tricarbonyl(η5-1-iodocyclopentadienyl)manganese(I) top
Crystal data top
[Mn(C5H4I)(CO)3]F(000) = 616
Mr = 329.95Dx = 2.325 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4583 reflections
a = 7.2696 (5) Åθ = 2.5–30.5°
b = 10.7776 (7) ŵ = 4.64 mm1
c = 12.0288 (8) ÅT = 100 K
V = 942.44 (11) Å3Plate, yellow
Z = 40.20 × 0.15 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2278 independent reflections
Radiation source: fine-focus sealed tube2161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 28.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.427, Tmax = 0.717k = 1414
9507 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.021P)2 + 0.223P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2278 reflectionsΔρmax = 0.54 e Å3
118 parametersΔρmin = 0.38 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
[Mn(C5H4I)(CO)3]V = 942.44 (11) Å3
Mr = 329.95Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2696 (5) ŵ = 4.64 mm1
b = 10.7776 (7) ÅT = 100 K
c = 12.0288 (8) Å0.20 × 0.15 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2278 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2161 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 0.717Rint = 0.031
9507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.048Δρmax = 0.54 e Å3
S = 1.06Δρmin = 0.38 e Å3
2278 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
118 parametersAbsolute structure parameter: 0.05 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.25297 (3)0.142841 (19)0.649202 (17)0.02989 (7)
Mn10.81740 (6)0.01925 (4)0.55665 (4)0.01790 (10)
O10.7565 (3)0.2275 (2)0.6561 (2)0.0353 (5)
O20.5588 (3)0.1308 (2)0.7161 (2)0.0325 (6)
O30.5279 (4)0.0189 (2)0.38760 (19)0.0386 (6)
C11.1108 (4)0.0017 (3)0.5717 (3)0.0231 (7)
C21.0538 (4)0.1133 (3)0.6233 (3)0.0257 (7)
H21.07410.13760.70260.031*
C30.9711 (5)0.1874 (3)0.5383 (3)0.0303 (8)
H30.92180.27340.54790.036*
C40.9765 (5)0.1201 (3)0.4377 (3)0.0300 (7)
H40.93120.15050.36410.036*
C51.0619 (4)0.0048 (3)0.4572 (3)0.0257 (7)
H51.08910.06050.40050.031*
C60.7812 (4)0.1319 (3)0.6158 (3)0.0232 (7)
C70.6585 (4)0.0867 (3)0.6528 (3)0.0236 (6)
C80.6403 (4)0.0049 (3)0.4541 (3)0.0256 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02248 (10)0.03315 (12)0.03405 (11)0.00062 (10)0.00482 (11)0.00482 (9)
Mn10.0205 (2)0.01662 (19)0.0166 (2)0.00072 (17)0.00021 (18)0.00113 (18)
O10.0321 (12)0.0239 (11)0.0498 (14)0.0032 (11)0.0041 (16)0.0130 (10)
O20.0393 (14)0.0289 (13)0.0293 (13)0.0030 (12)0.0110 (11)0.0051 (11)
O30.0402 (15)0.0458 (16)0.0297 (13)0.0017 (13)0.0133 (11)0.0020 (12)
C10.0203 (15)0.0268 (17)0.0223 (15)0.0043 (12)0.0002 (12)0.0014 (13)
C20.0250 (16)0.0241 (16)0.0280 (17)0.0094 (13)0.0006 (13)0.0041 (13)
C30.0291 (17)0.0199 (15)0.042 (2)0.0073 (14)0.0055 (16)0.0059 (15)
C40.0282 (17)0.0338 (18)0.0281 (17)0.0077 (14)0.0038 (15)0.0104 (15)
C50.0251 (16)0.0330 (18)0.0189 (15)0.0009 (13)0.0047 (12)0.0012 (14)
C60.0168 (17)0.0272 (16)0.0257 (14)0.0027 (12)0.0005 (11)0.0011 (12)
C70.0276 (16)0.0195 (14)0.0238 (15)0.0034 (13)0.0040 (14)0.0046 (13)
C80.0299 (18)0.0262 (17)0.0205 (15)0.0026 (13)0.0052 (13)0.0014 (14)
Geometric parameters (Å, º) top
I1—C12.089 (3)O3—C81.153 (4)
Mn1—C71.789 (3)C1—C21.415 (4)
Mn1—C61.797 (3)C1—C51.423 (4)
Mn1—C81.802 (3)C5—C41.409 (5)
Mn1—C42.136 (3)C5—H51.0000
Mn1—C32.141 (3)C4—C31.411 (5)
Mn1—C52.148 (3)C4—H41.0000
Mn1—C12.149 (3)C3—C21.430 (5)
Mn1—C22.150 (3)C3—H31.0000
O1—C61.153 (4)C2—H21.0000
O2—C71.153 (4)
C7—Mn1—C691.04 (14)C2—C1—I1125.7 (2)
C7—Mn1—C892.29 (14)C5—C1—I1124.9 (2)
C6—Mn1—C892.02 (14)C2—C1—Mn170.82 (19)
C7—Mn1—C4125.15 (14)C5—C1—Mn170.62 (18)
C6—Mn1—C4143.64 (13)I1—C1—Mn1126.46 (15)
C8—Mn1—C490.11 (14)O3—C8—Mn1179.0 (3)
C7—Mn1—C393.42 (14)C4—C5—C1107.0 (3)
C6—Mn1—C3152.23 (14)C4—C5—Mn170.36 (18)
C8—Mn1—C3115.14 (14)C1—C5—Mn170.70 (18)
C4—Mn1—C338.53 (14)C4—C5—H5126.5
C7—Mn1—C5157.48 (13)C1—C5—H5126.5
C6—Mn1—C5106.00 (13)Mn1—C5—H5126.5
C8—Mn1—C5101.51 (13)C5—C4—C3108.9 (3)
C4—Mn1—C538.39 (12)C5—C4—Mn171.25 (18)
C3—Mn1—C564.66 (13)C3—C4—Mn170.90 (19)
C7—Mn1—C1128.47 (13)C5—C4—H4125.6
C6—Mn1—C191.84 (12)C3—C4—H4125.6
C8—Mn1—C1138.95 (13)Mn1—C4—H4125.6
C4—Mn1—C164.15 (13)C4—C3—C2108.3 (3)
C3—Mn1—C164.22 (13)C4—C3—Mn170.56 (18)
C5—Mn1—C138.67 (12)C2—C3—Mn170.88 (18)
C7—Mn1—C294.79 (13)C4—C3—H3125.8
C6—Mn1—C2113.37 (13)C2—C3—H3125.8
C8—Mn1—C2153.45 (14)Mn1—C3—H3125.8
C4—Mn1—C265.00 (13)C1—C2—C3106.5 (3)
C3—Mn1—C238.94 (13)C1—C2—Mn170.75 (18)
C5—Mn1—C265.19 (12)C3—C2—Mn170.18 (18)
C1—Mn1—C238.43 (12)C1—C2—H2126.7
O1—C6—Mn1178.3 (3)C3—C2—H2126.7
O2—C7—Mn1178.7 (3)Mn1—C2—H2126.7
C2—C1—C5109.4 (3)
C8—Mn1—C1—C2138.1 (2)C2—Mn1—C4—C581.0 (2)
C4—Mn1—C1—C281.7 (2)C7—Mn1—C4—C339.9 (3)
C3—Mn1—C1—C238.7 (2)C6—Mn1—C4—C3133.6 (2)
C5—Mn1—C1—C2119.6 (3)C8—Mn1—C4—C3132.8 (2)
C7—Mn1—C1—C5153.6 (2)C5—Mn1—C4—C3118.6 (3)
C6—Mn1—C1—C5113.7 (2)C1—Mn1—C4—C380.4 (2)
C8—Mn1—C1—C518.5 (3)C2—Mn1—C4—C337.6 (2)
C4—Mn1—C1—C538.0 (2)C5—C4—C3—C20.3 (4)
C3—Mn1—C1—C581.0 (2)Mn1—C4—C3—C261.2 (2)
C2—Mn1—C1—C5119.6 (3)C5—C4—C3—Mn161.5 (2)
C7—Mn1—C1—I186.8 (2)C7—Mn1—C3—C4148.3 (2)
C6—Mn1—C1—I16.0 (2)C6—Mn1—C3—C4112.9 (3)
C8—Mn1—C1—I1101.2 (2)C8—Mn1—C3—C454.1 (2)
C4—Mn1—C1—I1157.6 (2)C5—Mn1—C3—C437.1 (2)
C3—Mn1—C1—I1159.4 (2)C1—Mn1—C3—C480.2 (2)
C5—Mn1—C1—I1119.7 (3)C2—Mn1—C3—C4118.3 (3)
C2—Mn1—C1—I1120.7 (3)C7—Mn1—C3—C293.4 (2)
C2—C1—C5—C40.9 (4)C6—Mn1—C3—C25.4 (4)
I1—C1—C5—C4177.1 (2)C8—Mn1—C3—C2172.5 (2)
Mn1—C1—C5—C461.4 (2)C4—Mn1—C3—C2118.3 (3)
C2—C1—C5—Mn160.5 (2)C5—Mn1—C3—C281.2 (2)
I1—C1—C5—Mn1121.5 (2)C1—Mn1—C3—C238.15 (19)
C7—Mn1—C5—C451.4 (4)C5—C1—C2—C31.1 (4)
C6—Mn1—C5—C4170.8 (2)I1—C1—C2—C3176.9 (2)
C8—Mn1—C5—C475.3 (2)Mn1—C1—C2—C361.4 (2)
C3—Mn1—C5—C437.2 (2)C5—C1—C2—Mn160.4 (2)
C1—Mn1—C5—C4117.0 (3)I1—C1—C2—Mn1121.7 (2)
C2—Mn1—C5—C480.4 (2)C4—C3—C2—C10.8 (4)
C7—Mn1—C5—C165.5 (4)Mn1—C3—C2—C161.8 (2)
C6—Mn1—C5—C172.3 (2)C4—C3—C2—Mn161.0 (2)
C8—Mn1—C5—C1167.7 (2)C7—Mn1—C2—C1154.0 (2)
C4—Mn1—C5—C1117.0 (3)C6—Mn1—C2—C160.8 (2)
C3—Mn1—C5—C179.7 (2)C8—Mn1—C2—C1101.1 (3)
C2—Mn1—C5—C136.53 (19)C4—Mn1—C2—C179.3 (2)
C1—C5—C4—C30.3 (4)C3—Mn1—C2—C1116.5 (3)
Mn1—C5—C4—C361.2 (2)C5—Mn1—C2—C136.76 (18)
C1—C5—C4—Mn161.6 (2)C7—Mn1—C2—C389.5 (2)
C7—Mn1—C4—C5158.5 (2)C6—Mn1—C2—C3177.3 (2)
C6—Mn1—C4—C515.0 (3)C8—Mn1—C2—C315.4 (4)
C8—Mn1—C4—C5108.6 (2)C4—Mn1—C2—C337.2 (2)
C3—Mn1—C4—C5118.6 (3)C5—Mn1—C2—C379.7 (2)
C1—Mn1—C4—C538.24 (19)C1—Mn1—C2—C3116.5 (3)
(II) [µ-1,2(η5)-Acetylenedicyclopentadienyl]bis[tricarbonylmanganese(I)] top
Crystal data top
[Mn2(C12H8)(CO)6]F(000) = 428
Mr = 430.12Dx = 1.720 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4260 reflections
a = 6.4096 (10) Åθ = 3.2–30.3°
b = 10.9991 (16) ŵ = 1.55 mm1
c = 11.9798 (18) ÅT = 100 K
β = 100.507 (2)°Needle, brown
V = 830.4 (2) Å30.31 × 0.11 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2552 independent reflections
Radiation source: fine-focus sealed tube2211 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 30.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.645, Tmax = 0.860k = 1515
12974 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.035P)2 + 0.228P]
where P = (Fo2 + 2Fc2)/3
2552 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Mn2(C12H8)(CO)6]V = 830.4 (2) Å3
Mr = 430.12Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.4096 (10) ŵ = 1.55 mm1
b = 10.9991 (16) ÅT = 100 K
c = 11.9798 (18) Å0.31 × 0.11 × 0.10 mm
β = 100.507 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2552 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2211 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.860Rint = 0.037
12974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
2552 reflectionsΔρmin = 0.24 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.73992 (3)0.218855 (18)0.083569 (17)0.01607 (7)
O10.5602 (2)0.01184 (11)0.14847 (11)0.0351 (3)
O20.95402 (19)0.10271 (11)0.08650 (10)0.0299 (3)
O31.12258 (19)0.18853 (12)0.25993 (10)0.0320 (3)
C10.7458 (2)0.40662 (12)0.03320 (12)0.0191 (3)
C20.6812 (2)0.39868 (13)0.14142 (13)0.0207 (3)
H20.75500.43730.21350.025*
C30.4911 (2)0.33056 (14)0.12793 (14)0.0237 (3)
H30.40740.31260.18880.028*
C40.4361 (2)0.29473 (14)0.01166 (14)0.0242 (3)
H40.30700.24770.02310.029*
C50.5918 (2)0.34167 (13)0.04681 (13)0.0221 (3)
H50.59170.33340.13000.027*
C60.9254 (2)0.47140 (13)0.00959 (12)0.0205 (3)
C70.6307 (2)0.07756 (14)0.12334 (13)0.0232 (3)
C80.8700 (2)0.14608 (13)0.01941 (12)0.0209 (3)
C90.9722 (2)0.20100 (13)0.19186 (13)0.0212 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01592 (11)0.01522 (11)0.01650 (11)0.00088 (7)0.00146 (8)0.00127 (7)
O10.0439 (7)0.0282 (6)0.0344 (6)0.0132 (5)0.0105 (6)0.0036 (5)
O20.0363 (6)0.0307 (6)0.0244 (6)0.0073 (5)0.0103 (5)0.0022 (5)
O30.0256 (6)0.0386 (7)0.0283 (6)0.0013 (5)0.0042 (5)0.0047 (5)
C10.0182 (6)0.0161 (6)0.0227 (7)0.0015 (5)0.0029 (5)0.0034 (5)
C20.0216 (7)0.0178 (6)0.0230 (7)0.0019 (5)0.0053 (5)0.0003 (5)
C30.0199 (7)0.0232 (7)0.0298 (8)0.0023 (5)0.0090 (6)0.0020 (6)
C40.0157 (6)0.0236 (7)0.0314 (8)0.0003 (5)0.0010 (6)0.0035 (6)
C50.0219 (7)0.0211 (7)0.0214 (7)0.0024 (5)0.0012 (5)0.0037 (5)
C60.0224 (7)0.0163 (6)0.0226 (7)0.0035 (5)0.0036 (5)0.0032 (5)
C70.0245 (7)0.0232 (7)0.0217 (7)0.0040 (6)0.0036 (6)0.0003 (5)
C80.0231 (7)0.0180 (6)0.0211 (7)0.0010 (5)0.0027 (5)0.0050 (5)
C90.0228 (7)0.0196 (7)0.0215 (7)0.0009 (5)0.0049 (5)0.0015 (5)
Geometric parameters (Å, º) top
Mn1—C81.7980 (15)C2—C11.434 (2)
Mn1—C91.7983 (16)C2—H21.0000
Mn1—C71.8040 (15)C7—O11.1450 (19)
Mn1—C42.1490 (15)C1—C61.4252 (19)
Mn1—C52.1505 (14)C1—C51.435 (2)
Mn1—C22.1515 (15)C6—C6i1.201 (3)
Mn1—C12.1538 (14)C5—C41.417 (2)
Mn1—C32.1554 (15)C5—H51.0000
C9—O31.1516 (19)C4—C31.428 (2)
O2—C81.1497 (18)C4—H41.0000
C2—C31.415 (2)C3—H31.0000
C8—Mn1—C991.14 (7)C1—C2—Mn170.63 (8)
C8—Mn1—C792.79 (7)C3—C2—H2125.8
C9—Mn1—C791.47 (7)C1—C2—H2125.8
C8—Mn1—C4113.42 (7)Mn1—C2—H2125.8
C9—Mn1—C4154.43 (7)O1—C7—Mn1179.63 (16)
C7—Mn1—C494.21 (6)C6—C1—C2125.93 (13)
C8—Mn1—C588.84 (6)C6—C1—C5126.76 (14)
C9—Mn1—C5142.21 (6)C2—C1—C5107.26 (12)
C7—Mn1—C5126.28 (6)C6—C1—Mn1126.24 (10)
C4—Mn1—C538.49 (6)C2—C1—Mn170.46 (8)
C8—Mn1—C2139.51 (6)C5—C1—Mn170.40 (8)
C9—Mn1—C292.20 (6)C6i—C6—C1178.4 (2)
C7—Mn1—C2127.43 (6)C4—C5—C1108.17 (13)
C4—Mn1—C264.74 (6)C4—C5—Mn170.70 (8)
C5—Mn1—C264.95 (6)C1—C5—Mn170.65 (8)
C8—Mn1—C1101.57 (6)C4—C5—H5125.9
C9—Mn1—C1104.61 (6)C1—C5—H5125.9
C7—Mn1—C1158.06 (6)Mn1—C5—H5125.9
C4—Mn1—C164.93 (5)O2—C8—Mn1178.07 (13)
C5—Mn1—C138.94 (5)C5—C4—C3108.12 (13)
C2—Mn1—C138.90 (6)C5—C4—Mn170.81 (8)
C8—Mn1—C3151.59 (6)C3—C4—Mn170.86 (9)
C9—Mn1—C3115.91 (6)C5—C4—H4125.9
C7—Mn1—C394.91 (6)C3—C4—H4125.9
C4—Mn1—C338.76 (6)Mn1—C4—H4125.9
C5—Mn1—C364.69 (6)C2—C3—C4108.15 (13)
C2—Mn1—C338.35 (6)C2—C3—Mn170.68 (8)
C1—Mn1—C364.79 (6)C4—C3—Mn170.38 (9)
O3—C9—Mn1178.86 (14)C2—C3—H3125.9
C3—C2—C1108.29 (13)C4—C3—H3125.9
C3—C2—Mn170.97 (8)Mn1—C3—H3125.9
C8—Mn1—C2—C3134.65 (11)C7—Mn1—C5—C439.02 (12)
C9—Mn1—C2—C3131.01 (9)C2—Mn1—C5—C480.27 (10)
C7—Mn1—C2—C337.48 (12)C1—Mn1—C5—C4118.25 (13)
C4—Mn1—C2—C337.52 (9)C3—Mn1—C5—C437.70 (9)
C5—Mn1—C2—C380.22 (10)C8—Mn1—C5—C1110.14 (9)
C1—Mn1—C2—C3118.24 (12)C9—Mn1—C5—C119.77 (14)
C8—Mn1—C2—C116.41 (13)C7—Mn1—C5—C1157.26 (9)
C9—Mn1—C2—C1110.75 (9)C4—Mn1—C5—C1118.25 (13)
C7—Mn1—C2—C1155.71 (9)C2—Mn1—C5—C137.98 (8)
C4—Mn1—C2—C180.72 (9)C3—Mn1—C5—C180.54 (9)
C5—Mn1—C2—C138.01 (8)C1—C5—C4—C30.35 (17)
C3—Mn1—C2—C1118.24 (12)Mn1—C5—C4—C361.38 (11)
C3—C2—C1—C6177.53 (13)C1—C5—C4—Mn161.02 (10)
Mn1—C2—C1—C6121.16 (14)C8—Mn1—C4—C554.54 (11)
C3—C2—C1—C50.18 (16)C9—Mn1—C4—C5108.27 (16)
Mn1—C2—C1—C561.12 (9)C7—Mn1—C4—C5149.41 (10)
C3—C2—C1—Mn161.30 (10)C2—Mn1—C4—C580.86 (9)
C8—Mn1—C1—C648.41 (14)C1—Mn1—C4—C537.68 (9)
C9—Mn1—C1—C645.85 (14)C3—Mn1—C4—C5117.98 (13)
C7—Mn1—C1—C6178.28 (15)C8—Mn1—C4—C3172.52 (9)
C4—Mn1—C1—C6159.03 (15)C9—Mn1—C4—C39.72 (19)
C5—Mn1—C1—C6121.78 (17)C7—Mn1—C4—C392.60 (10)
C2—Mn1—C1—C6120.79 (16)C5—Mn1—C4—C3117.98 (13)
C3—Mn1—C1—C6157.96 (15)C2—Mn1—C4—C337.13 (9)
C8—Mn1—C1—C2169.21 (9)C1—Mn1—C4—C380.30 (9)
C9—Mn1—C1—C274.94 (9)C1—C2—C3—C40.40 (16)
C7—Mn1—C1—C260.93 (19)Mn1—C2—C3—C460.69 (10)
C4—Mn1—C1—C280.18 (9)C1—C2—C3—Mn161.09 (10)
C5—Mn1—C1—C2117.43 (12)C5—C4—C3—C20.46 (17)
C3—Mn1—C1—C237.17 (8)Mn1—C4—C3—C260.88 (10)
C8—Mn1—C1—C573.37 (9)C5—C4—C3—Mn161.35 (10)
C9—Mn1—C1—C5167.63 (9)C8—Mn1—C3—C2103.86 (14)
C7—Mn1—C1—C556.50 (19)C9—Mn1—C3—C256.96 (10)
C4—Mn1—C1—C537.25 (9)C7—Mn1—C3—C2150.99 (9)
C2—Mn1—C1—C5117.43 (12)C4—Mn1—C3—C2118.39 (13)
C3—Mn1—C1—C580.25 (9)C5—Mn1—C3—C280.95 (9)
C6—C1—C5—C4177.80 (14)C1—Mn1—C3—C237.70 (9)
C2—C1—C5—C40.11 (16)C8—Mn1—C3—C414.53 (17)
Mn1—C1—C5—C461.05 (10)C9—Mn1—C3—C4175.35 (9)
C6—C1—C5—Mn1121.15 (14)C7—Mn1—C3—C490.61 (10)
C2—C1—C5—Mn161.16 (9)C5—Mn1—C3—C437.44 (9)
C8—Mn1—C5—C4131.62 (10)C2—Mn1—C3—C4118.39 (13)
C9—Mn1—C5—C4138.02 (11)C1—Mn1—C3—C480.70 (9)
Symmetry code: (i) x+2, y+1, z.
(III) Tricarbonyl(η5-1-iodocyclopentadienyl)rhenium(I) top
Crystal data top
[Re(C5H4I)(CO)3]F(000) = 816
Mr = 461.21Dx = 3.157 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7360 reflections
a = 7.4117 (14) Åθ = 2.5–30.6°
b = 10.922 (2) ŵ = 15.67 mm1
c = 11.987 (2) ÅT = 100 K
V = 970.3 (3) Å3Plate, white
Z = 40.14 × 0.10 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2342 independent reflections
Radiation source: fine-focus sealed tube2276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.218, Tmax = 0.407k = 1414
9533 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0017P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
2342 reflectionsΔρmax = 1.60 e Å3
118 parametersΔρmin = 1.39 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (7)
Crystal data top
[Re(C5H4I)(CO)3]V = 970.3 (3) Å3
Mr = 461.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4117 (14) ŵ = 15.67 mm1
b = 10.922 (2) ÅT = 100 K
c = 11.987 (2) Å0.14 × 0.10 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2342 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2276 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.407Rint = 0.036
9533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.041Δρmax = 1.60 e Å3
S = 0.99Δρmin = 1.39 e Å3
2342 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
118 parametersAbsolute structure parameter: 0.015 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.25872 (5)0.14876 (3)0.64470 (3)0.02327 (9)
Re10.82029 (2)0.016956 (17)0.557459 (15)0.01389 (5)
O10.7512 (5)0.2349 (4)0.6594 (3)0.0263 (8)
O20.5514 (5)0.1292 (4)0.7213 (3)0.0271 (9)
O30.5203 (5)0.0199 (4)0.3849 (3)0.0303 (9)
C11.1291 (6)0.0015 (5)0.5693 (4)0.0180 (10)
C21.0774 (7)0.1082 (5)0.6235 (5)0.0222 (11)
H21.10280.13030.70290.027*
C30.9997 (7)0.1866 (5)0.5408 (5)0.0258 (12)
H30.96080.27340.55230.031*
C41.0025 (7)0.1234 (5)0.4378 (5)0.0256 (11)
H40.96490.15810.36420.031*
C51.0841 (6)0.0050 (5)0.4548 (4)0.0210 (10)
H51.11360.05680.39610.025*
C60.7733 (7)0.1414 (5)0.6196 (4)0.0194 (11)
C70.6516 (7)0.0852 (5)0.6592 (4)0.0206 (11)
C80.6305 (7)0.0086 (5)0.4506 (4)0.0215 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01673 (16)0.02980 (19)0.02327 (17)0.00055 (14)0.00373 (14)0.00321 (13)
Re10.01472 (9)0.01598 (9)0.01096 (8)0.00039 (7)0.00082 (7)0.00066 (7)
O10.0227 (19)0.023 (2)0.033 (2)0.0025 (16)0.0006 (18)0.0129 (17)
O20.031 (2)0.027 (2)0.0234 (19)0.0036 (18)0.0093 (17)0.0061 (16)
O30.026 (2)0.043 (2)0.0209 (18)0.002 (2)0.0081 (16)0.0020 (18)
C10.012 (2)0.026 (3)0.016 (2)0.0050 (19)0.0006 (17)0.001 (2)
C20.018 (3)0.024 (3)0.024 (3)0.006 (2)0.002 (2)0.001 (2)
C30.023 (3)0.026 (3)0.029 (3)0.008 (2)0.007 (2)0.003 (2)
C40.025 (3)0.033 (3)0.019 (2)0.005 (2)0.005 (2)0.012 (2)
C50.015 (2)0.030 (3)0.018 (2)0.001 (2)0.0026 (19)0.001 (2)
C60.014 (3)0.025 (3)0.019 (2)0.004 (2)0.0025 (19)0.003 (2)
C70.027 (3)0.016 (2)0.018 (2)0.002 (2)0.007 (2)0.0055 (19)
C80.020 (2)0.024 (3)0.020 (2)0.001 (2)0.004 (2)0.004 (2)
Geometric parameters (Å, º) top
I1—C12.080 (5)O3—C81.142 (6)
Re1—C71.899 (5)C1—C51.413 (6)
Re1—C61.915 (5)C1—C21.416 (7)
Re1—C81.923 (5)C5—C41.442 (7)
Re1—C42.288 (5)C5—H51.0000
Re1—C32.290 (5)C4—C31.415 (8)
Re1—C52.313 (5)C4—H41.0000
Re1—C22.292 (5)C3—C21.431 (8)
Re1—C12.302 (5)C3—H31.0000
O1—C61.139 (6)C2—H21.0000
O2—C71.155 (6)
C7—Re1—C689.1 (2)C5—C1—I1124.7 (4)
C7—Re1—C890.2 (2)C2—C1—I1125.4 (4)
C6—Re1—C889.7 (2)C5—C1—Re172.6 (3)
C7—Re1—C4126.3 (2)C2—C1—Re171.7 (3)
C6—Re1—C4144.1 (2)I1—C1—Re1123.6 (2)
C8—Re1—C495.0 (2)O3—C8—Re1177.3 (5)
C7—Re1—C396.9 (2)C1—C5—C4106.4 (5)
C6—Re1—C3150.5 (2)C1—C5—Re171.7 (3)
C8—Re1—C3119.0 (2)C4—C5—Re170.8 (3)
C4—Re1—C336.0 (2)C1—C5—H5126.7
C7—Re1—C5156.9 (2)C4—C5—H5126.7
C6—Re1—C5108.0 (2)Re1—C5—H5126.7
C8—Re1—C5104.82 (19)C3—C4—C5108.6 (5)
C4—Re1—C536.53 (18)C3—C4—Re172.1 (3)
C3—Re1—C560.55 (19)C5—C4—Re172.7 (3)
C7—Re1—C298.9 (2)C3—C4—H4125.6
C6—Re1—C2114.2 (2)C5—C4—H4125.6
C8—Re1—C2154.37 (19)Re1—C4—H4125.6
C4—Re1—C260.3 (2)C4—C3—C2107.9 (5)
C3—Re1—C236.41 (19)C4—C3—Re171.9 (3)
C5—Re1—C260.37 (19)C2—C3—Re171.9 (3)
C7—Re1—C1130.50 (19)C4—C3—H3126.0
C6—Re1—C194.45 (19)C2—C3—H3126.0
C8—Re1—C1139.08 (19)Re1—C3—H3126.0
C4—Re1—C159.74 (18)C1—C2—C3107.3 (5)
C3—Re1—C159.91 (19)C1—C2—Re172.4 (3)
C5—Re1—C135.66 (16)C3—C2—Re171.7 (3)
C2—Re1—C135.91 (18)C1—C2—H2126.2
O1—C6—Re1177.2 (4)C3—C2—H2126.2
O2—C7—Re1178.4 (5)Re1—C2—H2126.2
C5—C1—C2109.8 (5)
C7—Re1—C1—C5152.2 (3)C2—Re1—C4—C337.7 (3)
C6—Re1—C1—C5115.1 (3)C1—Re1—C4—C379.4 (3)
C8—Re1—C1—C520.3 (5)C7—Re1—C4—C5157.9 (3)
C4—Re1—C1—C538.5 (3)C6—Re1—C4—C511.7 (5)
C3—Re1—C1—C580.4 (3)C8—Re1—C4—C5108.2 (3)
C2—Re1—C1—C5118.6 (4)C3—Re1—C4—C5116.9 (5)
C7—Re1—C1—C233.7 (4)C2—Re1—C4—C579.2 (3)
C6—Re1—C1—C2126.3 (3)C1—Re1—C4—C537.6 (3)
C8—Re1—C1—C2138.9 (3)C5—C4—C3—C20.6 (6)
C4—Re1—C1—C280.1 (3)Re1—C4—C3—C263.3 (4)
C3—Re1—C1—C238.2 (3)C5—C4—C3—Re164.0 (3)
C5—Re1—C1—C2118.6 (4)C7—Re1—C3—C4147.9 (3)
C7—Re1—C1—I187.2 (3)C6—Re1—C3—C4111.5 (4)
C6—Re1—C1—I15.5 (3)C8—Re1—C3—C453.8 (4)
C8—Re1—C1—I1100.2 (3)C5—Re1—C3—C437.5 (3)
C4—Re1—C1—I1159.1 (3)C2—Re1—C3—C4116.5 (5)
C3—Re1—C1—I1159.0 (3)C1—Re1—C3—C478.9 (3)
C5—Re1—C1—I1120.6 (4)C7—Re1—C3—C295.6 (3)
C2—Re1—C1—I1120.8 (4)C6—Re1—C3—C25.0 (6)
C2—C1—C5—C40.3 (6)C8—Re1—C3—C2170.3 (3)
I1—C1—C5—C4178.0 (3)C4—Re1—C3—C2116.5 (5)
Re1—C1—C5—C462.7 (3)C5—Re1—C3—C279.0 (3)
C2—C1—C5—Re162.4 (3)C1—Re1—C3—C237.7 (3)
I1—C1—C5—Re1119.3 (3)C5—C1—C2—C30.7 (6)
C7—Re1—C5—C164.6 (6)I1—C1—C2—C3177.6 (3)
C6—Re1—C5—C171.7 (3)Re1—C1—C2—C363.7 (4)
C8—Re1—C5—C1166.4 (3)C5—C1—C2—Re163.0 (3)
C4—Re1—C5—C1115.4 (5)I1—C1—C2—Re1118.7 (3)
C3—Re1—C5—C178.4 (3)C4—C3—C2—C10.8 (6)
C2—Re1—C5—C136.3 (3)Re1—C3—C2—C164.2 (3)
C7—Re1—C5—C450.8 (6)C4—C3—C2—Re163.3 (4)
C6—Re1—C5—C4172.8 (3)C7—Re1—C2—C1154.7 (3)
C8—Re1—C5—C478.2 (3)C6—Re1—C2—C161.7 (4)
C3—Re1—C5—C437.0 (3)C8—Re1—C2—C195.7 (5)
C2—Re1—C5—C479.1 (3)C4—Re1—C2—C178.4 (3)
C1—Re1—C5—C4115.4 (5)C3—Re1—C2—C1115.6 (4)
C1—C5—C4—C30.2 (6)C5—Re1—C2—C136.1 (3)
Re1—C5—C4—C363.5 (4)C7—Re1—C2—C389.6 (3)
C1—C5—C4—Re163.3 (3)C6—Re1—C2—C3177.3 (3)
C7—Re1—C4—C340.9 (4)C8—Re1—C2—C319.9 (6)
C6—Re1—C4—C3128.6 (4)C4—Re1—C2—C337.3 (3)
C8—Re1—C4—C3134.9 (3)C5—Re1—C2—C379.5 (3)
C5—Re1—C4—C3116.9 (5)C1—Re1—C2—C3115.6 (4)
(IV) [µ-1,2(η5)-Acetylenedicyclopentadienyl]bis[tricarbonylrhenium(I)] top
Crystal data top
[Re2(C12H8)(CO)6]F(000) = 628
Mr = 692.64Dx = 2.671 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4303 reflections
a = 6.2633 (10) Åθ = 2.5–30.6°
b = 11.7262 (18) ŵ = 14.08 mm1
c = 11.8471 (18) ÅT = 100 K
β = 98.206 (2)°Plate, brown
V = 861.2 (2) Å30.20 × 0.11 × 0.09 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2068 independent reflections
Radiation source: fine-focus sealed tube1817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 28.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.165, Tmax = 0.364k = 1515
8399 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
2068 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 1.48 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Re2(C12H8)(CO)6]V = 861.2 (2) Å3
Mr = 692.64Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.2633 (10) ŵ = 14.08 mm1
b = 11.7262 (18) ÅT = 100 K
c = 11.8471 (18) Å0.20 × 0.11 × 0.09 mm
β = 98.206 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2068 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1817 reflections with I > 2σ(I)
Tmin = 0.165, Tmax = 0.364Rint = 0.035
8399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.02Δρmax = 1.48 e Å3
2068 reflectionsΔρmin = 0.80 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.74258 (2)0.218800 (13)0.084967 (13)0.02216 (7)
O10.5423 (6)0.0079 (3)0.1446 (3)0.0466 (9)
O20.9769 (5)0.0997 (3)0.0921 (3)0.0373 (7)
O31.1325 (5)0.1744 (3)0.2670 (3)0.0423 (8)
C10.7431 (6)0.4100 (3)0.0351 (4)0.0257 (8)
C20.6730 (7)0.4011 (4)0.1448 (4)0.0299 (9)
H20.74400.43810.21650.036*
C30.4795 (7)0.3398 (4)0.1331 (4)0.0336 (10)
H30.38850.32630.19460.040*
C40.4242 (7)0.3087 (4)0.0155 (4)0.0339 (10)
H40.28780.27010.01880.041*
C50.5849 (6)0.3506 (4)0.0451 (4)0.0300 (9)
H50.58240.34720.12960.036*
C60.9269 (6)0.4727 (3)0.0098 (4)0.0263 (8)
C70.6214 (7)0.0771 (4)0.1214 (4)0.0315 (9)
C80.8900 (6)0.1422 (4)0.0234 (4)0.0275 (9)
C90.9832 (7)0.1898 (4)0.1989 (4)0.0297 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02302 (10)0.02099 (10)0.02179 (10)0.00216 (6)0.00085 (6)0.00178 (6)
O10.061 (2)0.038 (2)0.0429 (19)0.0198 (17)0.0157 (17)0.0025 (16)
O20.0482 (19)0.0342 (17)0.0309 (16)0.0066 (15)0.0104 (14)0.0049 (14)
O30.0393 (18)0.048 (2)0.0352 (18)0.0038 (16)0.0111 (14)0.0087 (17)
C10.026 (2)0.0202 (19)0.030 (2)0.0042 (16)0.0004 (16)0.0020 (17)
C20.033 (2)0.025 (2)0.032 (2)0.0043 (18)0.0055 (18)0.0014 (18)
C30.027 (2)0.034 (2)0.041 (2)0.0004 (19)0.0089 (18)0.003 (2)
C40.024 (2)0.033 (2)0.043 (3)0.0007 (18)0.0035 (19)0.005 (2)
C50.029 (2)0.033 (2)0.026 (2)0.0023 (18)0.0031 (16)0.0063 (19)
C60.031 (2)0.0174 (19)0.030 (2)0.0057 (15)0.0030 (17)0.0006 (17)
C70.034 (2)0.033 (2)0.028 (2)0.0051 (19)0.0054 (18)0.0017 (19)
C80.028 (2)0.025 (2)0.028 (2)0.0016 (17)0.0002 (17)0.0061 (17)
C90.032 (2)0.024 (2)0.032 (2)0.0029 (17)0.0022 (18)0.0035 (18)
Geometric parameters (Å, º) top
Re1—C81.909 (4)C2—C31.399 (6)
Re1—C91.905 (4)C2—H21.0000
Re1—C71.902 (4)C7—O11.163 (5)
Re1—C32.307 (4)C1—C61.434 (6)
Re1—C42.302 (4)C1—C51.450 (6)
Re1—C52.303 (4)C6—C6i1.167 (8)
Re1—C22.313 (4)C5—C41.405 (6)
Re1—C12.319 (4)C5—H51.0000
C9—O31.158 (5)C4—C31.434 (7)
O2—C81.156 (5)C4—H41.0000
C2—C11.433 (6)C3—H31.0000
C8—Re1—C989.01 (18)C3—C2—Re172.1 (3)
C8—Re1—C789.34 (18)C1—C2—H2125.6
C9—Re1—C789.10 (18)C3—C2—H2125.6
C8—Re1—C3152.44 (17)Re1—C2—H2125.6
C9—Re1—C3117.10 (18)O1—C7—Re1178.1 (4)
C7—Re1—C399.15 (17)C2—C1—C6125.9 (4)
C8—Re1—C4116.92 (17)C2—C1—C5106.8 (4)
C9—Re1—C4153.21 (19)C6—C1—C5127.1 (4)
C7—Re1—C497.35 (18)C2—C1—Re171.7 (2)
C3—Re1—C436.24 (16)C6—C1—Re1125.4 (3)
C8—Re1—C593.93 (16)C5—C1—Re171.1 (2)
C9—Re1—C5144.53 (16)C6i—C6—C1177.6 (6)
C7—Re1—C5126.23 (16)C4—C5—C1107.8 (4)
C3—Re1—C559.94 (16)C4—C5—Re172.2 (2)
C4—Re1—C535.54 (16)C1—C5—Re172.3 (2)
C8—Re1—C2140.46 (16)C4—C5—H5126.0
C9—Re1—C296.46 (17)C1—C5—H5126.0
C7—Re1—C2129.73 (18)Re1—C5—H5126.0
C3—Re1—C235.25 (15)O2—C8—Re1177.0 (3)
C4—Re1—C259.65 (16)C5—C4—C3108.4 (4)
C5—Re1—C260.22 (15)C5—C4—Re172.3 (2)
C8—Re1—C1105.40 (16)C3—C4—Re172.1 (2)
C9—Re1—C1108.87 (16)C5—C4—H4125.7
C7—Re1—C1156.59 (17)C3—C4—H4125.7
C3—Re1—C159.67 (15)Re1—C4—H4125.7
C4—Re1—C159.90 (15)C2—C3—C4108.2 (4)
C5—Re1—C136.56 (14)C2—C3—Re172.6 (2)
C2—Re1—C136.05 (15)C4—C3—Re171.7 (3)
O3—C9—Re1178.2 (4)C2—C3—H3125.8
C1—C2—C3108.7 (4)C4—C3—H3125.8
C1—C2—Re172.2 (2)Re1—C3—H3125.8
C8—Re1—C2—C117.1 (4)C7—Re1—C5—C441.1 (3)
C9—Re1—C2—C1113.4 (3)C3—Re1—C5—C437.5 (3)
C7—Re1—C2—C1152.4 (2)C2—Re1—C5—C478.4 (3)
C3—Re1—C2—C1117.2 (4)C1—Re1—C5—C4116.0 (4)
C4—Re1—C2—C179.5 (3)C8—Re1—C5—C1110.7 (3)
C5—Re1—C2—C138.2 (2)C9—Re1—C5—C116.9 (4)
C8—Re1—C2—C3134.3 (3)C7—Re1—C5—C1157.2 (3)
C9—Re1—C2—C3129.4 (3)C3—Re1—C5—C178.5 (3)
C7—Re1—C2—C335.2 (4)C4—Re1—C5—C1116.0 (4)
C4—Re1—C2—C337.7 (3)C2—Re1—C5—C137.6 (2)
C5—Re1—C2—C379.0 (3)C1—C5—C4—C30.6 (5)
C1—Re1—C2—C3117.2 (4)Re1—C5—C4—C363.4 (3)
C3—C2—C1—C6175.7 (4)C1—C5—C4—Re164.0 (3)
Re1—C2—C1—C6121.0 (4)C8—Re1—C4—C554.6 (3)
C3—C2—C1—C50.5 (5)C9—Re1—C4—C5109.6 (4)
Re1—C2—C1—C562.9 (3)C7—Re1—C4—C5147.6 (3)
C3—C2—C1—Re163.4 (3)C3—Re1—C4—C5116.9 (4)
C8—Re1—C1—C2168.8 (2)C2—Re1—C4—C580.2 (3)
C9—Re1—C1—C274.5 (3)C1—Re1—C4—C538.2 (3)
C7—Re1—C1—C263.9 (5)C8—Re1—C4—C3171.5 (3)
C3—Re1—C1—C236.5 (2)C9—Re1—C4—C37.2 (5)
C4—Re1—C1—C278.7 (3)C7—Re1—C4—C395.5 (3)
C5—Re1—C1—C2115.8 (3)C5—Re1—C4—C3116.9 (4)
C8—Re1—C1—C647.2 (4)C2—Re1—C4—C336.7 (3)
C9—Re1—C1—C647.1 (4)C1—Re1—C4—C378.7 (3)
C7—Re1—C1—C6174.5 (4)C1—C2—C3—C40.1 (5)
C3—Re1—C1—C6158.0 (4)Re1—C2—C3—C463.3 (3)
C4—Re1—C1—C6159.8 (4)C1—C2—C3—Re163.4 (3)
C5—Re1—C1—C6122.6 (5)C5—C4—C3—C20.3 (5)
C2—Re1—C1—C6121.5 (5)Re1—C4—C3—C263.9 (3)
C8—Re1—C1—C575.4 (3)C5—C4—C3—Re163.6 (3)
C9—Re1—C1—C5169.7 (3)C8—Re1—C3—C2100.2 (4)
C7—Re1—C1—C551.9 (5)C9—Re1—C3—C259.7 (3)
C3—Re1—C1—C579.3 (3)C7—Re1—C3—C2153.4 (3)
C4—Re1—C1—C537.1 (2)C4—Re1—C3—C2116.7 (4)
C2—Re1—C1—C5115.8 (3)C5—Re1—C3—C279.9 (3)
C2—C1—C5—C40.7 (5)C1—Re1—C3—C237.3 (3)
C6—C1—C5—C4175.4 (4)C8—Re1—C3—C416.5 (5)
Re1—C1—C5—C464.0 (3)C9—Re1—C3—C4176.3 (3)
C2—C1—C5—Re163.3 (3)C7—Re1—C3—C490.0 (3)
C6—C1—C5—Re1120.6 (4)C5—Re1—C3—C436.8 (3)
C8—Re1—C5—C4133.2 (3)C2—Re1—C3—C4116.7 (4)
C9—Re1—C5—C4133.0 (3)C1—Re1—C3—C479.4 (3)
Symmetry code: (i) x+2, y+1, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula[Mn(C5H4I)(CO)3][Mn2(C12H8)(CO)6][Re(C5H4I)(CO)3][Re2(C12H8)(CO)6]
Mr329.95430.12461.21692.64
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/cOrthorhombic, P212121Monoclinic, P21/c
Temperature (K)100100100100
a, b, c (Å)7.2696 (5), 10.7776 (7), 12.0288 (8)6.4096 (10), 10.9991 (16), 11.9798 (18)7.4117 (14), 10.922 (2), 11.987 (2)6.2633 (10), 11.7262 (18), 11.8471 (18)
α, β, γ (°)90, 90, 9090, 100.507 (2), 9090, 90, 9090, 98.206 (2), 90
V3)942.44 (11)830.4 (2)970.3 (3)861.2 (2)
Z4242
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)4.641.5515.6714.08
Crystal size (mm)0.20 × 0.15 × 0.070.31 × 0.11 × 0.100.14 × 0.10 × 0.070.20 × 0.11 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detectorBruker SMART APEXII CCD area-detectorBruker SMART APEXII CCD area-detectorBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.427, 0.7170.645, 0.8600.218, 0.4070.165, 0.364
No. of measured, independent and
observed [I > 2σ(I)] reflections
9507, 2278, 2161 12974, 2552, 2211 9533, 2342, 2276 8399, 2068, 1817
Rint0.0310.0370.0360.035
(sin θ/λ)max1)0.6600.7170.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.048, 1.06 0.028, 0.071, 1.05 0.018, 0.041, 0.99 0.021, 0.051, 1.02
No. of reflections2278255223422068
No. of parameters118118118118
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.380.42, 0.241.60, 1.391.48, 0.80
Absolute structureFlack (1983), with how many Friedel pairs??Flack (1983), with how many Friedel pairs??
Absolute structure parameter0.05 (3)?0.015 (7)?

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Mean values of selected geometric parameters (Å and °) for (I), (II), (III) and (IV), and from the CSD top
Parameter(I)(II)CSD (M = Mn)
C—C for Cp'1.417 (5)1.425 (2)1.415
M—C for Cp'2.144 (3)2.152 (2)2.138
M—C(O)1.796 (3)1.800 (2)1.790
C—O1.153 (4)1.149 (2)1.148
M1···Cg11.773 (2)1.777 (1)1.771
(O)C—M—C(O)91.78 (15)91.79 (6)91.94
M—C—O178.6 (3)178.84 (13)178.2
Parameter(III)(IV)CSD (M = Re)
C—C for Cp'1.423 (8)1.423 (6)1.419
M—C for Cp'2.297 (5)2.307 (5)2.299
M—C(O)1.912 (5)1.907 (5)1.902
C—O1.145 (6)1.157 (6)1.156
M1···Cg11.952 (2)1.964 (2)1.957
(O)C—M—C(O)89.6 (2)89.2 (2)89.8
M—C—O177.6 (5)178.0 (4)177.1
Cp' is the C5H4X ring. M is Mn or Re. Cg1 is the centroid of the C5H4X ring.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds