Download citation
Download citation
link to html
The compounds BaLn2Se4 (Ln = rare-earth metal = lanthanide = Er, Tm and Yb), namely barium di(erbium/thulium/ytterbium) tetra­selenide, crystallize in the ortho­rhom­bic space group Pnma in the CaFe2O4 structure type. In this structure type, all atoms possess m symmetry. The Ln atoms are octa­hedrally coordinated by six Se atoms. A three-dimensional channel structure is formed by the corner- and edge-sharing of these LnSe6 octa­hedra. The Ba atoms are coordinated to eight Se atoms in a bicapped trigonal-prismatic arrangement, and they occupy the channels of the three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109030571/sq3208sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030571/sq3208Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030571/sq3208IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030571/sq3208IIIsup4.hkl
Contains datablock III

Comment top

Ternary compounds of the family ALn2Q4 (A = alkaline earth; Ln = lanthanide; Q = S, Se and Te) have been extensively studied because of their magnetic and optical properties. Additionally, these compounds present intriguing structural variations. Members of this family crystallize in four structure types, namely MgAl2O4 (Passerini, 1930), Th3P4 (Meisel, 1939), Yb3S4 (Chevalier et al., 1967), and CaFe2O4 (Decker & Kasper, 1957). The ALn2Q4 compounds in the MgAl2O4 structure type have A replacing Mg and Ln replacing Al. Those in the Th3P4 structure type have the A and Ln cations disordered over the Th site in the ratio of 1:2. Those in theYb3S4 structure type have the A cation replacing the one Yb2+ site and the Ln cations replacing the two Yb3+ sites. The ALn2Q4 compounds in the CaFe2O4 structure type have A replacing Ca and Ln replacing Fe.

The members of the BaLn2Q4 (Q = S, Se and Te) subfamily whose structures are known adopt either the Th3P4 or the CaFe2O4 structure type. The present compounds, BaLn2Se4 (Ln = Er, Tm and Yb), crystallize in space group Pnma of the orthorhombic system in the CaFe2O4 structure type. Fig. 1 shows the unit cell of these BaLn2Se4 compounds. The formal oxidation states may be assigned as Ba2+, Ln3+ and Se2-. The two crystallographically unique Ln atoms are six-coordinated, bonded to an octahedral arrangement of Se atoms. The Ba atom is surrounded by eight Se atoms in a bicapped trigonal–prismatic geometry. Each LnSe6 octahedron shares edges with a neighboring octahedron to form two types of dimers, Ln(1)2Se10 and Ln(2)2Se10. These dimers share edges in the [010] direction to form infinite chains. Additionally, in the (010) plane each Ln(1)2Se10 dimer shares four corners with Ln(2)2Se10 dimers, and vice versa, to form infinite sheets. The combination of chains in the [010] direction and sheets in the (010) plane forms a three-dimensional channel structure, with Ba2+ cations residing in the channels.

Fig. 2 shows the relation between the cell volume and lanthanide element (number of f electrons) for the present and previously known members of the BaLn2Q4 subfamily (Patrie et al., 1964; Flahaut et al., 1965; Carpenter & Hwu, 1992b; Narducci et al., 2000). The trend in cell volume versus number of f electrons approximately follows the lanthanide contraction. The earlier lanthanides of Te could not be synthesized (Narducci et al., 2000). The later lanthanides of all three chalcogens crystallize in the CaFe2O4 structure type, whereas the earlier lanthanides of Se and S crystallize in the Th3P4 structure type. It is not clear why there is this change from the lower density CaFe2O4 structure type to the higher density Th3P4 structure type between Nd3+ and Sm3+.

Non-stoichiometry has been claimed in some of the ALn2Q4 compounds on the basis of single-crystal X-ray diffraction data. For example, Ba1-xSm2S4- x (x = 0.10; Carpenter & Hwu, 1992b) is said to exhibit deficiencies on both the alkaline-earth and the chalcogen atoms. Additionally, Ca1-xYb2+xS4 (x = 0.04; Carpenter & Hwu, 1992a), of the Yb3S4 structure type, is said to show a slight deficiency of Ca, which is compensated for by a mixing of Yb2+ on the Ca2+ site. Such mixing is possible because the ionic radii for seven-coordinate Ca2+ and Yb2+ are approximately equal (1.06 and 1.08 Å, respectively; Shannon, 1976). Refinement of the present BaLn2Se4 compounds in which the occupancy factors were allowed to vary revealed no evidence either of alkaline-earth or chalcogen deficiencies or of Ba2+ and Yb2+ disorder. Mixing of Ba2+ and Yb2+ on the eight-coordinate alkaline-earth site is disfavored because of the mismatch in ionic radii (1.42 and 1.14 Å, respectively; Shannon, 1976). In the absence of support from other physical measurements, such claims, including the present one, based solely on X-ray diffraction data, must be viewed as provisional.

Related literature top

For related literature, see: Carpenter & Hwu (1992a, 1992b); Chevalier et al. (1967); Decker & Kasper (1957); Flahaut et al. (1965); Gelato & Parthé (1987); Meisel (1939); Narducci et al. (2000); Passerini (1930); Patrie et al. (1964); Shannon (1976).

Experimental top

The BaLn2Se4 compounds were synthesized by high-temperature solid-state reactions. The following reagents were used as obtained: Er (Alfa Aesar, 99.5%), Tm (Strem Chemicals, 99.9%), Yb (Alfa Aesar, 99.99%), filings from a Ba rod (Johnson Matthey, 99.5%), Se (Cerac, 99.999%), and Sb (Aldrich, 99.5%). The BaLn2Se4 compounds were synthesized from Ln (0.13 mmol), Ba (0.12 mmol) and Se (0.76 mmol). Sb (0.12 mmol) was added as a flux to aid in crystallization of the final product. The reactants were loaded into fused-silica tubes under an Ar atmosphere in a glove-box. The tubes were evacuated to 10 -4 Torr, flame sealed and then placed in a computer-controlled furnace. The tubes were heated to 1123 K over a period of 17 h, held at 1123 K for 6 d, cooled at 3 K h-1 to 673 K and annealed at 673 K for one week, and finally the furnace was turned off. The resulting thin orange (Er and Tm) and red (Yb) needles were manually extracted from the product. The yield was approximately 30% based on Ln. The product also contained a gray metallic melt, as well as a black powder. Analysis of the crystals with an EDX-equipped (energy-dispersive X-ray spectroscopy) Hitachi S-3400 scanning electron microscope showed the presence of Ba, Ln and Se, but not of Sb.

Refinement top

The structures were standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: CrystalMaker (Palmer, 2008); software used to prepare material for publication: SHELXTL or SHELXL97 (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. A view down [010] of the unit cell of BaLn2Se4 (Ln = Er, Tm and Yb), with displacement ellipsoids at the 95% probability level.
[Figure 2] Fig. 2. A plot of cell volume versus the number of f electrons for the BaLn2Q4 subfamily. An asterisk indicates a result from single-crystal X-ray diffraction data; otherwise, the result is from powder X-ray diffraction data.
(I) Barium dierbium tetraselenide top
Crystal data top
BaEr2Se4F(000) = 1312
Mr = 787.70Dx = 6.693 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5096 reflections
a = 12.628 (3) Åθ = 2.7–28.0°
b = 4.1398 (8) ŵ = 44.77 mm1
c = 14.953 (3) ÅT = 100 K
V = 781.7 (3) Å3Needle, orange
Z = 40.30 × 0.05 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
1036 independent reflections
Radiation source: fine-focus sealed tube987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: numerical
face indexed (SADABS; Sheldrick, 2008b)
h = 1616
Tmin = 0.025, Tmax = 0.196k = 55
8227 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.03Fo2)2]
wR(F2) = 0.066(Δ/σ)max = 0.001
S = 1.54Δρmax = 1.59 e Å3
1036 reflectionsΔρmin = 2.68 e Å3
44 parametersExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00353 (19)
Crystal data top
BaEr2Se4V = 781.7 (3) Å3
Mr = 787.70Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.628 (3) ŵ = 44.77 mm1
b = 4.1398 (8) ÅT = 100 K
c = 14.953 (3) Å0.30 × 0.05 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
1036 independent reflections
Absorption correction: numerical
face indexed (SADABS; Sheldrick, 2008b)
987 reflections with I > 2σ(I)
Tmin = 0.025, Tmax = 0.196Rint = 0.034
8227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02544 parameters
wR(F2) = 0.0660 restraints
S = 1.54Δρmax = 1.59 e Å3
1036 reflectionsΔρmin = 2.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.07959 (3)0.25000.40062 (3)0.00793 (15)
Er20.56361 (3)0.25000.60847 (3)0.00805 (15)
Ba10.24055 (5)0.25000.66494 (4)0.00781 (17)
Se10.08598 (8)0.25000.07699 (7)0.0098 (2)
Se20.29368 (8)0.25000.33788 (6)0.0079 (2)
Se30.37372 (8)0.25000.02541 (6)0.0088 (2)
Se40.47571 (8)0.25000.78325 (6)0.0078 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.0088 (2)0.0078 (3)0.0071 (2)0.0000.00035 (16)0.000
Er20.0090 (2)0.0081 (3)0.0070 (3)0.0000.00037 (16)0.000
Ba10.0082 (3)0.0076 (3)0.0076 (3)0.0000.0003 (2)0.000
Se10.0108 (5)0.0096 (5)0.0089 (5)0.0000.0008 (4)0.000
Se20.0081 (5)0.0073 (5)0.0083 (5)0.0000.0006 (4)0.000
Se30.0098 (5)0.0091 (5)0.0075 (5)0.0000.0007 (4)0.000
Se40.0096 (5)0.0082 (5)0.0057 (5)0.0000.0014 (4)0.000
Geometric parameters (Å, º) top
Er1—Se4i2.8022 (8)Ba1—Se43.4567 (13)
Er1—Se4ii2.8022 (8)Se1—Er2iii2.7875 (12)
Er1—Se3iii2.8253 (12)Se1—Er2i2.8416 (8)
Er1—Se3iv2.8486 (8)Se1—Er2ii2.8416 (8)
Er1—Se3v2.8486 (8)Se1—Ba1ii3.2884 (10)
Er1—Se22.8618 (12)Se1—Ba1i3.2884 (10)
Er2—Se1vi2.7876 (12)Se2—Er2vii2.8594 (8)
Er2—Se42.8395 (11)Se2—Er2viii2.8594 (8)
Er2—Se1v2.8415 (8)Se2—Ba1i3.3404 (10)
Er2—Se1iv2.8415 (8)Se2—Ba1ii3.3404 (10)
Er2—Se2vii2.8594 (8)Se3—Er1vi2.8253 (12)
Er2—Se2viii2.8594 (8)Se3—Er1i2.8486 (8)
Ba1—Se3v3.2741 (10)Se3—Er1ii2.8486 (8)
Ba1—Se3iv3.2741 (10)Se3—Ba1ii3.2742 (10)
Ba1—Se1iv3.2884 (10)Se3—Ba1i3.2742 (10)
Ba1—Se1v3.2884 (10)Se4—Er1iv2.8022 (8)
Ba1—Se2iv3.3404 (10)Se4—Er1v2.8022 (8)
Ba1—Se2v3.3404 (10)Se4—Ba1x3.4330 (13)
Ba1—Se4ix3.4330 (13)
Se4i—Er1—Se4ii95.24 (3)Se2iv—Ba1—Er2ix44.152 (17)
Se4i—Er1—Se3iii90.91 (3)Se2v—Ba1—Er2ix44.152 (17)
Se4ii—Er1—Se3iii90.91 (3)Se4ix—Ba1—Er2ix43.555 (18)
Se4i—Er1—Se3iv176.99 (3)Se4—Ba1—Er2ix92.62 (3)
Se4ii—Er1—Se3iv85.71 (2)Se3v—Ba1—Ba1xi129.213 (14)
Se3iii—Er1—Se3iv86.22 (3)Se3iv—Ba1—Ba1xi50.788 (14)
Se4i—Er1—Se3v85.71 (2)Se1iv—Ba1—Ba1xi50.991 (15)
Se4ii—Er1—Se3v176.99 (3)Se1v—Ba1—Ba1xi129.010 (15)
Se3iii—Er1—Se3v86.22 (3)Se2iv—Ba1—Ba1xi51.708 (14)
Se3iv—Er1—Se3v93.21 (3)Se2v—Ba1—Ba1xi128.290 (14)
Se4i—Er1—Se291.72 (3)Se4ix—Ba1—Ba1xi90.0
Se4ii—Er1—Se291.72 (3)Se4—Ba1—Ba1xi90.0
Se3iii—Er1—Se2176.09 (3)Er2ix—Ba1—Ba1xi90.0
Se3iv—Er1—Se291.10 (3)Se3v—Ba1—Ba1xii50.788 (14)
Se3v—Er1—Se291.10 (3)Se3iv—Ba1—Ba1xii129.213 (14)
Se1vi—Er2—Se4162.81 (4)Se1iv—Ba1—Ba1xii129.010 (15)
Se1vi—Er2—Se1v84.41 (3)Se1v—Ba1—Ba1xii50.991 (15)
Se4—Er2—Se1v83.84 (3)Se2iv—Ba1—Ba1xii128.290 (14)
Se1vi—Er2—Se1iv84.41 (3)Se2v—Ba1—Ba1xii51.708 (14)
Se4—Er2—Se1iv83.84 (3)Se4ix—Ba1—Ba1xii90.0
Se1v—Er2—Se1iv93.51 (4)Se4—Ba1—Ba1xii90.0
Se1vi—Er2—Se2vii102.43 (3)Er2ix—Ba1—Ba1xii90.0
Se4—Er2—Se2vii89.32 (3)Ba1xi—Ba1—Ba1xii180.0
Se1v—Er2—Se2vii173.12 (3)Se3v—Ba1—Er2107.60 (2)
Se1iv—Er2—Se2vii86.46 (3)Se3iv—Ba1—Er2107.60 (2)
Se1vi—Er2—Se2viii102.43 (3)Se1iv—Ba1—Er242.824 (16)
Se4—Er2—Se2viii89.32 (3)Se1v—Ba1—Er242.824 (16)
Se1v—Er2—Se2viii86.46 (3)Se2iv—Ba1—Er2106.48 (2)
Se1iv—Er2—Se2viii173.12 (3)Se2v—Ba1—Er2106.48 (2)
Se2vii—Er2—Se2viii92.75 (3)Se4ix—Ba1—Er2178.65 (2)
Se1vi—Er2—Ba1x140.78 (3)Se4—Ba1—Er242.48 (2)
Se4—Er2—Ba1x56.42 (3)Er2ix—Ba1—Er2135.099 (17)
Se1v—Er2—Ba1x120.28 (2)Ba1xi—Ba1—Er290.0
Se1iv—Er2—Ba1x120.28 (2)Ba1xii—Ba1—Er290.0
Se2vii—Er2—Ba1x54.462 (19)Er2iii—Se1—Er2i95.59 (3)
Se2viii—Er2—Ba1x54.462 (19)Er2iii—Se1—Er2ii95.59 (3)
Se1vi—Er2—Ba1107.51 (3)Er2i—Se1—Er2ii93.51 (4)
Se4—Er2—Ba155.29 (2)Er2iii—Se1—Ba1ii117.74 (3)
Se1v—Er2—Ba151.87 (2)Er2i—Se1—Ba1ii146.63 (4)
Se1iv—Er2—Ba151.87 (2)Er2ii—Se1—Ba1ii85.30 (2)
Se2vii—Er2—Ba1124.08 (2)Er2iii—Se1—Ba1i117.74 (3)
Se2viii—Er2—Ba1124.08 (2)Er2i—Se1—Ba1i85.30 (2)
Ba1x—Er2—Ba1111.710 (16)Er2ii—Se1—Ba1i146.63 (4)
Se3v—Ba1—Se3iv78.42 (3)Ba1ii—Se1—Ba1i78.02 (3)
Se3v—Ba1—Se1iv115.89 (3)Er2vii—Se2—Er2viii92.75 (3)
Se3iv—Ba1—Se1iv68.95 (3)Er2vii—Se2—Er1120.23 (3)
Se3v—Ba1—Se1v68.95 (3)Er2viii—Se2—Er1120.23 (3)
Se3iv—Ba1—Se1v115.89 (3)Er2vii—Se2—Ba1i138.36 (4)
Se1iv—Ba1—Se1v78.02 (3)Er2viii—Se2—Ba1i81.385 (19)
Se3v—Ba1—Se2iv145.90 (3)Er1—Se2—Ba1i97.56 (3)
Se3iv—Ba1—Se2iv92.55 (2)Er2vii—Se2—Ba1ii81.385 (19)
Se1iv—Ba1—Se2iv90.33 (2)Er2viii—Se2—Ba1ii138.36 (4)
Se1v—Ba1—Se2iv141.80 (3)Er1—Se2—Ba1ii97.56 (3)
Se3v—Ba1—Se2v92.55 (2)Ba1i—Se2—Ba1ii76.58 (3)
Se3iv—Ba1—Se2v145.90 (3)Er1vi—Se3—Er1i93.78 (3)
Se1iv—Ba1—Se2v141.80 (3)Er1vi—Se3—Er1ii93.78 (3)
Se1v—Ba1—Se2v90.33 (2)Er1i—Se3—Er1ii93.21 (3)
Se2iv—Ba1—Se2v76.58 (3)Er1vi—Se3—Ba1ii98.98 (3)
Se3v—Ba1—Se4ix73.41 (2)Er1i—Se3—Ba1ii165.48 (4)
Se3iv—Ba1—Se4ix73.41 (2)Er1ii—Se3—Ba1ii92.828 (18)
Se1iv—Ba1—Se4ix137.669 (18)Er1vi—Se3—Ba1i98.98 (3)
Se1v—Ba1—Se4ix137.669 (18)Er1i—Se3—Ba1i92.828 (18)
Se2iv—Ba1—Se4ix72.50 (2)Er1ii—Se3—Ba1i165.48 (4)
Se2v—Ba1—Se4ix72.50 (2)Ba1ii—Se3—Ba1i78.42 (3)
Se3v—Ba1—Se4134.81 (2)Er1iv—Se4—Er1v95.24 (3)
Se3iv—Ba1—Se4134.81 (2)Er1iv—Se4—Er2132.368 (17)
Se1iv—Ba1—Se468.43 (3)Er1v—Se4—Er2132.368 (17)
Se1v—Ba1—Se468.43 (3)Er1iv—Se4—Ba1x95.82 (3)
Se2iv—Ba1—Se473.44 (3)Er1v—Se4—Ba1x95.82 (3)
Se2v—Ba1—Se473.44 (3)Er2—Se4—Ba1x80.03 (3)
Se4ix—Ba1—Se4136.18 (2)Er1iv—Se4—Ba196.11 (3)
Se3v—Ba1—Er2ix106.82 (2)Er1v—Se4—Ba196.11 (3)
Se3iv—Ba1—Er2ix106.82 (2)Er2—Se4—Ba182.23 (3)
Se1iv—Ba1—Er2ix134.480 (18)Ba1x—Se4—Ba1162.26 (3)
Se1v—Ba1—Er2ix134.480 (18)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1; (ix) x1/2, y, z+3/2; (x) x+1/2, y, z+3/2; (xi) x, y+1, z; (xii) x, y1, z.
(II) Barium dithulium tetraselenide top
Crystal data top
BaTm2Se4F(000) = 1320
Mr = 791.04Dx = 6.763 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5096 reflections
a = 12.605 (3) Åθ = 2.7–28.2°
b = 4.1311 (8) ŵ = 46.28 mm1
c = 14.919 (3) ÅT = 110 K
V = 776.9 (3) Å3Needle, orange
Z = 40.22 × 0.06 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
1070 independent reflections
Radiation source: fine-focus sealed tube1041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: numerical
face indexed (SADABS; Sheldrick, 2008b)
h = 1616
Tmin = 0.021, Tmax = 0.178k = 55
8761 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.02Fo2)2]
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 1.27Δρmax = 1.69 e Å3
1070 reflectionsΔρmin = 1.36 e Å3
44 parametersExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00248 (10)
Crystal data top
BaTm2Se4V = 776.9 (3) Å3
Mr = 791.04Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.605 (3) ŵ = 46.28 mm1
b = 4.1311 (8) ÅT = 110 K
c = 14.919 (3) Å0.22 × 0.06 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
1070 independent reflections
Absorption correction: numerical
face indexed (SADABS; Sheldrick, 2008b)
1041 reflections with I > 2σ(I)
Tmin = 0.021, Tmax = 0.178Rint = 0.035
8761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01844 parameters
wR(F2) = 0.0420 restraints
S = 1.27Δρmax = 1.69 e Å3
1070 reflectionsΔρmin = 1.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tm10.07960 (2)0.25000.400662 (17)0.00601 (9)
Tm20.56339 (2)0.25000.608522 (18)0.00611 (9)
Ba10.24038 (3)0.25000.66510 (2)0.00655 (10)
Se10.08559 (5)0.25000.07662 (4)0.00771 (14)
Se20.29393 (5)0.25000.33872 (4)0.00648 (14)
Se30.37430 (5)0.25000.02522 (4)0.00694 (14)
Se40.47559 (5)0.25000.78331 (4)0.00654 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm10.00671 (15)0.00403 (15)0.00729 (15)0.0000.00016 (9)0.000
Tm20.00711 (15)0.00423 (15)0.00699 (15)0.0000.00041 (9)0.000
Ba10.00718 (19)0.00433 (18)0.00813 (19)0.0000.00010 (13)0.000
Se10.0088 (3)0.0054 (3)0.0089 (3)0.0000.0004 (2)0.000
Se20.0064 (3)0.0041 (3)0.0089 (3)0.0000.0001 (2)0.000
Se30.0076 (3)0.0051 (3)0.0080 (3)0.0000.0005 (2)0.000
Se40.0080 (3)0.0047 (3)0.0069 (3)0.0000.0010 (2)0.000
Geometric parameters (Å, º) top
Tm1—Se4i2.7957 (6)Ba1—Se43.4496 (9)
Tm1—Se4ii2.7957 (6)Se1—Tm2iii2.7763 (9)
Tm1—Se3iii2.8141 (8)Se1—Tm2i2.8318 (6)
Tm1—Se3iv2.8386 (6)Se1—Tm2ii2.8318 (6)
Tm1—Se3v2.8386 (6)Se1—Ba1ii3.2896 (7)
Tm1—Se22.8552 (9)Se1—Ba1i3.2896 (7)
Tm2—Se1vi2.7763 (9)Se2—Tm2vii2.8497 (6)
Tm2—Se1v2.8318 (6)Se2—Tm2viii2.8497 (6)
Tm2—Se1iv2.8318 (6)Se2—Ba1i3.3412 (7)
Tm2—Se42.8328 (8)Se2—Ba1ii3.3412 (7)
Tm2—Se2vii2.8497 (6)Se3—Tm1vi2.8141 (8)
Tm2—Se2viii2.8497 (6)Se3—Tm1i2.8386 (6)
Ba1—Se3v3.2728 (7)Se3—Tm1ii2.8386 (6)
Ba1—Se3iv3.2728 (7)Se3—Ba1ii3.2727 (7)
Ba1—Se1iv3.2896 (7)Se3—Ba1i3.2727 (7)
Ba1—Se1v3.2896 (7)Se4—Tm1iv2.7957 (6)
Ba1—Se2iv3.3411 (7)Se4—Tm1v2.7957 (6)
Ba1—Se2v3.3411 (7)Se4—Ba1x3.4251 (10)
Ba1—Se4ix3.4252 (10)
Se4i—Tm1—Se4ii95.27 (2)Se2iv—Ba1—Tm2ix44.092 (12)
Se4i—Tm1—Se3iii90.990 (18)Se2v—Ba1—Tm2ix44.092 (12)
Se4ii—Tm1—Se3iii90.990 (18)Se4ix—Ba1—Tm2ix43.568 (12)
Se4i—Tm1—Se3iv176.93 (2)Se4—Ba1—Tm2ix92.70 (2)
Se4ii—Tm1—Se3iv85.602 (19)Se3v—Ba1—Ba1xi129.133 (10)
Se3iii—Tm1—Se3iv86.044 (18)Se3iv—Ba1—Ba1xi50.865 (10)
Se4i—Tm1—Se3v85.60 (2)Se1iv—Ba1—Ba1xi51.105 (10)
Se4ii—Tm1—Se3v176.93 (2)Se1v—Ba1—Ba1xi128.895 (11)
Se3iii—Tm1—Se3v86.044 (18)Se2iv—Ba1—Ba1xi51.814 (11)
Se3iv—Tm1—Se3v93.38 (2)Se2v—Ba1—Ba1xi128.187 (11)
Se4i—Tm1—Se291.876 (17)Se4ix—Ba1—Ba1xi90.0
Se4ii—Tm1—Se291.876 (18)Se4—Ba1—Ba1xi90.0
Se3iii—Tm1—Se2175.746 (19)Tm2ix—Ba1—Ba1xi90.0
Se3iv—Tm1—Se291.042 (17)Se3v—Ba1—Ba1xii50.865 (10)
Se3v—Tm1—Se291.042 (17)Se3iv—Ba1—Ba1xii129.133 (11)
Se1vi—Tm2—Se1v84.237 (18)Se1iv—Ba1—Ba1xii128.895 (11)
Se1vi—Tm2—Se1iv84.237 (17)Se1v—Ba1—Ba1xii51.105 (10)
Se1v—Tm2—Se1iv93.67 (2)Se2iv—Ba1—Ba1xii128.187 (11)
Se1vi—Tm2—Se4162.79 (2)Se2v—Ba1—Ba1xii51.814 (11)
Se1v—Tm2—Se484.013 (18)Se4ix—Ba1—Ba1xii90.0
Se1iv—Tm2—Se484.013 (18)Se4—Ba1—Ba1xii90.0
Se1vi—Tm2—Se2vii102.192 (17)Tm2ix—Ba1—Ba1xii90.0
Se1v—Tm2—Se2vii173.53 (2)Ba1xi—Ba1—Ba1xii180.0
Se1iv—Tm2—Se2vii86.34 (2)Se3v—Ba1—Tm2107.638 (15)
Se4—Tm2—Se2vii89.559 (18)Se3iv—Ba1—Tm2107.638 (15)
Se1vi—Tm2—Se2viii102.192 (17)Se1iv—Ba1—Tm242.740 (11)
Se1v—Tm2—Se2viii86.34 (2)Se1v—Ba1—Tm242.740 (11)
Se1iv—Tm2—Se2viii173.53 (2)Se2iv—Ba1—Tm2106.506 (14)
Se4—Tm2—Se2viii89.559 (18)Se2v—Ba1—Tm2106.506 (14)
Se2vii—Tm2—Se2viii92.91 (2)Se4ix—Ba1—Tm2178.728 (14)
Se1vi—Tm2—Ba1x140.770 (19)Se4—Ba1—Tm242.459 (15)
Se1v—Tm2—Ba1x120.380 (14)Tm2ix—Ba1—Tm2135.160 (11)
Se1iv—Tm2—Ba1x120.380 (14)Ba1xi—Ba1—Tm290.0
Se4—Tm2—Ba1x56.442 (19)Ba1xii—Ba1—Tm290.0
Se2vii—Tm2—Ba1x54.668 (13)Tm2iii—Se1—Tm2i95.762 (17)
Se2viii—Tm2—Ba1x54.669 (13)Tm2iii—Se1—Tm2ii95.762 (17)
Se1vi—Tm2—Ba1107.498 (16)Tm2i—Se1—Tm2ii93.67 (2)
Se1v—Tm2—Ba152.036 (13)Tm2iii—Se1—Ba1ii117.806 (18)
Se1iv—Tm2—Ba152.036 (14)Tm2i—Se1—Ba1ii146.38 (2)
Se4—Tm2—Ba155.290 (14)Tm2ii—Se1—Ba1ii85.224 (17)
Se2vii—Tm2—Ba1124.187 (15)Tm2iii—Se1—Ba1i117.806 (18)
Se2viii—Tm2—Ba1124.187 (15)Tm2i—Se1—Ba1i85.224 (17)
Ba1x—Tm2—Ba1111.732 (13)Tm2ii—Se1—Ba1i146.38 (2)
Se3v—Ba1—Se3iv78.27 (2)Ba1ii—Se1—Ba1i77.79 (2)
Se3v—Ba1—Se1iv115.78 (2)Tm2vii—Se2—Tm2viii92.91 (2)
Se3iv—Ba1—Se1iv69.042 (19)Tm2vii—Se2—Tm1120.516 (17)
Se3v—Ba1—Se1v69.042 (19)Tm2viii—Se2—Tm1120.516 (17)
Se3iv—Ba1—Se1v115.78 (2)Tm2vii—Se2—Ba1i138.06 (2)
Se1iv—Ba1—Se1v77.79 (2)Tm2viii—Se2—Ba1i81.240 (14)
Se3v—Ba1—Se2iv145.83 (2)Tm1—Se2—Ba1i97.382 (18)
Se3iv—Ba1—Se2iv92.695 (18)Tm2vii—Se2—Ba1ii81.240 (14)
Se1iv—Ba1—Se2iv90.531 (17)Tm2viii—Se2—Ba1ii138.06 (2)
Se1v—Ba1—Se2iv141.78 (2)Tm1—Se2—Ba1ii97.382 (18)
Se3v—Ba1—Se2v92.695 (18)Ba1i—Se2—Ba1ii76.37 (2)
Se3iv—Ba1—Se2v145.83 (2)Tm1vi—Se3—Tm1i93.955 (18)
Se1iv—Ba1—Se2v141.78 (2)Tm1vi—Se3—Tm1ii93.955 (18)
Se1v—Ba1—Se2v90.531 (17)Tm1i—Se3—Tm1ii93.38 (2)
Se2iv—Ba1—Se2v76.37 (2)Tm1vi—Se3—Ba1ii98.949 (19)
Se3v—Ba1—Se4ix73.317 (17)Tm1i—Se3—Ba1ii165.27 (2)
Se3iv—Ba1—Se4ix73.317 (17)Tm1ii—Se3—Ba1ii92.786 (16)
Se1iv—Ba1—Se4ix137.729 (12)Tm1vi—Se3—Ba1i98.949 (19)
Se1v—Ba1—Se4ix137.729 (12)Tm1i—Se3—Ba1i92.786 (16)
Se2iv—Ba1—Se4ix72.523 (15)Tm1ii—Se3—Ba1i165.27 (2)
Se2v—Ba1—Se4ix72.523 (15)Ba1ii—Se3—Ba1i78.27 (2)
Se3v—Ba1—Se4134.875 (13)Tm1iv—Se4—Tm1v95.26 (2)
Se3iv—Ba1—Se4134.875 (13)Tm1iv—Se4—Tm2132.355 (12)
Se1iv—Ba1—Se468.410 (18)Tm1v—Se4—Tm2132.355 (12)
Se1v—Ba1—Se468.410 (18)Tm1iv—Se4—Ba1x95.837 (17)
Se2iv—Ba1—Se473.435 (17)Tm1v—Se4—Ba1x95.837 (17)
Se2v—Ba1—Se473.435 (17)Tm2—Se4—Ba1x79.991 (19)
Se4ix—Ba1—Se4136.270 (16)Tm1iv—Se4—Ba196.104 (18)
Se3v—Ba1—Tm2ix106.777 (18)Tm1v—Se4—Ba196.104 (18)
Se3iv—Ba1—Tm2ix106.777 (18)Tm2—Se4—Ba182.25 (2)
Se1iv—Ba1—Tm2ix134.620 (12)Ba1x—Se4—Ba1162.24 (2)
Se1v—Ba1—Tm2ix134.620 (12)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1; (ix) x1/2, y, z+3/2; (x) x+1/2, y, z+3/2; (xi) x, y+1, z; (xii) x, y1, z.
(III) Barium diytterbium tetraselenide top
Crystal data top
BaYb2Se4F(000) = 1328
Mr = 799.26Dx = 6.901 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3836 reflections
a = 12.580 (3) Åθ = 2.7–28.1°
b = 4.1150 (8) ŵ = 47.99 mm1
c = 14.860 (3) ÅT = 100 K
V = 769.2 (3) Å3Needle, red
Z = 40.17 × 0.02 × 0.02 mm
Data collection top
Bruker APEXII
diffractometer
1056 independent reflections
Radiation source: fine-focus sealed tube1012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.7°, θmin = 2.1°
Absorption correction: numerical
face indexed (SADABS; Sheldrick, 2008b)
h = 1616
Tmin = 0.113, Tmax = 0.429k = 55
8818 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.02Fo2)2]
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 1.22Δρmax = 1.35 e Å3
1056 reflectionsΔρmin = 1.90 e Å3
44 parametersExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00203 (8)
Crystal data top
BaYb2Se4V = 769.2 (3) Å3
Mr = 799.26Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.580 (3) ŵ = 47.99 mm1
b = 4.1150 (8) ÅT = 100 K
c = 14.860 (3) Å0.17 × 0.02 × 0.02 mm
Data collection top
Bruker APEXII
diffractometer
1056 independent reflections
Absorption correction: numerical
face indexed (SADABS; Sheldrick, 2008b)
1012 reflections with I > 2σ(I)
Tmin = 0.113, Tmax = 0.429Rint = 0.034
8818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01844 parameters
wR(F2) = 0.0420 restraints
S = 1.22Δρmax = 1.35 e Å3
1056 reflectionsΔρmin = 1.90 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.07969 (2)0.25000.400853 (19)0.00455 (9)
Yb20.56265 (2)0.25000.608532 (19)0.00469 (9)
Ba10.24023 (3)0.25000.66531 (3)0.00510 (11)
Se10.08588 (6)0.25000.07627 (5)0.00704 (16)
Se20.29399 (6)0.25000.33990 (4)0.00513 (15)
Se30.37491 (5)0.25000.02522 (4)0.00620 (15)
Se40.47533 (6)0.25000.78319 (4)0.00529 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00415 (16)0.00423 (16)0.00526 (16)0.0000.00017 (11)0.000
Yb20.00455 (16)0.00427 (16)0.00526 (16)0.0000.00020 (11)0.000
Ba10.0047 (2)0.0046 (2)0.0060 (2)0.0000.00005 (15)0.000
Se10.0066 (3)0.0069 (3)0.0075 (3)0.0000.0002 (3)0.000
Se20.0039 (3)0.0045 (3)0.0071 (3)0.0000.0001 (3)0.000
Se30.0054 (3)0.0062 (3)0.0070 (3)0.0000.0004 (3)0.000
Se40.0057 (3)0.0052 (3)0.0051 (3)0.0000.0006 (3)0.000
Geometric parameters (Å, º) top
Yb1—Se4i2.7874 (6)Ba1—Se43.4374 (10)
Yb1—Se4ii2.7874 (6)Se1—Yb2iii2.7618 (9)
Yb1—Se3iii2.8005 (9)Se1—Yb2i2.8204 (6)
Yb1—Se3iv2.8240 (6)Se1—Yb2ii2.8204 (6)
Yb1—Se3v2.8240 (6)Se1—Ba1ii3.2816 (7)
Yb1—Se22.8438 (9)Se1—Ba1i3.2816 (8)
Yb2—Se1vi2.7617 (9)Se2—Yb2vii2.8412 (6)
Yb2—Se42.8183 (9)Se2—Yb2viii2.8412 (6)
Yb2—Se1v2.8203 (6)Se2—Ba1i3.3391 (8)
Yb2—Se1iv2.8203 (6)Se2—Ba1ii3.3391 (8)
Yb2—Se2vii2.8413 (6)Se3—Yb1vi2.8005 (9)
Yb2—Se2viii2.8413 (6)Se3—Yb1i2.8240 (6)
Ba1—Se3v3.2657 (7)Se3—Yb1ii2.8240 (6)
Ba1—Se3iv3.2657 (7)Se3—Ba1ii3.2657 (7)
Ba1—Se1iv3.2816 (7)Se3—Ba1i3.2657 (7)
Ba1—Se1v3.2816 (7)Se4—Yb1iv2.7874 (6)
Ba1—Se2iv3.3391 (8)Se4—Yb1v2.7874 (6)
Ba1—Se2v3.3391 (8)Se4—Ba1x3.4190 (10)
Ba1—Se4ix3.4190 (10)
Se4i—Yb1—Se4ii95.15 (3)Se2vii—Yb2—Ba1124.507 (16)
Se4i—Yb1—Se3iii91.01 (2)Se2viii—Yb2—Ba1124.507 (16)
Se4ii—Yb1—Se3iii91.01 (2)Ba1x—Yb2—Ba1111.860 (13)
Se4i—Yb1—Se3iv176.88 (2)Yb2xii—Yb2—Ba190.0
Se4ii—Yb1—Se3iv85.58 (2)Yb2xi—Yb2—Ba190.0
Se3iii—Yb1—Se3iv85.94 (2)Yb2viii—Yb2—Ba177.633 (13)
Se4i—Yb1—Se3v85.58 (2)Yb2vii—Yb2—Ba177.633 (13)
Se4ii—Yb1—Se3v176.88 (2)Se3v—Ba1—Se3iv78.10 (2)
Se3iii—Yb1—Se3v85.94 (2)Se3v—Ba1—Se1iv115.70 (2)
Se3iv—Yb1—Se3v93.53 (3)Se3iv—Ba1—Se1iv69.12 (2)
Se4i—Yb1—Se292.04 (2)Se3v—Ba1—Se1v69.12 (2)
Se4ii—Yb1—Se292.04 (2)Se3iv—Ba1—Se1v115.70 (2)
Se3iii—Yb1—Se2175.48 (2)Se1iv—Ba1—Se1v77.65 (2)
Se3iv—Yb1—Se290.961 (19)Se3v—Ba1—Se2iv145.72 (2)
Se3v—Yb1—Se290.961 (19)Se3iv—Ba1—Se2iv92.861 (19)
Se4i—Yb1—Yb1xi42.428 (13)Se1iv—Ba1—Se2iv90.737 (18)
Se4ii—Yb1—Yb1xi137.573 (13)Se1v—Ba1—Se2iv141.77 (2)
Se3iii—Yb1—Yb1xi90.0Se3v—Ba1—Se2v92.861 (19)
Se3iv—Yb1—Yb1xi136.767 (13)Se3iv—Ba1—Se2v145.72 (2)
Se3v—Yb1—Yb1xi43.232 (13)Se1iv—Ba1—Se2v141.77 (2)
Se2—Yb1—Yb1xi90.0Se1v—Ba1—Se2v90.737 (18)
Se4i—Yb1—Yb1xii137.574 (13)Se2iv—Ba1—Se2v76.08 (2)
Se4ii—Yb1—Yb1xii42.428 (13)Se3v—Ba1—Se4ix73.166 (18)
Se3iii—Yb1—Yb1xii90.0Se3iv—Ba1—Se4ix73.166 (18)
Se3iv—Yb1—Yb1xii43.232 (13)Se1iv—Ba1—Se4ix137.724 (13)
Se3v—Yb1—Yb1xii136.767 (13)Se1v—Ba1—Se4ix137.724 (14)
Se2—Yb1—Yb1xii90.0Se2iv—Ba1—Se4ix72.571 (16)
Yb1xi—Yb1—Yb1xii180.0Se2v—Ba1—Se4ix72.571 (16)
Se4i—Yb1—Yb1xiii134.20 (2)Se3v—Ba1—Se4134.948 (14)
Se4ii—Yb1—Yb1xiii87.656 (19)Se3iv—Ba1—Se4134.948 (14)
Se3iii—Yb1—Yb1xiii43.195 (11)Se1iv—Ba1—Se468.40 (2)
Se3iv—Yb1—Yb1xiii42.749 (17)Se1v—Ba1—Se468.40 (2)
Se3v—Yb1—Yb1xiii89.67 (2)Se2iv—Ba1—Se473.438 (19)
Se2—Yb1—Yb1xiii133.621 (14)Se2v—Ba1—Se473.438 (19)
Yb1xi—Yb1—Yb1xiii119.997 (7)Se4ix—Ba1—Se4136.430 (17)
Yb1xii—Yb1—Yb1xiii60.003 (7)Se3v—Ba1—Yb2ix106.580 (19)
Se4i—Yb1—Yb1xiv87.656 (19)Se3iv—Ba1—Yb2ix106.580 (19)
Se4ii—Yb1—Yb1xiv134.20 (2)Se1iv—Ba1—Yb2ix134.813 (13)
Se3iii—Yb1—Yb1xiv43.195 (11)Se1v—Ba1—Yb2ix134.813 (13)
Se3iv—Yb1—Yb1xiv89.67 (2)Se2iv—Ba1—Yb2ix44.076 (13)
Se3v—Yb1—Yb1xiv42.749 (17)Se2v—Ba1—Yb2ix44.076 (13)
Se2—Yb1—Yb1xiv133.621 (14)Se4ix—Ba1—Yb2ix43.454 (13)
Yb1xi—Yb1—Yb1xiv60.003 (7)Se4—Ba1—Yb2ix92.98 (2)
Yb1xii—Yb1—Yb1xiv119.997 (7)Se3v—Ba1—Ba1xii129.052 (11)
Yb1xiii—Yb1—Yb1xiv59.995 (15)Se3iv—Ba1—Ba1xii50.948 (11)
Se4i—Yb1—Ba1132.178 (13)Se1iv—Ba1—Ba1xii51.173 (11)
Se4ii—Yb1—Ba1132.178 (13)Se1v—Ba1—Ba1xii128.827 (11)
Se3iii—Yb1—Ba194.10 (2)Se2iv—Ba1—Ba1xii51.962 (11)
Se3iv—Yb1—Ba147.585 (13)Se2v—Ba1—Ba1xii128.038 (11)
Se3v—Yb1—Ba147.585 (13)Se4ix—Ba1—Ba1xii90.0
Se2—Yb1—Ba181.374 (19)Se4—Ba1—Ba1xii90.0
Yb1xi—Yb1—Ba190.0Yb2ix—Ba1—Ba1xii90.0
Yb1xii—Yb1—Ba190.0Se3v—Ba1—Ba1xi50.948 (11)
Yb1xiii—Yb1—Ba165.534 (15)Se3iv—Ba1—Ba1xi129.052 (11)
Yb1xiv—Yb1—Ba165.534 (15)Se1iv—Ba1—Ba1xi128.827 (11)
Se1vi—Yb2—Se4163.14 (2)Se1v—Ba1—Ba1xi51.173 (11)
Se1vi—Yb2—Se1v84.32 (2)Se2iv—Ba1—Ba1xi128.038 (11)
Se4—Yb2—Se1v84.17 (2)Se2v—Ba1—Ba1xi51.962 (11)
Se1vi—Yb2—Se1iv84.32 (2)Se4ix—Ba1—Ba1xi90.0
Se4—Yb2—Se1iv84.17 (2)Se4—Ba1—Ba1xi90.0
Se1v—Yb2—Se1iv93.69 (3)Yb2ix—Ba1—Ba1xi90.0
Se1vi—Yb2—Se2vii101.594 (19)Ba1xii—Ba1—Ba1xi180.00 (2)
Se4—Yb2—Se2vii89.94 (2)Se3v—Ba1—Yb2107.722 (17)
Se1v—Yb2—Se2vii174.06 (2)Se3iv—Ba1—Yb2107.722 (17)
Se1iv—Yb2—Se2vii86.45 (2)Se1iv—Ba1—Yb242.716 (12)
Se1vi—Yb2—Se2viii101.594 (19)Se1v—Ba1—Yb242.716 (12)
Se4—Yb2—Se2viii89.944 (19)Se2iv—Ba1—Yb2106.525 (15)
Se1v—Yb2—Se2viii86.45 (2)Se2v—Ba1—Yb2106.525 (15)
Se1iv—Yb2—Se2viii174.06 (2)Se4ix—Ba1—Yb2178.818 (16)
Se2vii—Yb2—Se2viii92.79 (3)Se4—Ba1—Yb242.389 (16)
Se1vi—Yb2—Ba1x140.31 (2)Yb2ix—Ba1—Yb2135.364 (12)
Se4—Yb2—Ba1x56.55 (2)Ba1xii—Ba1—Yb290.0
Se1v—Yb2—Ba1x120.551 (16)Ba1xi—Ba1—Yb290.0
Se1iv—Yb2—Ba1x120.551 (16)Yb2iii—Se1—Yb2i95.68 (2)
Se2vii—Yb2—Ba1x54.833 (14)Yb2iii—Se1—Yb2ii95.68 (2)
Se2viii—Yb2—Ba1x54.833 (14)Yb2i—Se1—Yb2ii93.69 (3)
Se1vi—Yb2—Yb2xii90.0Yb2iii—Se1—Ba1ii118.13 (2)
Se4—Yb2—Yb2xii90.0Yb2i—Se1—Ba1ii146.15 (3)
Se1v—Yb2—Yb2xii136.847 (13)Yb2ii—Se1—Ba1ii85.164 (18)
Se1iv—Yb2—Yb2xii43.155 (14)Yb2iii—Se1—Ba1i118.13 (2)
Se2vii—Yb2—Yb2xii43.602 (13)Yb2i—Se1—Ba1i85.164 (18)
Se2viii—Yb2—Yb2xii136.396 (13)Yb2ii—Se1—Ba1i146.15 (3)
Ba1x—Yb2—Yb2xii90.0Ba1ii—Se1—Ba1i77.65 (2)
Se1vi—Yb2—Yb2xi90.0Yb2vii—Se2—Yb2viii92.80 (3)
Se4—Yb2—Yb2xi90.0Yb2vii—Se2—Yb1121.050 (19)
Se1v—Yb2—Yb2xi43.155 (14)Yb2viii—Se2—Yb1121.050 (19)
Se1iv—Yb2—Yb2xi136.847 (13)Yb2vii—Se2—Ba1i137.52 (3)
Se2vii—Yb2—Yb2xi136.396 (13)Yb2viii—Se2—Ba1i81.091 (15)
Se2viii—Yb2—Yb2xi43.602 (13)Yb1—Se2—Ba1i97.20 (2)
Ba1x—Yb2—Yb2xi90.0Yb2vii—Se2—Ba1ii81.091 (15)
Yb2xii—Yb2—Yb2xi180.0Yb2viii—Se2—Ba1ii137.52 (3)
Se1vi—Yb2—Yb2viii42.707 (14)Yb1—Se2—Ba1ii97.20 (2)
Se4—Yb2—Yb2viii124.710 (19)Ba1i—Se2—Ba1ii76.08 (2)
Se1v—Yb2—Yb2viii41.617 (16)Yb1vi—Se3—Yb1i94.05 (2)
Se1iv—Yb2—Yb2viii88.732 (19)Yb1vi—Se3—Yb1ii94.05 (2)
Se2vii—Yb2—Yb2viii144.299 (18)Yb1i—Se3—Yb1ii93.54 (3)
Se2viii—Yb2—Yb2viii95.276 (16)Yb1vi—Se3—Ba1ii99.09 (2)
Ba1x—Yb2—Yb2viii149.323 (8)Yb1i—Se3—Ba1ii164.99 (3)
Yb2xii—Yb2—Yb2viii119.818 (7)Yb1ii—Se3—Ba1ii92.741 (16)
Yb2xi—Yb2—Yb2viii60.184 (7)Yb1vi—Se3—Ba1i99.09 (2)
Se1vi—Yb2—Yb2vii42.707 (14)Yb1i—Se3—Ba1i92.741 (16)
Se4—Yb2—Yb2vii124.710 (19)Yb1ii—Se3—Ba1i164.99 (3)
Se1v—Yb2—Yb2vii88.732 (19)Ba1ii—Se3—Ba1i78.10 (2)
Se1iv—Yb2—Yb2vii41.617 (16)Yb1iv—Se4—Yb1v95.15 (3)
Se2vii—Yb2—Yb2vii95.276 (16)Yb1iv—Se4—Yb2132.413 (13)
Se2viii—Yb2—Yb2vii144.299 (18)Yb1v—Se4—Yb2132.413 (13)
Ba1x—Yb2—Yb2vii149.323 (8)Yb1iv—Se4—Ba1x95.835 (19)
Yb2xii—Yb2—Yb2vii60.184 (7)Yb1v—Se4—Ba1x95.835 (19)
Yb2xi—Yb2—Yb2vii119.818 (7)Yb2—Se4—Ba1x80.00 (2)
Yb2viii—Yb2—Yb2vii59.634 (15)Yb1iv—Se4—Ba196.08 (2)
Se1vi—Yb2—Ba1107.827 (18)Yb1v—Se4—Ba196.08 (2)
Se4—Yb2—Ba155.310 (16)Yb2—Se4—Ba182.30 (2)
Se1v—Yb2—Ba152.121 (15)Ba1x—Se4—Ba1162.30 (2)
Se1iv—Yb2—Ba152.121 (15)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1; (ix) x1/2, y, z+3/2; (x) x+1/2, y, z+3/2; (xi) x, y1, z; (xii) x, y+1, z; (xiii) x, y+1, z+1; (xiv) x, y, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaBaEr2Se4BaTm2Se4BaYb2Se4
Mr787.70791.04799.26
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)100110100
a, b, c (Å)12.628 (3), 4.1398 (8), 14.953 (3)12.605 (3), 4.1311 (8), 14.919 (3)12.580 (3), 4.1150 (8), 14.860 (3)
V3)781.7 (3)776.9 (3)769.2 (3)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)44.7746.2847.99
Crystal size (mm)0.30 × 0.05 × 0.050.22 × 0.06 × 0.050.17 × 0.02 × 0.02
Data collection
DiffractometerBruker APEXII
diffractometer
Bruker APEXII
diffractometer
Bruker APEXII
diffractometer
Absorption correctionNumerical
face indexed (SADABS; Sheldrick, 2008b)
Numerical
face indexed (SADABS; Sheldrick, 2008b)
Numerical
face indexed (SADABS; Sheldrick, 2008b)
Tmin, Tmax0.025, 0.1960.021, 0.1780.113, 0.429
No. of measured, independent and
observed [I > 2σ(I)] reflections
8227, 1036, 987 8761, 1070, 1041 8818, 1056, 1012
Rint0.0340.0350.034
(sin θ/λ)max1)0.6660.6690.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.54 0.018, 0.042, 1.27 0.018, 0.042, 1.22
No. of reflections103610701056
No. of parameters444444
Δρmax, Δρmin (e Å3)1.59, 2.681.69, 1.361.35, 1.90

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008a), CrystalMaker (Palmer, 2008), SHELXTL or SHELXL97 (Sheldrick, 2008a).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds