Download citation
Download citation
link to html
The isomeric bent triazole-containing ligands 4-amino-3,5-di-3-pyridyl-4H-1,2,4-triazole (L1) and 4-amino-3,5-di-4-pyridyl-4H-1,2,4-triazole (L2) have been used to create the two novel title complexes catena-poly[[[tetra­aqua­zinc(II)]-[mu]-4-amino-3,5-di-3-pyridyl-4H-1,2,4-triazole] sulfate monohydrate], {[Zn(C12H10N6)(H2O)4]SO4·H2O}n, (I), and poly[[diaqua­bis([mu]-4-amino-3,5-di-4-pyridyl-4H-1,2,4-triazole)copper(II)] dinitrate octa­hydrate], {[Cu(C12H10N6)2(H2O)2](NO3)2·8H2O}n, (II). The ZnII and CuII atoms are all six-coordinated in approximately octa­hedral environments. Compound (I) presents a sinusoidal chain generated by ZnO4 cores which are bridged by L1 ligands in a cisoid conformation. These sinusoidal chains are bound to each other by O-H...O hydrogen bonds between coordinated water mol­ecules of neighboring chains into a two-dimensional network. These layers stack in an ...ABAB... sequence and are further linked into a three-dimensional framework through O-H...N hydrogen bonds between coordinated water mol­ecules and the N atoms of the triazole rings. In (II), the CuII centers are bridged by the L2 ligands to form a two-dimensional network with square grids. All of the two-dimensional nets also stack alternately along the crystallographic a axis. Neighboring layers are further linked into a three-dimensional framework via inter­layer N-H...N hydrogen bonds between -NH2 groups of the triazole rings and the N atoms in the triazole rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109015066/sq3191sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109015066/sq3191Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109015066/sq3191IIsup3.hkl
Contains datablock II

CCDC references: 742161; 742162

Comment top

Intelligent ligand design and the proper choice of a metal center are the main keys to the design of intriguing and functional coordination polymers (Gardner et al., 2003; Natarajan et al., 2005). It is well known that the relative orientations of the nitrogen donors and the different bridging space may result in unusual building blocks, which can lead to the construction of supramolecular motifs that have not been achieved using normal rigid linear organic ligands. As part of our continuing study of coordination polymers with bridging nitrogen donor ligands (Dong et al., 2003), we report here two novel coordination polymers, namely, tetraaqua[4-amino-3,5-di-3-pyridyl- 1,2,4-triazole]zinc(II) sulfate monohydrate, (I), and diaquabis[4-amino-3,5-di-4-pyridyl-1,2,4-triazole]copper(II) nitrate octahydrate (2), generated from the isomeric bent ligands 4-amino-3,5-di-3-pyridyl-1,2,4-triazole (L1) and 4-amino-3,5-di-4-pyridyl-1,2,4-triazole L2, respectively.

Compound (I) crystallizes with only one type of crystallographic ZnII center, six-coordinated in an approximately octahedral environment with two pyridyl nitrogen donors of two L1 ligands in the axial sites and four O atoms of coordinated water molecules in the equatorial plane (Fig. 1). The corresponding Zn—N distances are 2.162 (3) Å for N6ii [symmetry code: (ii) x - 1, -y + 1/2 , z - 1/2] and 2.172 (3) Å for N1, which are slightly longer than the Zn—N bond (2.078 Å) in [Zn(H2O)4(L3)Zn(L4)2].H2O [L3 is N-(3-pyridyl)isonicotinamide and L4 is isonicotinic acid; Kumar et al., 2006]. The Zn—O bond lengths range from 2.038 (3) to 2.162 (2) Å, being very close to the Zn—O bond lengths found in [Zn3(4,4'-bipy)4(OAc)4](ClO4)2.2H2O (Woodward et al., 2006).

The asymmetric unit in (I) contains one ZnII ion, one L1 ligand, one sulfate anion, four coordinated water molecules and one water molecule of crystallization. Each L1 ligand is bound to two ZnII centers and is bent with a cisoid conformation; the two terminal pyridyl groups and the bridging triazole heterocycle ring do not lie in the same plane. The torsion angles for the two pyridyl rings are -29.8 (6) (C9—C8—C7—N2) and 5.5 (6)° (N3—C6—C4—C3). The corresponding dihedral angles between the planes of the three rings are 72.48° (between N1/C8–C12 and N2–N4/C6/C7), 7.40° (N2–N4/C6/C7 and N6/C1–C5) and 24.17° (N1/C8–C12 and N6/C1–C5) [please provide s.u. values]. The coordinating N1 and N6 atoms are on the same side of the molecule and the N—Zn—N angle [171.54 (11)°] is close to 180°, so that the ZnO4 units are bridged by the L1 ligands through the pyridyl N atoms into a one-dimensional sinusoidal chain along the crystallographic a axis with a Zn···Zn separation of ca 9.64 Å. These sinusoidal chains are bound to each other by interpolymer O—H···O hydrogen bonds between coordinated water molecules to generate a two-dimensional network parallel to the ac plane (Table 1 and Fig. 2). These layers stack in an –ABAB– sequence along the b axis to form a three-dimensional framework linked through O—H···N hydrogen bonds between coordinated water molecules and the N atoms on the triazole rings (Fig. 3). When viewed down the crystallographic c axis, honeycomb-like channels are evident, in which the uncoordinated sulfate counter-ions and water molecule are located. All the amine groups on the triazole rings project into these channels and interact with the framework through hydrogen bonds.

The asymmetric unit in (II) contains one CuII ion, two L2 ligands, two nitrate anions, two coordinated water molecules and eight water molecules of crystallization. Each L2 ligand is bound to two CuII atoms. The CuII atoms are again six-coordinated in an approximately octahedral environment, in a similar manner to ZnII in (I) except that the octahedral CuII coordination in (II) is built up of four N atoms (N1, N7, N6viii and N12ix) [symmetry codes: (viii) x, -y + 1/2, z + 1/2; (ix) x, -y + 5/2, z + 1/2] from four L2 ligands in the equatorial plane and two O atoms of water molecules in the axial sites (Fig. 4). The CuII centers are bridged by L2 ligands to form a two-dimensional network parallel to the bc plane and consisting of an essentially square grid (Fig. 5). The dimensions of the squares are ca 14 × 14 Å, which is significantly larger than the corresponding dimensions (ca 8 × 8 Å) in [Cu(4,4'-bipy)2(H2O)2].SiF6 (4,4'-bipy is 4,4'-bipyridine; Noro et al., 2002). When viewed down the crystallographic a axis, the NO3- anions and eight crystallization water molecules are seen to be located in the voids in the grid. The shortest intralayer Cu···Cu distance is 14.369 (1) Å, ca 5 Å longer than the shortest interlayer Cu···Cu distance [9.250 (1) Å]. These two-dimensional layers are arranged alternately along the a axis and are further linked into a three-dimensional framework through interlayer N—H···N hydrogen bonds. The hydrogen-bonding system involves uncoordinated N atoms of the triazole ring and H atoms of the –NH2 group of the triazole ring of a neighboring layer (Table 2 and Fig. 6). The NO3- anions and crystallization water molecules are located between the layers and interact with the framework via O—H···O and N—H···O hydrogen bonds (Table 2).

The ligands in (I) and (II) are both bent triazole-bridged ligands, and the essential difference between L1 and L2 is the relative orientation of the donor N atoms on the pyridyl rings. L1 is a 3,3'-bipyridyl-type ligand, while L2 is a 4,4'-bipyridyl-type ligand. Both ligands act as bidentate bridging ligands; however, in (I), each ZnII center is linked two other Zn atoms via two axially-bound ligands, while in (II), each CuII center is linked to four others via four equatorially-bound ligands. Thus the polymer in (I) exhibits a sinusoidal chain and the polymer in (II) presents a two-dimensional network with a square grid. This study clearly demonstrates that the relative orientations of the nitrogen donors on the pyridyl rings causes the ligands to act as distinct building blocks, leading to different frameworks. We expect ligands of this type to be viable agents for the creation of more new complexes with interesting topology and physical properties.

Related literature top

For related literature, see: Dong et al. (2003); Kumar et al. (2006); Natarajan et al. (2005); Noro et al. (2002); Traisnel et al. (1999); Woodward et al. (2006).

Experimental top

All the solvents and reagents were commercially available and used as received. L1 and L2 were prepared according to the literature method (Traisnel et al., 1999). L1 (12 mg, 0.05 mmol) and ZnSO4.7H2O (14 mg, 0.05 mmol) were dissolved in water (2 ml). Upon slow evaporation, colourless block-shaped crystals were obtained in 61% yield based on L1. L2 (12 mg, 0.05 mmol) and Cu(NO3)2.3H2O (12 mg, 0.05 mmol) were mixed in water (2 ml). After ca one week, blue block-shaped crystals were obtained in 63% yield based on L2. Crystals of (I) and (II) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

H atoms attached to carbon were placed in geometrically idealized positions [Carene—H = 0.93 Å for (I) and Carene—H = 0.95 Å for (II)] and refined using a riding model with isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)]. The NH2 group and aqua H atoms were located by Fourier difference synthesis and refined as riding atoms, with N—H distances of 0.86–92 Å and O—H distances of 0.84–0.86 Å and with isotropic displacement parameters [Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O)].

Computing details top

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : A view of (I), showing the coordination around Zn. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (ii) x - 1, -y + 1/2 , z - 1/2; (vi) x + 1, -y + 1/2, z + 1/2.]
[Figure 2] Fig. 2. : A perspective view of the hydrogen-bonded two-dimensional network in (I). Hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. : A perspective view of the three-dimensional network of (I), along the crystallographic c axis. S, O and H atoms in sulfate anions, and water molecules of crystallization in the channels, are shown as spheres.
[Figure 4] Fig. 4. : A view of (II), showing the coordination around Cu. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii): x, -y + 5/2, z + 1/2.]
[Figure 5] Fig. 5. : A perspective view of the two-dimensional network in (II), along the a axis.
[Figure 6] Fig. 6. : A view of the stacking of the sheets in (II), along the a axis. H atoms have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.
(I) catena-poly[[[tetraaquazinc(II)]-µ- 4-amino-3,5-di-3-pyridyl-4H-1,2,4-triazole] sulfate monohydrate] top
Crystal data top
[Zn(C12H10N6)(H2O)4]SO4·H2OF(000) = 1008
Mr = 489.77Dx = 1.711 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3593 (19) ÅCell parameters from 2449 reflections
b = 17.437 (3) Åθ = 2.3–25.6°
c = 11.532 (2) ŵ = 1.46 mm1
β = 114.121 (3)°T = 298 K
V = 1901.2 (6) Å3Block, colourless
Z = 40.27 × 0.12 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3346 independent reflections
Radiation source: fine-focus sealed tube2790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.694, Tmax = 0.856k = 2020
9776 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0543P)2 + 2.2894P]
where P = (Fo2 + 2Fc2)/3
3346 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Zn(C12H10N6)(H2O)4]SO4·H2OV = 1901.2 (6) Å3
Mr = 489.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3593 (19) ŵ = 1.46 mm1
b = 17.437 (3) ÅT = 298 K
c = 11.532 (2) Å0.27 × 0.12 × 0.11 mm
β = 114.121 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3346 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2790 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.856Rint = 0.037
9776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.07Δρmax = 0.93 e Å3
3346 reflectionsΔρmin = 0.67 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.26366 (4)0.21853 (2)0.74913 (4)0.02350 (16)
N10.3530 (3)0.10537 (17)0.7530 (3)0.0274 (7)
N20.7373 (3)0.05578 (16)1.0121 (3)0.0299 (7)
N30.8732 (3)0.04492 (17)1.1017 (3)0.0296 (7)
N40.8002 (3)0.06156 (15)0.9967 (3)0.0225 (6)
N50.8098 (3)0.13528 (17)0.9516 (3)0.0349 (8)
H1N50.76610.17060.97860.042*
H2N50.77130.13280.86690.042*
N61.2057 (3)0.16409 (17)1.2651 (3)0.0277 (7)
C11.2938 (4)0.1166 (2)1.3522 (4)0.0347 (9)
H11.37680.13671.41360.042*
C21.2681 (4)0.0398 (2)1.3555 (4)0.0393 (10)
H21.33400.00821.41580.047*
C31.1428 (4)0.0100 (2)1.2680 (4)0.0362 (10)
H31.12300.04191.26860.043*
C41.0465 (4)0.0585 (2)1.1791 (3)0.0243 (8)
C51.0829 (4)0.1351 (2)1.1805 (3)0.0266 (8)
H51.01970.16791.12040.032*
C60.9097 (4)0.02558 (19)1.0913 (3)0.0230 (8)
C70.6940 (4)0.00896 (19)0.9507 (3)0.0228 (8)
C80.5503 (4)0.02109 (19)0.8528 (3)0.0242 (8)
C90.4735 (4)0.0394 (2)0.7786 (4)0.0390 (10)
H90.51320.08800.78690.047*
C100.3366 (5)0.0257 (3)0.6919 (5)0.0515 (13)
H100.28270.06520.64080.062*
C110.2809 (4)0.0464 (2)0.6819 (4)0.0391 (10)
H110.18870.05470.62300.047*
C120.4853 (4)0.0916 (2)0.8377 (3)0.0250 (8)
H120.53600.13180.88930.030*
O10.3374 (3)0.20504 (13)0.9525 (2)0.0253 (6)
H1O10.31760.15930.96520.038*
H2O10.42520.21520.98840.038*
O20.0758 (3)0.16974 (16)0.7372 (3)0.0399 (7)
H1O20.08520.13360.78940.060*
H2O20.00340.19240.70980.060*
O30.1772 (3)0.21948 (16)0.5555 (3)0.0394 (7)
H1O30.22080.24310.51790.059*
H2O30.09220.20840.50720.059*
O40.4617 (3)0.26488 (15)0.7665 (2)0.0311 (6)
H1O40.52420.27800.83930.047*
H2O40.49810.24450.72060.047*
S10.69152 (10)0.21222 (6)0.60764 (9)0.0321 (3)
O50.6345 (8)0.1609 (3)0.6680 (5)0.154 (3)
O60.6053 (5)0.2790 (3)0.5864 (5)0.122 (2)
O70.6815 (4)0.1868 (3)0.4860 (3)0.0868 (14)
O80.8314 (4)0.2356 (3)0.6891 (4)0.1004 (17)
O90.9140 (3)0.3226 (2)0.9111 (3)0.0545 (9)
H1O90.88140.30830.83450.082*
H2O90.85760.32080.94740.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0184 (2)0.0230 (2)0.0267 (3)0.00238 (16)0.00684 (18)0.00278 (17)
N10.0219 (16)0.0273 (16)0.0284 (17)0.0025 (13)0.0056 (13)0.0041 (13)
N20.0221 (16)0.0210 (15)0.0403 (19)0.0024 (13)0.0063 (14)0.0058 (14)
N30.0206 (16)0.0238 (16)0.0379 (19)0.0022 (13)0.0054 (14)0.0053 (14)
N40.0227 (15)0.0166 (14)0.0261 (16)0.0011 (12)0.0079 (13)0.0021 (12)
N50.0368 (19)0.0182 (15)0.039 (2)0.0036 (14)0.0050 (15)0.0073 (14)
N60.0222 (15)0.0253 (16)0.0334 (18)0.0017 (13)0.0091 (14)0.0033 (13)
C10.027 (2)0.038 (2)0.032 (2)0.0016 (17)0.0053 (17)0.0008 (18)
C20.027 (2)0.038 (2)0.040 (3)0.0028 (18)0.0000 (18)0.0080 (19)
C30.033 (2)0.026 (2)0.043 (3)0.0046 (17)0.0078 (19)0.0049 (18)
C40.0193 (18)0.0234 (18)0.029 (2)0.0010 (14)0.0092 (15)0.0010 (15)
C50.0226 (18)0.0224 (18)0.032 (2)0.0012 (15)0.0078 (16)0.0007 (15)
C60.0220 (18)0.0211 (18)0.026 (2)0.0019 (14)0.0102 (15)0.0027 (15)
C70.0219 (18)0.0190 (17)0.028 (2)0.0007 (14)0.0111 (15)0.0029 (15)
C80.0221 (18)0.0214 (18)0.029 (2)0.0003 (14)0.0106 (15)0.0011 (15)
C90.035 (2)0.022 (2)0.049 (3)0.0016 (17)0.0054 (19)0.0084 (18)
C100.035 (2)0.036 (2)0.063 (3)0.004 (2)0.001 (2)0.023 (2)
C110.026 (2)0.041 (2)0.038 (2)0.0010 (18)0.0002 (18)0.0110 (19)
C120.0208 (18)0.0218 (18)0.030 (2)0.0014 (15)0.0079 (15)0.0059 (15)
O10.0243 (13)0.0239 (13)0.0262 (14)0.0014 (10)0.0090 (11)0.0005 (10)
O20.0180 (13)0.0411 (16)0.0560 (19)0.0047 (12)0.0105 (12)0.0263 (14)
O30.0277 (15)0.0590 (19)0.0268 (15)0.0117 (13)0.0063 (12)0.0047 (13)
O40.0252 (14)0.0360 (15)0.0329 (15)0.0024 (11)0.0127 (12)0.0011 (12)
S10.0252 (5)0.0431 (6)0.0266 (5)0.0066 (4)0.0094 (4)0.0070 (4)
O50.263 (8)0.123 (4)0.089 (4)0.100 (5)0.084 (5)0.002 (3)
O60.072 (3)0.112 (4)0.122 (4)0.058 (3)0.022 (3)0.024 (3)
O70.058 (2)0.159 (4)0.050 (2)0.002 (3)0.0277 (19)0.030 (3)
O80.0297 (19)0.172 (5)0.079 (3)0.022 (2)0.0017 (19)0.051 (3)
O90.0365 (17)0.080 (2)0.0429 (19)0.0109 (16)0.0116 (15)0.0009 (17)
Geometric parameters (Å, º) top
Zn1—O32.038 (3)C4—C61.480 (5)
Zn1—O22.076 (3)C5—H50.9300
Zn1—O42.136 (3)C7—C81.470 (5)
Zn1—N6i2.162 (3)C8—C121.378 (5)
Zn1—O12.162 (2)C8—C91.386 (5)
Zn1—N12.172 (3)C9—C101.381 (6)
N1—C111.337 (5)C9—H90.9300
N1—C121.341 (4)C10—C111.367 (6)
N2—C71.310 (4)C10—H100.9300
N2—N31.378 (4)C11—H110.9300
N3—C61.306 (4)C12—H120.9300
N4—C71.363 (4)O1—H1O10.8507
N4—C61.363 (4)O1—H2O10.8501
N4—N51.405 (4)O2—H1O20.8489
N5—H1N50.8931O2—H2O20.8473
N5—H2N50.8921O3—H1O30.8493
N6—C11.333 (5)O3—H2O30.8498
N6—C51.345 (4)O4—H1O40.8556
N6—Zn1ii2.162 (3)O4—H2O40.8447
C1—C21.369 (6)S1—O51.404 (5)
C1—H10.9300S1—O61.427 (4)
C2—C31.379 (5)S1—O81.427 (4)
C2—H20.9300S1—O71.434 (4)
C3—C41.387 (5)O9—H1O90.8444
C3—H30.9300O9—H2O90.8469
C4—C51.387 (5)
O3—Zn1—O287.15 (11)N6—C5—H5118.6
O3—Zn1—O494.31 (10)C4—C5—H5118.6
O2—Zn1—O4177.59 (10)N3—C6—N4109.3 (3)
O3—Zn1—N6i94.16 (12)N3—C6—C4122.3 (3)
O2—Zn1—N6i96.21 (11)N4—C6—C4128.3 (3)
O4—Zn1—N6i85.60 (11)N2—C7—N4109.0 (3)
O3—Zn1—O1172.53 (10)N2—C7—C8123.7 (3)
O2—Zn1—O186.18 (10)N4—C7—C8127.3 (3)
O4—Zn1—O192.26 (10)C12—C8—C9118.2 (3)
N6i—Zn1—O189.89 (10)C12—C8—C7121.0 (3)
O3—Zn1—N191.28 (11)C9—C8—C7120.7 (3)
O2—Zn1—N190.52 (11)C10—C9—C8118.4 (4)
O4—Zn1—N187.54 (11)C10—C9—H9120.8
N6i—Zn1—N1171.54 (11)C8—C9—H9120.8
O1—Zn1—N185.44 (10)C11—C10—C9119.6 (4)
C11—N1—C12117.2 (3)C11—C10—H10120.2
C11—N1—Zn1124.1 (2)C9—C10—H10120.2
C12—N1—Zn1118.6 (2)N1—C11—C10123.0 (4)
C7—N2—N3107.8 (3)N1—C11—H11118.5
C6—N3—N2107.8 (3)C10—C11—H11118.5
C7—N4—C6106.1 (3)N1—C12—C8123.6 (3)
C7—N4—N5129.8 (3)N1—C12—H12118.2
C6—N4—N5123.8 (3)C8—C12—H12118.2
N4—N5—H1N5112.3Zn1—O1—H1O1106.6
N4—N5—H2N5107.0Zn1—O1—H2O1109.8
H1N5—N5—H2N5110.5H1O1—O1—H2O1113.3
C1—N6—C5117.8 (3)Zn1—O2—H1O2115.1
C1—N6—Zn1ii121.5 (2)Zn1—O2—H2O2124.9
C5—N6—Zn1ii120.5 (2)H1O2—O2—H2O2115.0
N6—C1—C2123.2 (4)Zn1—O3—H1O3118.4
N6—C1—H1118.4Zn1—O3—H2O3126.1
C2—C1—H1118.4H1O3—O3—H2O3113.7
C1—C2—C3118.9 (4)Zn1—O4—H1O4120.4
C1—C2—H2120.5Zn1—O4—H2O4116.1
C3—C2—H2120.5H1O4—O4—H2O4112.0
C2—C3—C4119.3 (4)O5—S1—O6104.2 (4)
C2—C3—H3120.4O5—S1—O8112.0 (4)
C4—C3—H3120.4O6—S1—O8106.0 (3)
C5—C4—C3117.9 (3)O5—S1—O7114.3 (3)
C5—C4—C6124.2 (3)O6—S1—O7107.1 (3)
C3—C4—C6117.9 (3)O8—S1—O7112.4 (2)
N6—C5—C4122.8 (3)H1O9—O9—H2O9116.4
O3—Zn1—N1—C1147.2 (3)N5—N4—C6—C411.7 (6)
O2—Zn1—N1—C1140.0 (3)C5—C4—C6—N3172.5 (4)
O4—Zn1—N1—C11141.4 (3)C3—C4—C6—N35.5 (6)
N6i—Zn1—N1—C11177.2 (7)C5—C4—C6—N42.4 (6)
O1—Zn1—N1—C11126.1 (3)C3—C4—C6—N4179.6 (4)
O3—Zn1—N1—C12137.8 (3)N3—N2—C7—N41.3 (4)
O2—Zn1—N1—C12135.0 (3)N3—N2—C7—C8176.1 (3)
O4—Zn1—N1—C1243.5 (3)C6—N4—C7—N21.2 (4)
N6i—Zn1—N1—C127.7 (10)N5—N4—C7—N2171.7 (3)
O1—Zn1—N1—C1248.9 (3)C6—N4—C7—C8176.0 (3)
C7—N2—N3—C60.9 (4)N5—N4—C7—C811.0 (6)
C5—N6—C1—C23.1 (6)N2—C7—C8—C12146.2 (4)
Zn1ii—N6—C1—C2171.9 (3)N4—C7—C8—C1230.7 (6)
N6—C1—C2—C32.6 (7)N2—C7—C8—C929.8 (6)
C1—C2—C3—C40.1 (7)N4—C7—C8—C9153.4 (4)
C2—C3—C4—C51.6 (6)C12—C8—C9—C101.0 (6)
C2—C3—C4—C6176.6 (4)C7—C8—C9—C10177.1 (4)
C1—N6—C5—C41.3 (6)C8—C9—C10—C110.1 (8)
Zn1ii—N6—C5—C4173.8 (3)C12—N1—C11—C100.5 (6)
C3—C4—C5—N61.0 (6)Zn1—N1—C11—C10175.6 (4)
C6—C4—C5—N6177.0 (3)C9—C10—C11—N10.2 (8)
N2—N3—C6—N40.2 (4)C11—N1—C12—C81.5 (6)
N2—N3—C6—C4175.9 (3)Zn1—N1—C12—C8176.9 (3)
C7—N4—C6—N30.6 (4)C9—C8—C12—N11.8 (6)
N5—N4—C6—N3172.8 (3)C7—C8—C12—N1177.8 (3)
C7—N4—C6—C4174.8 (4)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H2N5···O50.892.203.056 (6)160
O4—H1O4···O7iii0.861.912.755 (5)170
O3—H2O3···O9i0.851.802.652 (4)175
O1—H1O1···N2iv0.851.942.792 (4)177
O9—H1O9···O80.841.992.793 (5)157
O9—H2O9···O7iii0.852.052.876 (5)165
O2—H2O2···O8v0.851.792.625 (4)166
O1—H2O1···O6iii0.851.752.581 (5)167
O4—H2O4···O50.842.283.074 (8)157
O3—H1O3···O1vi0.851.892.740 (4)173
Symmetry codes: (i) x1, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+2; (v) x1, y, z; (vi) x, y+1/2, z1/2.
(II) poly[[bis(µ-4-amino-3,5-di-4-pyridyl-4H-1,2,4-triazole)diaquacopper(II)] dinitrate octahydrate] top
Crystal data top
[Cu(C12H10N6)2(H2O)2](NO3)2·8H2ODx = 1.489 Mg m3
Mr = 844.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9843 reflections
a = 18.2543 (17) Åθ = 2.5–27.8°
b = 19.8942 (18) ŵ = 0.67 mm1
c = 20.7455 (19) ÅT = 173 K
V = 7533.8 (12) Å3Block, blue
Z = 80.48 × 0.47 × 0.16 mm
F(000) = 3512
Data collection top
Bruker SMART CCD area-detector
diffractometer
6994 independent reflections
Radiation source: fine-focus sealed tube5639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1622
Tmin = 0.740, Tmax = 0.901k = 2124
37726 measured reflectionsl = 2521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0513P)2 + 3.4143P]
where P = (Fo2 + 2Fc2)/3
6994 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Cu(C12H10N6)2(H2O)2](NO3)2·8H2OV = 7533.8 (12) Å3
Mr = 844.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.2543 (17) ŵ = 0.67 mm1
b = 19.8942 (18) ÅT = 173 K
c = 20.7455 (19) Å0.48 × 0.47 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6994 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5639 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.901Rint = 0.046
37726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
6994 reflectionsΔρmin = 0.24 e Å3
496 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03814 (12)1.45108 (10)0.40372 (9)0.0188 (4)
H10.00861.48990.39790.023*
C20.02960 (12)1.41370 (10)0.45914 (9)0.0190 (4)
H20.00561.42630.49060.023*
C30.07335 (11)1.35724 (9)0.46820 (9)0.0159 (4)
C40.12041 (11)1.33820 (10)0.41932 (9)0.0187 (4)
H40.14901.29850.42310.022*
C50.12514 (12)1.37785 (10)0.36491 (10)0.0180 (4)
H50.15711.36430.33120.022*
C60.07320 (11)1.32420 (9)0.53133 (9)0.0155 (4)
C70.08362 (11)1.25229 (10)0.60866 (9)0.0170 (4)
C80.09141 (11)1.18984 (10)0.64589 (9)0.0172 (4)
C90.03614 (12)1.17318 (10)0.68838 (9)0.0192 (4)
H90.00631.20050.69200.023*
C100.04372 (12)1.11608 (10)0.72540 (9)0.0184 (4)
H100.00531.10430.75420.022*
C110.15584 (12)1.09283 (10)0.68094 (10)0.0218 (5)
H110.19781.06480.67840.026*
C120.15217 (12)1.14871 (11)0.64157 (10)0.0247 (5)
H120.19061.15860.61220.030*
C130.17644 (12)0.55832 (10)0.40304 (9)0.0209 (5)
H130.19810.51500.40540.025*
C140.19387 (12)0.60465 (10)0.44960 (10)0.0214 (5)
H140.22720.59350.48310.026*
C150.16213 (11)0.66802 (10)0.44715 (9)0.0155 (4)
C160.11299 (11)0.68124 (10)0.39820 (9)0.0190 (4)
H160.08910.72360.39580.023*
C170.09903 (11)0.63227 (10)0.35278 (9)0.0179 (4)
H170.06580.64220.31880.021*
C180.18631 (11)0.71877 (9)0.49405 (9)0.0160 (4)
C190.18983 (11)0.79716 (9)0.56638 (9)0.0157 (4)
C200.17015 (11)0.84622 (9)0.61627 (9)0.0149 (4)
C210.21553 (11)0.85189 (10)0.66980 (9)0.0183 (4)
H210.25830.82490.67330.022*
C220.19779 (12)0.89703 (10)0.71775 (9)0.0182 (4)
H220.22900.90050.75420.022*
C230.09537 (12)0.93193 (10)0.66237 (9)0.0187 (4)
H230.05370.96040.65950.022*
C240.10931 (11)0.88796 (10)0.61251 (9)0.0190 (4)
H240.07780.88620.57610.023*
Cu10.111754 (14)1.000092 (11)0.786239 (11)0.01541 (9)
N10.13800 (10)0.93625 (8)0.71476 (7)0.0159 (4)
N20.25722 (10)0.78018 (9)0.55393 (8)0.0230 (4)
N30.25528 (10)0.73007 (9)0.50767 (8)0.0237 (4)
N40.14296 (9)0.76013 (8)0.52906 (7)0.0143 (3)
N50.06663 (9)0.75337 (9)0.53160 (8)0.0226 (4)
H5A0.04770.74830.57130.027*
H5B0.04640.79130.51500.027*
N60.13023 (9)0.57140 (8)0.35439 (7)0.0157 (4)
N70.10276 (9)1.07661 (8)0.72250 (7)0.0155 (4)
N80.07376 (10)1.31174 (8)0.63508 (8)0.0211 (4)
N90.06776 (10)1.35775 (8)0.58570 (8)0.0194 (4)
N100.08334 (9)1.25789 (8)0.54343 (7)0.0144 (3)
N110.08842 (10)1.20664 (8)0.49674 (8)0.0177 (4)
H11A0.06711.17170.51170.021*
H11B0.13771.19790.49260.021*
N120.08662 (9)1.43471 (8)0.35765 (7)0.0161 (4)
N130.09541 (12)0.72449 (10)0.69924 (10)0.0327 (5)
N140.02183 (12)0.92460 (11)0.42487 (10)0.0354 (5)
O10.01320 (8)0.97267 (7)0.77501 (7)0.0251 (3)
H1A0.02440.93520.75870.038*
H1B0.04960.99780.78210.038*
O20.04409 (12)0.87038 (10)0.44588 (10)0.0583 (6)
O30.05720 (13)0.95418 (11)0.38301 (9)0.0636 (7)
O40.03675 (14)0.94661 (14)0.44356 (12)0.0812 (8)
O50.13899 (13)0.68917 (10)0.66869 (10)0.0573 (6)
O60.10954 (11)0.74474 (10)0.75427 (9)0.0478 (5)
O70.03617 (11)0.74168 (10)0.67374 (8)0.0453 (5)
O80.25289 (11)0.72629 (10)0.68106 (10)0.0541 (5)
H8A0.28920.73140.70580.081*
H8B0.23540.76540.67560.081*
O90.20172 (10)0.87781 (10)0.39427 (9)0.0486 (5)
H9A0.21230.84130.37530.073*
H9B0.15550.87860.39750.073*
O100.23169 (11)0.95657 (10)0.50439 (9)0.0501 (5)
H10A0.20110.98650.49340.075*
H10B0.22730.92450.47790.075*
O110.35238 (13)0.98404 (9)0.58233 (10)0.0567 (6)
H11C0.31060.97620.56510.085*
H11D0.37740.94790.58610.085*
O120.25017 (10)1.02966 (8)0.79681 (8)0.0359 (4)
H12A0.28091.02980.76590.054*
H12B0.26681.05320.82760.054*
O130.35624 (10)1.04739 (8)0.69674 (8)0.0361 (4)
H13A0.34891.02790.66100.054*
H13B0.35661.08980.69380.054*
O140.13054 (12)0.94301 (10)0.55042 (11)0.0618 (6)
H14A0.10730.94410.51480.093*
H14B0.11380.96890.57970.093*
O150.05069 (9)0.84292 (7)0.73373 (7)0.0292 (4)
H15A0.06220.83240.77210.044*
H15B0.02320.81350.71680.044*
O160.17915 (11)0.84615 (11)0.65950 (9)0.0546 (5)
H16B0.17170.87550.63050.082*
H16A0.13830.84280.67870.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0267 (12)0.0138 (10)0.0159 (10)0.0052 (9)0.0012 (8)0.0016 (8)
C20.0257 (12)0.0163 (10)0.0151 (10)0.0029 (9)0.0034 (8)0.0014 (8)
C30.0184 (11)0.0141 (9)0.0153 (10)0.0028 (8)0.0011 (8)0.0016 (8)
C40.0240 (11)0.0151 (10)0.0171 (10)0.0029 (9)0.0006 (8)0.0025 (8)
C50.0232 (11)0.0159 (10)0.0150 (10)0.0003 (9)0.0034 (8)0.0005 (8)
C60.0154 (10)0.0144 (10)0.0168 (10)0.0002 (8)0.0003 (8)0.0029 (8)
C70.0160 (10)0.0199 (10)0.0151 (10)0.0002 (9)0.0007 (8)0.0053 (8)
C80.0227 (11)0.0164 (10)0.0126 (9)0.0000 (9)0.0011 (8)0.0015 (8)
C90.0226 (11)0.0178 (10)0.0171 (10)0.0048 (9)0.0021 (8)0.0030 (8)
C100.0215 (11)0.0176 (10)0.0162 (10)0.0008 (9)0.0033 (8)0.0023 (8)
C110.0230 (12)0.0204 (11)0.0221 (11)0.0072 (9)0.0036 (9)0.0041 (8)
C120.0238 (12)0.0271 (12)0.0230 (11)0.0042 (10)0.0075 (9)0.0093 (9)
C130.0316 (13)0.0135 (10)0.0177 (10)0.0047 (9)0.0051 (9)0.0025 (8)
C140.0275 (12)0.0199 (11)0.0166 (10)0.0048 (9)0.0068 (9)0.0032 (8)
C150.0163 (10)0.0174 (10)0.0127 (9)0.0020 (8)0.0024 (8)0.0027 (8)
C160.0245 (12)0.0146 (10)0.0180 (10)0.0045 (8)0.0020 (8)0.0028 (8)
C170.0219 (11)0.0178 (10)0.0139 (10)0.0019 (9)0.0047 (8)0.0001 (8)
C180.0194 (11)0.0157 (10)0.0127 (9)0.0026 (8)0.0013 (8)0.0017 (8)
C190.0185 (11)0.0143 (9)0.0143 (10)0.0004 (8)0.0023 (8)0.0024 (8)
C200.0192 (11)0.0125 (9)0.0130 (9)0.0030 (8)0.0015 (8)0.0029 (7)
C210.0191 (11)0.0172 (10)0.0184 (10)0.0027 (9)0.0016 (8)0.0032 (8)
C220.0243 (12)0.0177 (10)0.0126 (10)0.0005 (9)0.0030 (8)0.0017 (8)
C230.0237 (12)0.0172 (10)0.0153 (10)0.0033 (9)0.0009 (8)0.0007 (8)
C240.0237 (12)0.0196 (10)0.0137 (10)0.0009 (9)0.0033 (8)0.0028 (8)
Cu10.02865 (17)0.00974 (14)0.00785 (14)0.00303 (10)0.00027 (10)0.00001 (8)
N10.0240 (10)0.0120 (8)0.0118 (8)0.0010 (7)0.0002 (7)0.0000 (6)
N20.0197 (10)0.0259 (10)0.0235 (9)0.0012 (8)0.0014 (8)0.0136 (8)
N30.0189 (10)0.0267 (10)0.0254 (10)0.0027 (8)0.0018 (8)0.0158 (8)
N40.0142 (9)0.0146 (8)0.0142 (8)0.0000 (7)0.0001 (7)0.0035 (6)
N50.0139 (9)0.0303 (10)0.0235 (9)0.0002 (8)0.0006 (7)0.0095 (8)
N60.0239 (9)0.0122 (8)0.0111 (8)0.0007 (7)0.0004 (7)0.0009 (6)
N70.0221 (10)0.0131 (8)0.0112 (8)0.0022 (7)0.0002 (7)0.0000 (6)
N80.0309 (10)0.0177 (9)0.0147 (8)0.0022 (8)0.0030 (8)0.0049 (7)
N90.0282 (10)0.0157 (8)0.0143 (8)0.0019 (7)0.0022 (7)0.0054 (7)
N100.0158 (9)0.0144 (8)0.0132 (8)0.0002 (7)0.0002 (7)0.0018 (6)
N110.0185 (9)0.0145 (8)0.0202 (9)0.0020 (7)0.0007 (7)0.0016 (7)
N120.0244 (10)0.0122 (8)0.0115 (8)0.0012 (7)0.0007 (7)0.0001 (6)
N130.0412 (13)0.0256 (11)0.0312 (11)0.0069 (10)0.0119 (10)0.0049 (9)
N140.0348 (13)0.0403 (13)0.0310 (11)0.0124 (10)0.0086 (10)0.0035 (10)
O10.0267 (9)0.0198 (8)0.0288 (8)0.0002 (7)0.0008 (7)0.0045 (6)
O20.0674 (15)0.0489 (12)0.0585 (13)0.0036 (11)0.0185 (11)0.0247 (10)
O30.0803 (16)0.0719 (15)0.0385 (11)0.0458 (13)0.0069 (11)0.0179 (10)
O40.0648 (17)0.111 (2)0.0681 (16)0.0302 (15)0.0060 (13)0.0141 (15)
O50.0739 (15)0.0366 (11)0.0615 (13)0.0151 (10)0.0298 (12)0.0036 (10)
O60.0460 (12)0.0690 (13)0.0284 (10)0.0157 (10)0.0026 (8)0.0042 (9)
O70.0461 (12)0.0601 (12)0.0297 (10)0.0004 (10)0.0002 (9)0.0020 (9)
O80.0478 (12)0.0448 (11)0.0697 (14)0.0051 (9)0.0157 (11)0.0116 (10)
O90.0351 (11)0.0593 (12)0.0515 (11)0.0003 (9)0.0016 (9)0.0056 (10)
O100.0603 (14)0.0425 (11)0.0475 (12)0.0051 (10)0.0027 (10)0.0042 (9)
O110.0785 (16)0.0356 (10)0.0561 (13)0.0208 (10)0.0221 (12)0.0149 (9)
O120.0419 (11)0.0376 (10)0.0282 (9)0.0060 (8)0.0062 (8)0.0015 (7)
O130.0440 (11)0.0297 (9)0.0348 (9)0.0049 (8)0.0001 (8)0.0017 (7)
O140.0592 (14)0.0421 (12)0.0840 (16)0.0117 (10)0.0029 (12)0.0052 (11)
O150.0404 (10)0.0259 (8)0.0212 (8)0.0014 (7)0.0022 (7)0.0014 (6)
O160.0420 (12)0.0689 (14)0.0530 (12)0.0053 (10)0.0097 (9)0.0126 (10)
Geometric parameters (Å, º) top
C1—N121.343 (3)C22—H220.9500
C1—C21.378 (3)C23—N11.340 (3)
C1—H10.9500C23—C241.378 (3)
C2—C31.391 (3)C23—H230.9500
C2—H20.9500C24—H240.9500
C3—C41.382 (3)Cu1—N12.0104 (16)
C3—C61.465 (3)Cu1—N12i2.0219 (16)
C4—C51.380 (3)Cu1—N72.0231 (16)
C4—H40.9500Cu1—N6ii2.0337 (16)
C5—N121.340 (3)Cu1—O12.3569 (16)
C5—H50.9500Cu1—O122.6034 (18)
C6—N91.314 (3)N2—N31.384 (2)
C6—N101.355 (2)N4—N51.401 (2)
C7—N81.316 (3)N5—H5A0.8988
C7—N101.358 (2)N5—H5B0.9083
C7—C81.470 (3)N6—Cu1iii2.0337 (16)
C8—C91.380 (3)N8—N91.378 (2)
C8—C121.381 (3)N10—N111.410 (2)
C9—C101.378 (3)N11—H11A0.8550
C9—H90.9500N11—H11B0.9191
C10—N71.335 (3)N12—Cu1iv2.0219 (16)
C10—H100.9500N13—O51.236 (3)
C11—N71.337 (3)N13—O61.238 (3)
C11—C121.381 (3)N13—O71.252 (3)
C11—H110.9500N14—O41.219 (3)
C12—H120.9500N14—O31.232 (3)
C13—N61.341 (3)N14—O21.232 (3)
C13—C141.372 (3)O1—H1A0.8439
C13—H130.9500O1—H1B0.8448
C14—C151.388 (3)O8—H8A0.8448
C14—H140.9500O8—H8B0.8485
C15—C161.380 (3)O9—H9A0.8477
C15—C181.470 (3)O9—H9B0.8456
C16—C171.379 (3)O10—H10A0.8481
C16—H160.9500O10—H10B0.8464
C17—N61.339 (3)O11—H11C0.8572
C17—H170.9500O11—H11D0.8552
C18—N31.310 (3)O12—H12A0.8518
C18—N41.353 (2)O12—H12B0.8484
C19—N21.302 (3)O13—H13A0.8482
C19—N41.369 (2)O13—H13B0.8470
C19—C201.467 (3)O14—H14A0.8526
C20—C241.389 (3)O14—H14B0.8522
C20—C211.390 (3)O15—H15A0.8500
C21—C221.379 (3)O15—H15B0.8463
C21—H210.9500O16—H16B0.8506
C22—N11.343 (3)O16—H16A0.8486
N12—C1—C2122.52 (18)C23—C24—C20119.00 (18)
N12—C1—H1118.7C23—C24—H24120.5
C2—C1—H1118.7C20—C24—H24120.5
C1—C2—C3118.91 (19)N1—Cu1—N12i179.10 (7)
C1—C2—H2120.5N1—Cu1—N790.72 (7)
C3—C2—H2120.5N12i—Cu1—N788.73 (6)
C4—C3—C2118.62 (18)N1—Cu1—N6ii91.80 (6)
C4—C3—C6122.28 (18)N12i—Cu1—N6ii88.68 (7)
C2—C3—C6118.81 (18)N7—Cu1—N6ii173.79 (7)
C5—C4—C3118.85 (18)N1—Cu1—O190.66 (6)
C5—C4—H4120.6N12i—Cu1—O190.08 (6)
C3—C4—H4120.6N7—Cu1—O191.78 (6)
N12—C5—C4122.79 (19)N6ii—Cu1—O193.86 (6)
N12—C5—H5118.6N1—Cu1—O1288.48 (6)
C4—C5—H5118.6N12i—Cu1—O1290.78 (6)
N9—C6—N10110.21 (16)N7—Cu1—O1287.92 (6)
N9—C6—C3122.64 (17)N6ii—Cu1—O1286.47 (6)
N10—C6—C3127.00 (17)O1—Cu1—O12179.09 (5)
N8—C7—N10109.92 (17)C23—N1—C22118.19 (16)
N8—C7—C8123.65 (17)C23—N1—Cu1120.04 (14)
N10—C7—C8126.41 (18)C22—N1—Cu1121.78 (13)
C9—C8—C12119.10 (18)C19—N2—N3107.46 (16)
C9—C8—C7117.90 (18)C18—N3—N2107.32 (16)
C12—C8—C7122.97 (18)C18—N4—C19105.38 (16)
C10—C9—C8118.71 (19)C18—N4—N5122.93 (16)
C10—C9—H9120.6C19—N4—N5130.69 (16)
C8—C9—H9120.6N4—N5—H5A115.3
N7—C10—C9122.74 (19)N4—N5—H5B108.1
N7—C10—H10118.6H5A—N5—H5B106.5
C9—C10—H10118.6C17—N6—C13117.52 (17)
N7—C11—C12122.73 (19)C17—N6—Cu1iii123.01 (13)
N7—C11—H11118.6C13—N6—Cu1iii119.47 (13)
C12—C11—H11118.6C10—N7—C11118.19 (17)
C11—C12—C8118.52 (19)C10—N7—Cu1118.60 (13)
C11—C12—H12120.7C11—N7—Cu1122.99 (14)
C8—C12—H12120.7C7—N8—N9107.35 (15)
N6—C13—C14123.04 (18)C6—N9—N8107.14 (15)
N6—C13—H13118.5C6—N10—C7105.37 (16)
C14—C13—H13118.5C6—N10—N11125.85 (15)
C13—C14—C15119.16 (19)C7—N10—N11128.70 (16)
C13—C14—H14120.4N10—N11—H11A107.9
C15—C14—H14120.4N10—N11—H11B105.3
C16—C15—C14118.11 (18)H11A—N11—H11B109.1
C16—C15—C18123.45 (18)C5—N12—C1118.07 (17)
C14—C15—C18118.31 (18)C5—N12—Cu1iv120.31 (14)
C17—C16—C15119.22 (18)C1—N12—Cu1iv121.03 (13)
C17—C16—H16120.4O5—N13—O6121.6 (2)
C15—C16—H16120.4O5—N13—O7119.6 (2)
N6—C17—C16122.91 (19)O6—N13—O7118.7 (2)
N6—C17—H17118.5O4—N14—O3120.8 (3)
C16—C17—H17118.5O4—N14—O2119.4 (2)
N3—C18—N4110.01 (17)O3—N14—O2119.6 (3)
N3—C18—C15123.31 (17)Cu1—O1—H1A118.6
N4—C18—C15126.68 (18)Cu1—O1—H1B127.3
N2—C19—N4109.81 (17)H1A—O1—H1B113.8
N2—C19—C20122.95 (18)N13—O7—H5A110.6
N4—C19—C20127.15 (18)H15B—O7—H5A116.9
C24—C20—C21118.22 (17)H8A—O8—H8B105.4
C24—C20—C19123.63 (17)H9A—O9—H9B106.2
C21—C20—C19118.15 (17)H10A—O10—H10B107.1
C22—C21—C20119.30 (19)H11C—O11—H11D111.1
C22—C21—H21120.4Cu1—O12—H12A125.2
C20—C21—H21120.4Cu1—O12—H12B122.3
N1—C22—C21122.41 (18)H12A—O12—H12B109.2
N1—C22—H22118.8H13A—O13—H13B113.2
C21—C22—H22118.8H14A—O14—H14B115.0
N1—C23—C24122.85 (19)H1A—O15—H15B127.5
N1—C23—H23118.6H15A—O15—H15B111.3
C24—C23—H23118.6H16B—O16—H16A104.2
N12—C1—C2—C30.7 (3)N4—C18—N3—N20.7 (2)
C1—C2—C3—C44.2 (3)C15—C18—N3—N2179.31 (17)
C1—C2—C3—C6169.81 (19)C19—N2—N3—C180.1 (2)
C2—C3—C4—C53.5 (3)N3—C18—N4—C191.1 (2)
C6—C3—C4—C5170.34 (19)C15—C18—N4—C19178.95 (18)
C3—C4—C5—N120.8 (3)N3—C18—N4—N5170.79 (17)
C4—C3—C6—N9137.9 (2)C15—C18—N4—N59.3 (3)
C2—C3—C6—N935.9 (3)N2—C19—N4—C181.1 (2)
C4—C3—C6—N1037.3 (3)C20—C19—N4—C18175.49 (18)
C2—C3—C6—N10148.9 (2)N2—C19—N4—N5169.64 (19)
N8—C7—C8—C956.2 (3)C20—C19—N4—N56.9 (3)
N10—C7—C8—C9121.9 (2)C16—C17—N6—C130.6 (3)
N8—C7—C8—C12121.8 (2)C16—C17—N6—Cu1iii178.40 (15)
N10—C7—C8—C1260.2 (3)C14—C13—N6—C171.5 (3)
C12—C8—C9—C100.3 (3)C14—C13—N6—Cu1iii177.57 (17)
C7—C8—C9—C10177.69 (18)C9—C10—N7—C111.3 (3)
C8—C9—C10—N70.9 (3)C9—C10—N7—Cu1173.46 (15)
N7—C11—C12—C80.7 (3)C12—C11—N7—C100.5 (3)
C9—C8—C12—C111.1 (3)C12—C11—N7—Cu1174.01 (16)
C7—C8—C12—C11176.85 (19)N1—Cu1—N7—C10132.34 (15)
N6—C13—C14—C150.6 (3)N12i—Cu1—N7—C1048.38 (15)
C13—C14—C15—C161.2 (3)O1—Cu1—N7—C1041.66 (15)
C13—C14—C15—C18174.76 (19)O12—Cu1—N7—C10139.20 (15)
C14—C15—C16—C172.0 (3)N1—Cu1—N7—C1153.15 (17)
C18—C15—C16—C17173.73 (19)N12i—Cu1—N7—C11126.13 (17)
C15—C16—C17—N61.1 (3)O1—Cu1—N7—C11143.83 (16)
C16—C15—C18—N3130.0 (2)O12—Cu1—N7—C1135.30 (16)
C14—C15—C18—N345.7 (3)N10—C7—N8—N90.8 (2)
C16—C15—C18—N450.0 (3)C8—C7—N8—N9179.11 (18)
C14—C15—C18—N4134.3 (2)N10—C6—N9—N80.6 (2)
N2—C19—C20—C24149.0 (2)C3—C6—N9—N8176.52 (18)
N4—C19—C20—C2434.9 (3)C7—N8—N9—C60.9 (2)
N2—C19—C20—C2130.1 (3)N9—C6—N10—C70.2 (2)
N4—C19—C20—C21146.1 (2)C3—C6—N10—C7175.8 (2)
C24—C20—C21—C221.7 (3)N9—C6—N10—N11177.25 (17)
C19—C20—C21—C22179.22 (18)C3—C6—N10—N117.1 (3)
C20—C21—C22—N10.2 (3)N8—C7—N10—C60.4 (2)
N1—C23—C24—C200.1 (3)C8—C7—N10—C6178.66 (19)
C21—C20—C24—C231.6 (3)N8—C7—N10—N11176.58 (18)
C19—C20—C24—C23179.42 (18)C8—C7—N10—N111.7 (3)
C24—C23—N1—C221.7 (3)C4—C5—N12—C14.3 (3)
C24—C23—N1—Cu1178.28 (15)C4—C5—N12—Cu1iv166.99 (16)
C21—C22—N1—C231.5 (3)C2—C1—N12—C53.5 (3)
C21—C22—N1—Cu1178.44 (15)C2—C1—N12—Cu1iv167.74 (16)
N7—Cu1—N1—C2351.78 (15)O4—N14—O2—H5B20.6
N6ii—Cu1—N1—C23133.89 (15)O3—N14—O2—H5B162.9
O1—Cu1—N1—C2340.00 (15)O4—N14—O3—H9B173.5
O12—Cu1—N1—C23139.69 (15)O2—N14—O3—H9B10.1
N7—Cu1—N1—C22128.28 (16)O3—N14—O4—H14A159.2
N6ii—Cu1—N1—C2246.05 (16)O2—N14—O4—H14A24.4
O1—Cu1—N1—C22139.93 (16)O5—N13—O7—H15B167.7
O12—Cu1—N1—C2240.38 (16)O6—N13—O7—H15B10.7
N4—C19—N2—N30.6 (2)O5—N13—O7—H5A29.0
C20—C19—N2—N3176.08 (17)O6—N13—O7—H5A149.4
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+5/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12B···O9v0.852.032.872 (3)171
O13—H13B···O5vi0.852.042.881 (3)169
O13—H13A···O110.851.852.688 (2)169
O12—H12A···O130.852.022.861 (2)170
O14—H14B···O3vii0.852.002.808 (3)157
O8—H8B···O160.851.942.774 (3)170
O8—H8A···O6viii0.842.042.871 (3)166
O10—H10A···O14vii0.852.112.948 (3)170
O9—H9A···O8ix0.851.892.724 (3)166
O10—H10B···O90.852.022.824 (3)158
O11—H11D···N9x0.862.052.906 (2)174
O11—H11C···O100.861.952.787 (3)164
N5—H5A···O70.902.143.010 (2)163
O16—H16A···O150.851.962.806 (2)171
O1—H1B···O13viii0.842.032.869 (2)173
N5—H5B···O20.912.132.958 (3)151
O15—H15B···O70.852.002.849 (2)176
N11—H11B···N3vi0.922.082.900 (3)148
O1—H1A···O150.841.972.804 (2)172
O16—H16B···O140.852.263.102 (3)169
O15—H15A···N8xi0.851.982.823 (2)171
O14—H14A···O40.851.962.802 (3)169
Symmetry codes: (v) x+1/2, y+2, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x, y+2, z+1; (viii) x1/2, y, z+3/2; (ix) x+1/2, y+3/2, z+1; (x) x+1/2, y1/2, z; (xi) x, y1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn(C12H10N6)(H2O)4]SO4·H2O[Cu(C12H10N6)2(H2O)2](NO3)2·8H2O
Mr489.77844.24
Crystal system, space groupMonoclinic, P21/cOrthorhombic, Pbca
Temperature (K)298173
a, b, c (Å)10.3593 (19), 17.437 (3), 11.532 (2)18.2543 (17), 19.8942 (18), 20.7455 (19)
α, β, γ (°)90, 114.121 (3), 9090, 90, 90
V3)1901.2 (6)7533.8 (12)
Z48
Radiation typeMo KαMo Kα
µ (mm1)1.460.67
Crystal size (mm)0.27 × 0.12 × 0.110.48 × 0.47 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.694, 0.8560.740, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
9776, 3346, 2790 37726, 6994, 5639
Rint0.0370.046
(sin θ/λ)max1)0.5950.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.07 0.036, 0.096, 1.02
No. of reflections33466994
No. of parameters262496
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.670.44, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N5—H2N5···O50.892.203.056 (6)159.8
O4—H1O4···O7i0.861.912.755 (5)170.3
O3—H2O3···O9ii0.851.802.652 (4)175.3
O1—H1O1···N2iii0.851.942.792 (4)177.1
O9—H1O9···O80.841.992.793 (5)157.3
O9—H2O9···O7i0.852.052.876 (5)164.6
O2—H2O2···O8iv0.851.792.625 (4)166.3
O1—H2O1···O6i0.851.752.581 (5)167.4
O4—H2O4···O50.842.283.074 (8)157.1
O3—H1O3···O1v0.851.892.740 (4)173.2
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x+1, y, z+2; (iv) x1, y, z; (v) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O12—H12B···O9i0.852.032.872 (3)170.7
O13—H13B···O5ii0.852.042.881 (3)169.3
O13—H13A···O110.851.852.688 (2)168.9
O12—H12A···O130.852.022.861 (2)169.9
O14—H14B···O3iii0.852.002.808 (3)157.2
O8—H8B···O160.851.942.774 (3)169.6
O8—H8A···O6iv0.842.042.871 (3)166.4
O10—H10A···O14iii0.852.112.948 (3)170.0
O9—H9A···O8v0.851.892.724 (3)166.4
O10—H10B···O90.852.022.824 (3)157.7
O11—H11D···N9vi0.862.052.906 (2)173.7
O11—H11C···O100.861.952.787 (3)164.2
N5—H5A···O70.902.143.010 (2)162.8
O16—H16A···O150.851.962.806 (2)171.3
O1—H1B···O13iv0.842.032.869 (2)172.6
N5—H5B···O20.912.132.958 (3)151.4
O15—H15B···O70.852.002.849 (2)176.3
N11—H11B···N3ii0.922.082.900 (3)147.9
O1—H1A···O150.841.972.804 (2)171.5
O16—H16B···O140.852.263.102 (3)168.7
O15—H15A···N8vii0.851.982.823 (2)171.4
O14—H14A···O40.851.962.802 (3)168.9
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y+2, z+1; (iv) x1/2, y, z+3/2; (v) x+1/2, y+3/2, z+1; (vi) x+1/2, y1/2, z; (vii) x, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds