Download citation
Download citation
link to html
A new 1,3,4-thia­diazole bridging ligand, namely 3,3'-[1,3,4-thia­diazole-2,5-diyldi(thio­methyl­ene)]dibenzoic acid (L), has been used to create the novel isomorphous complexes bis­{[mu]-3,3'-[1,3,4-thia­diazole-2,5-diyldi(thio­methyl­ene)]­dibenzoato}­bis­[(N,N-dimethyl­formamide)copper(II)], [Cu2(C18H12N2O4S3)2(C3H7NO)2], (I), and bis­{[mu]-3,3'-[1,3,4-thia­diazole-2,5-diyl­di(thio­methyl­ene)]dibenzoato}bis­[(N,N-dimethyl­formamide)­zinc(II)], [Zn2(C18H12N2O4S3)2(C3H7NO)2], (II). Both exist as centrosymmetric bicyclic dimers constructed through the syn-syn bidentate bridging mode of the carboxyl­ate groups. The two rings share a metal-metal bond and each of the metal atoms possesses a square-pyramidal geometry capped by the dimethyl­formamide mol­ecule. The 1,3,4-thia­diazole rings play a critical role in the formation of a [pi]-[pi] stacking system that expands the dimensionality of the structure from zero to one. The thermogravimetric analysis of (I) indicates decomposition of the coordinated ligands on heating. Compared with the fluorescence of L in the solid state, the fluorescence intensity of (II) is relatively enhanced with a slight redshift, while that of (I) is quenched.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108043667/sq3180sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043667/sq3180Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043667/sq3180IIsup3.hkl
Contains datablock II

CCDC references: 724187; 724188

Comment top

Supramolecular chemistry has developed dramatically over recent decades. Numerous organometallic complexes have been designed for a number of potential applications, such as in synthetic chemistry (Sommerfeldt et al., 2008), in gas storage (Rowsell & Yaghi, 2005; Ma & Zhou, 2006), in selective absorption (Dong, Jiang et al., 2007 and/or??? Dong, Zhang et al., 2007), as luminescence materials (Wang, Ma et al., 2007 and/or??? Wang, Zhang et al., 2007; Huang et al., 2007) and as magnetic materials (Halder et al., 2002; Neville et al., 2008). Although the general and precise principles for controlling the solid structures of the target products still need to be classified and established, many rational synthetic strategies have been brought forward (Dong, Jiang et al., 2007 and/or??? Dong, Zhang et al., 2007; Zhang et al., 2008). Among them, the selection of proper ligands as building blocks is undoubtedly a key point in manipulating the structures. The 1,3,4-thiadiazole derivatives have been well known for biological activities such as anticancer (Chou et al., 2003), antimicrobial (Mamolo et al., 1996) and anti-inflammatory (Song et al., 1999; Labanauskas et al., 2001), yet very little has been reported on this system in supramolecular and materials chemistry (Tandon et al., 1993, 1994; Huang, Du et al., 2004; Huang, Song et al., 2004). Even fewer are the reports on ligands containing the carboxylic acid group and a 1,3,4-thiadiazole ring at the same time (Wang, Ma et al., 2007 and/or??? Wang, Zhang et al., 2007). Moreover, the 1,3,4-thiadiazole ring is itself a potentially versatile ligand, since the electron-rich and soft constituent S may significantly influence the properties of the ligand. With aromatic substituent groups, the ligand will show a strong tendency to completely or partly participate in intermolecular ππ interactions, which may affect the packing arrangement of the crystal structures. We present here the synthesis of a new 1,3,4-thiadiazole ring-bridged 3,3'-biphenylcarboxylate-type ligand (L) and two novel bicyclic dinuclear complexes, namely, [Cu(C18H12N2O4S3).DMF2], (I), and [Zn(C18H12N2O4S3).DMF2], (II) (DMF is N,N-dimethylformamide). The X-ray crystal structures of (I) and (II) show that they are isomorphic. We have investigated the thermogravimetric behavior of (I), and the fluorescence properties of both complexes and L.

Both complexes crystallize in the monoclinic space group P21/c with a crystallographically imposed symmetry center. The large rings of the two L ligands give each molecule an overall `8' shape. The zero-dimensional dinuclear structure is constructed through the synsyn bidentate bridging mode of the carboxylate groups. Each CuII center lies in a {CuO5} square-pyramidal coordination environment, with the axial position occupied by an O atom from a coordinated molecule and the equatorial positions occupied by four carboxylic O atoms (Fig. 1). Two equivalent L ligands act as organic clips to bridge two CuII ions to form a bicyclic dimer, with Cu—O distances ranging from 1.957 (4) to 1.967 (4) Å, which are consistent with the corresponding bond lengths in similarly five-coordinated CuII complexes (1.99 Å). The Cu—O (apical DMF) bond distance [2.134 (4) Å] is considerably longer than that, but slightly outside the 2.2–2.8 Å range for apical Cu—O bond distances. In addition, the Cu1···Cu1i distance [symmetry code: (i) -x + 1, -y + 1, -z + 1) is 2.6344 (15) Å, which is less than the sum of the van der Waals radii of two Cu atoms (2.8 Å; Song et al., 2004) and thus implies a degree of metal–metal interaction. The Cu2(RCO2)4 core is, of course, equivalent to the well-known classic dinuclear paddle-wheel structure of copper(II) carboxylates (Calvo et al., 2008) in which the Cu···Cu distance is 2.645 Å. The tetracarboxylate bridging framework can accommodate metal–metal separations of up to 3.452 Å (Zhou et al., 2000). The Zn—Zn separation of 2.9429 (5) Å for (II) is shorter than this maximum but much longer than the corresponding Cu···Cu distance observed in (I).

The ligand L is significantly twisted as the two phenyl rings on the same L ligand rotate by about 83.019 (3) and 80.281 (8)° with respect to the thiadiazole ring, respectively. There are intermolecular ππ interactions between the 1,3,4-thiadiazole rings, as shown in Fig. 2. The distance between the centroids of two neighboring thiadiazole rings is 3.563 (3) Å, and the two ring planes are absolutely parallel. Such interactions connect neighboring molecules into one-dimensional chains running along the crystallographic [110] direction. These one-dimensional chains then stack in a side-by-side fashion into sheets extending in the crystallographic (001) plane. The phenyl rings in adjacent molecules are also parallel, but too far apart (ca 4.45 Å) for normal ππ interactions. Thus, it is evident that the 1,3,4-thiadiazole rings play a critical role in the formation of the primary ππ interactions that propagate through the structure.

Both compounds are air stable and can retain their structural integrity at room temperature for a considerable length of time. However, the thermogravimetric plot of (I) (Fig. 3) shows a sharp mass loss of just under 20% from roughly 513–533 K, which is larger than the proportion of two DMF molecules (13.25%) but smaller than that of a ligand (37.97%), indicating that the coordinated ligands have been decomposed on heating. In fact, a change of color from green to yellow is also observed in the process of measurement of the melting point of (I).

Compound (I) consists of green crystals insoluble in water and common organic solvents such as DMF, chloroform and methanol, while the colorless crystals of 2 can slightly dissolve in DMF. The luminescence properties of L, (I) and (II) were investigated in the solid state. L exhibits one emission maximum at 431 nm (λex = 348 nm) (Fig. 4), while the fluorescence intensity of (II) is relatively enhanced with a slight redshift to 436 nm. By contrast, the fluorescence of (I) is quenched by CuII as commonly reported by others (Kessler, 1999).

This study demonstrates the utility of the 1,3,4-thiadiazole derivatives as organic ligands for constructing metal–organic complexes. We expect ligands of this type to be more viable for more new complexes with interesting topology and physical properties.

Related literature top

For related literature, see: Calvo et al. (2008); Chou et al. (2003); Dong, Jiang, Li, Ma, Liu, Tang, Huang & Batten (2007); Dong, Zhang, Liu, Ma, Tang & Huang (2007); Halder et al. (2002); Huang, et al. (2007); Huang, Du et al. (2004); Huang, Song et al. (2004); Kessler (1999); Labanauskas et al. (2001); Ma & Zhou (2006); Mamolo et al. (1996); Neville et al. (2008); Nie (2003); Rowsell & Yaghi (2005); Sommerfeldt et al. (2008); Song et al. (1999, 2004); Tandon et al. (1993, 1994); Wang, Ma, Dong & Huang (2007); Wang, Zhang, Fan, Hou & Shen (2007); Zhang et al. (2008); Zhou et al. (2000).

Experimental top

All the solvents and reagents were commercially available and used as received. 2,5-Dimercapto-1,3,4-thiadiazole (A) (m.p. 441 K) was prepared according to the method described by Nie (2003).

A carbon tetrachloride solution (20 ml) of 3-methylbenzoic acid (1.36 g, 10.0 mmol), succinbromimide (1.78 g, 10.0 mmol) and benzoyl peroxide (0.020 g, 83.0 mm mol) was boiled under reflux for 5 h. After cooling to room temperature, a pink precipitate was obtained by filtration and subsequently washed with carbon tetrachloride and water. Recrystallization in methylene chloride provided a white solid, 3-bromomethyl benzoic acid, in 92.3% yield.

A methanol solution (40 ml) of 3-bromomethyl benzoic acid (0.65 g, 3.0 mmol) was added dropwise to a methanol solution (30 ml) of A (0.20 g, 1.3 mmol) and potassium hydroxide (0.34 g, 6.0 mmol). The mixture was stirred at room temperature for 12 h. After removing the solvent under vacuum, the residue was re-dissolved in water and filtered to give a clean [clear?] solution. Acidification by 10% HCl aqueous solution followed by recrystallization in methanol provided the white precipitate L in 81.2% yield (m.p. 485–488 K). 1H NMR (300 MHz, DMSO-d6, p.p.m): δ 12.97 (s, 2H, COOH), 7.94–7.35 (m, 8H, m-C6H4), 4.51 (s, 4H, CH2). IR (KBr, cm-1): ν 3455, 1689, 1638, 1455, 1398, 1311, 1291, 1239, 1205, 1040, 722.

A solution of Cu(OAc)2 (2.0 mg, 0.010 mmol) in methanol (8 ml) was layered onto a solution of L (4.2 mg, 0.010 mmol) in DMF (8 ml). The solutions were left for about three days at room temperature and green crystals of (I) were obtained (yield 83.3%, m.p. 525–527 K). IR (KBr, cm-1): ν 3443, 3064, 2927, 1656, 1622, 1578, 1441, 1397, 1114, 1039, 863, 801, 682, 669, 487.

A solution of Zn(OAc)2 (2.2 mg, 0.010 mmol) in methanol (8 ml) was mixed with a solution of L (4.2 mg, 0.010 mmol) in DMF (8 ml). The solutions were left for about three weeks at room temperature and colorless crystals of (II) were obtained (yield 85.0%, m.p. 547–549 K). 1H NMR (300 MHz, DMSO-d6, p.p.m): δ 7.97 (s, 2H, COH), 7.94–7.34 (m, 16H, m-C6H4), 4.55 (s, 8H, CH2), 2.88 (s, 6H, CH3), 2.72 (s, 6H, CH3). IR (KBr, cm-1): ν 3432, 3068, 2934, 1630, 1580, 1498, 1440, 1403, 1372, 1217, 1078, 798, 700, 680, 665, 457.

Refinement top

H atoms attached to non-H atoms were placed in geometrically idealized positions and included as riding atoms [for (I), C—H = 0.97 (CH2), 0.93 (CH) and 0.96 Å; for (II), C—H = 0.99 (CH2), 0.95 (CH) and 0.98 Å; for both compounds, Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) otherwise {please check changes to text}].

Computing details top

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (displacement ellipsoids are shown with 30% probability), with H atoms omitted. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The crystal packing of (I), showing the ππ stacking interactions. H atoms have been omitted. [Symmetry codes: (A) -x + 1, -y + 1, -z + 1; (B) -x +2, -y + 2, -z + 1; (C) x - 1, y - 1, z; (AA) x + 1, y + 1, z; (AB) -x, -y, -z + 1.]
[Figure 3] Fig. 3. Thermogravimetric analysis plot obtained by heating a powdered sample of (I) to 915 K under flowing nitrogen at 10 K min-1.
[Figure 4] Fig. 4. Photoinduced emission spectra of L (black) and (II) (grey, or red in the electronic version of the paper) in the solid state.
(I) bis{µ-3,3'-[1,3,4-thiadiazole-2,5- diyldi(thiomethylene)]dibenzoato}bis[(N,N- dimethylformamide)copper(II)] top
Crystal data top
[Cu2(C18H12N2O4S3)2(C3H7NO)2]F(000) = 1132
Mr = 1106.22Dx = 1.612 Mg m3
Monoclinic, P21/cMelting point = 525–527 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.092 (4) ÅCell parameters from 1230 reflections
b = 11.165 (4) Åθ = 2.2–19.1°
c = 18.426 (7) ŵ = 1.27 mm1
β = 92.699 (6)°T = 298 K
V = 2279.5 (14) Å3Block, blue
Z = 20.26 × 0.09 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4232 independent reflections
Radiation source: fine-focus sealed tube2921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
phi and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 913
Tmin = 0.733, Tmax = 0.905k = 1312
11616 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0804P)2 + 3.9668P]
where P = (Fo2 + 2Fc2)/3
4232 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Cu2(C18H12N2O4S3)2(C3H7NO)2]V = 2279.5 (14) Å3
Mr = 1106.22Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.092 (4) ŵ = 1.27 mm1
b = 11.165 (4) ÅT = 298 K
c = 18.426 (7) Å0.26 × 0.09 × 0.08 mm
β = 92.699 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4232 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2921 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.905Rint = 0.066
11616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.06Δρmax = 0.77 e Å3
4232 reflectionsΔρmin = 0.65 e Å3
300 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4758 (5)0.6931 (6)0.4280 (3)0.0337 (15)
C20.4753 (5)0.8019 (6)0.3833 (3)0.0322 (14)
C30.4183 (6)0.8028 (7)0.3151 (4)0.0454 (17)
H30.37240.73730.29930.054*
C40.4293 (7)0.9014 (7)0.2698 (4)0.058 (2)
H40.39250.90100.22340.070*
C50.4945 (6)0.9992 (7)0.2938 (4)0.0492 (18)
H50.50241.06450.26300.059*
C60.5489 (6)1.0022 (6)0.3629 (4)0.0395 (16)
C70.5384 (6)0.9039 (6)0.4066 (4)0.0398 (16)
H70.57450.90510.45320.048*
C80.6178 (7)1.1145 (7)0.3854 (4)0.056 (2)
H8A0.55981.17890.38960.068*
H8B0.66951.13570.34640.068*
C90.8121 (7)1.0007 (7)0.4473 (4)0.057 (2)
C100.9708 (7)0.8748 (7)0.4089 (5)0.060 (2)
C111.1087 (6)0.6705 (7)0.4205 (4)0.057 (2)
H11A1.18990.64050.41520.068*
H11B1.10140.69250.47100.068*
C121.0214 (6)0.5733 (6)0.4020 (4)0.0461 (17)
C131.0503 (7)0.4834 (8)0.3540 (4)0.061 (2)
H131.12600.48270.33430.073*
C140.9682 (8)0.3947 (8)0.3351 (5)0.070 (2)
H140.98870.33530.30250.084*
C150.8544 (7)0.3933 (7)0.3646 (4)0.055 (2)
H150.79850.33440.35100.065*
C160.8262 (6)0.4801 (6)0.4139 (3)0.0350 (15)
C170.9090 (6)0.5691 (6)0.4332 (3)0.0419 (16)
H170.88950.62660.46720.050*
C180.7059 (6)0.4828 (6)0.4470 (3)0.0327 (14)
C190.3008 (7)0.2579 (7)0.3599 (4)0.0544 (19)
H190.28350.23130.40610.065*
C200.1685 (10)0.1018 (10)0.3133 (6)0.106 (4)
H20A0.19230.03730.28260.159*
H20B0.08710.12510.29990.159*
H20C0.17310.07600.36300.159*
C210.2682 (9)0.2361 (9)0.2320 (4)0.078 (3)
H21A0.32390.30190.23170.117*
H21B0.19310.25960.20810.117*
H21C0.30110.16920.20680.117*
Cu10.45275 (6)0.43894 (6)0.44449 (4)0.0282 (2)
N30.2483 (5)0.2030 (5)0.3046 (3)0.0503 (15)
N10.9404 (6)0.8541 (7)0.4742 (4)0.069 (2)
N20.8501 (7)0.9237 (7)0.4971 (4)0.079 (2)
O10.4374 (4)0.5973 (4)0.3992 (2)0.0408 (11)
O20.5173 (4)0.7014 (4)0.4936 (2)0.0375 (10)
O30.6192 (4)0.4288 (4)0.4131 (2)0.0406 (11)
O40.6976 (4)0.5360 (4)0.5050 (2)0.0410 (11)
O50.3706 (4)0.3413 (5)0.3557 (2)0.0488 (12)
S11.0871 (2)0.8033 (2)0.36460 (13)0.0671 (6)
S20.70895 (19)1.1090 (2)0.46786 (13)0.0646 (6)
S30.8887 (2)0.9908 (2)0.36995 (13)0.0714 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (3)0.041 (4)0.032 (3)0.001 (3)0.012 (3)0.008 (3)
C20.034 (4)0.031 (4)0.031 (3)0.002 (3)0.006 (3)0.002 (3)
C30.043 (4)0.043 (4)0.049 (4)0.007 (3)0.000 (3)0.002 (3)
C40.070 (6)0.058 (5)0.046 (4)0.001 (4)0.010 (4)0.014 (4)
C50.047 (4)0.043 (5)0.058 (5)0.006 (3)0.001 (4)0.018 (4)
C60.040 (4)0.029 (4)0.050 (4)0.003 (3)0.007 (3)0.002 (3)
C70.042 (4)0.035 (4)0.043 (4)0.005 (3)0.002 (3)0.002 (3)
C80.052 (5)0.036 (4)0.082 (6)0.003 (4)0.005 (4)0.005 (4)
C90.056 (5)0.047 (5)0.066 (5)0.010 (4)0.006 (4)0.005 (4)
C100.046 (5)0.047 (5)0.085 (6)0.008 (4)0.016 (4)0.003 (4)
C110.028 (4)0.067 (6)0.076 (5)0.003 (4)0.003 (3)0.018 (4)
C120.037 (4)0.044 (4)0.056 (4)0.007 (3)0.001 (3)0.014 (4)
C130.047 (5)0.068 (6)0.069 (5)0.000 (4)0.014 (4)0.005 (5)
C140.068 (6)0.068 (6)0.075 (6)0.010 (5)0.026 (5)0.013 (5)
C150.049 (5)0.048 (5)0.067 (5)0.001 (4)0.006 (4)0.002 (4)
C160.032 (4)0.033 (4)0.040 (4)0.002 (3)0.006 (3)0.002 (3)
C170.035 (4)0.052 (5)0.039 (4)0.003 (3)0.004 (3)0.005 (3)
C180.038 (4)0.029 (3)0.031 (3)0.003 (3)0.003 (3)0.009 (3)
C190.055 (5)0.052 (5)0.056 (5)0.008 (4)0.000 (4)0.003 (4)
C200.102 (8)0.091 (8)0.126 (9)0.058 (7)0.013 (7)0.027 (7)
C210.089 (7)0.086 (7)0.056 (5)0.012 (5)0.011 (5)0.004 (5)
Cu10.0296 (4)0.0263 (4)0.0283 (4)0.0068 (3)0.0019 (3)0.0003 (3)
N30.053 (4)0.046 (4)0.051 (4)0.017 (3)0.007 (3)0.010 (3)
N10.048 (4)0.098 (6)0.062 (5)0.003 (4)0.014 (3)0.010 (4)
N20.090 (6)0.067 (6)0.081 (5)0.000 (4)0.004 (4)0.002 (4)
O10.051 (3)0.030 (3)0.041 (3)0.006 (2)0.008 (2)0.002 (2)
O20.048 (3)0.029 (3)0.035 (2)0.004 (2)0.002 (2)0.0013 (19)
O30.033 (3)0.051 (3)0.039 (2)0.010 (2)0.0033 (19)0.008 (2)
O40.033 (3)0.051 (3)0.040 (3)0.006 (2)0.004 (2)0.008 (2)
O50.054 (3)0.055 (3)0.037 (3)0.021 (3)0.003 (2)0.006 (2)
S10.0636 (14)0.0589 (14)0.0803 (15)0.0007 (11)0.0173 (11)0.0198 (12)
S20.0613 (14)0.0518 (13)0.0809 (15)0.0097 (10)0.0055 (11)0.0132 (11)
S30.0693 (15)0.0705 (16)0.0746 (15)0.0026 (12)0.0055 (12)0.0135 (12)
Geometric parameters (Å, º) top
C1—O11.259 (7)C13—H130.9300
C1—O21.276 (7)C14—C151.397 (10)
C1—C21.468 (8)C14—H140.9300
C2—C31.380 (9)C15—C161.375 (9)
C2—C71.394 (9)C15—H150.9300
C3—C41.389 (10)C16—C171.388 (9)
C3—H30.9300C16—C181.493 (8)
C4—C51.372 (11)C17—H170.9300
C4—H40.9300C18—O41.230 (7)
C5—C61.384 (10)C18—O31.273 (7)
C5—H50.9300C19—O51.216 (8)
C6—C71.370 (9)C19—N31.303 (9)
C6—C81.516 (10)C19—H190.9300
C7—H70.9300C20—N31.449 (10)
C8—S21.786 (8)C20—H20A0.9600
C8—H8A0.9700C20—H20B0.9600
C8—H8B0.9700C20—H20C0.9600
C9—N21.313 (10)C21—N31.416 (9)
C9—S31.697 (8)C21—H21A0.9600
C9—S21.719 (9)C21—H21B0.9600
C10—N11.287 (10)C21—H21C0.9600
C10—S31.721 (8)Cu1—O2i1.957 (4)
C10—S11.751 (9)Cu1—O11.959 (4)
C11—C121.483 (10)Cu1—O31.964 (4)
C11—S11.814 (8)Cu1—O4i1.967 (4)
C11—H11A0.9700Cu1—O52.134 (4)
C11—H11B0.9700Cu1—Cu1i2.6344 (15)
C12—C131.385 (11)N1—N21.350 (10)
C12—C171.398 (9)O2—Cu1i1.957 (4)
C13—C141.379 (12)O4—Cu1i1.967 (4)
O1—C1—O2124.1 (6)C15—C16—C18121.3 (6)
O1—C1—C2118.3 (6)C17—C16—C18118.3 (6)
O2—C1—C2117.6 (6)C16—C17—C12120.7 (6)
C3—C2—C7118.4 (6)C16—C17—H17119.6
C3—C2—C1120.5 (6)C12—C17—H17119.6
C7—C2—C1120.9 (6)O4—C18—O3124.6 (6)
C2—C3—C4120.2 (7)O4—C18—C16118.0 (6)
C2—C3—H3119.9O3—C18—C16117.4 (5)
C4—C3—H3119.9O5—C19—N3124.9 (7)
C5—C4—C3119.8 (7)O5—C19—H19117.5
C5—C4—H4120.1N3—C19—H19117.5
C3—C4—H4120.1N3—C20—H20A109.5
C4—C5—C6121.1 (7)N3—C20—H20B109.5
C4—C5—H5119.5H20A—C20—H20B109.5
C6—C5—H5119.5N3—C20—H20C109.5
C7—C6—C5118.4 (7)H20A—C20—H20C109.5
C7—C6—C8123.9 (6)H20B—C20—H20C109.5
C5—C6—C8117.6 (6)N3—C21—H21A109.5
C6—C7—C2122.0 (6)N3—C21—H21B109.5
C6—C7—H7119.0H21A—C21—H21B109.5
C2—C7—H7119.0N3—C21—H21C109.5
C6—C8—S2117.5 (5)H21A—C21—H21C109.5
C6—C8—H8A107.9H21B—C21—H21C109.5
S2—C8—H8A107.9O2i—Cu1—O1168.42 (17)
C6—C8—H8B107.9O2i—Cu1—O389.37 (19)
S2—C8—H8B107.9O1—Cu1—O389.47 (19)
H8A—C8—H8B107.2O2i—Cu1—O4i87.85 (18)
N2—C9—S3112.8 (7)O1—Cu1—O4i90.84 (19)
N2—C9—S2120.1 (7)O3—Cu1—O4i167.67 (17)
S3—C9—S2126.6 (5)O2i—Cu1—O595.29 (19)
N1—C10—S3111.6 (7)O1—Cu1—O596.29 (19)
N1—C10—S1125.9 (7)O3—Cu1—O596.79 (18)
S3—C10—S1122.4 (5)O4i—Cu1—O595.43 (18)
C12—C11—S1113.6 (5)O2i—Cu1—Cu1i84.92 (13)
C12—C11—H11A108.8O1—Cu1—Cu1i83.50 (13)
S1—C11—H11A108.8O3—Cu1—Cu1i85.02 (13)
C12—C11—H11B108.8O4i—Cu1—Cu1i82.77 (13)
S1—C11—H11B108.8O5—Cu1—Cu1i178.17 (14)
H11A—C11—H11B107.7C19—N3—C21122.2 (7)
C13—C12—C17118.4 (7)C19—N3—C20122.3 (7)
C13—C12—C11120.6 (7)C21—N3—C20115.5 (7)
C17—C12—C11121.0 (7)C10—N1—N2114.8 (8)
C14—C13—C12120.8 (8)C9—N2—N1112.2 (8)
C14—C13—H13119.6C1—O1—Cu1124.5 (4)
C12—C13—H13119.6C1—O2—Cu1i122.5 (4)
C13—C14—C15120.5 (8)C18—O3—Cu1121.8 (4)
C13—C14—H14119.7C18—O4—Cu1i125.4 (4)
C15—C14—H14119.7C19—O5—Cu1126.3 (5)
C16—C15—C14119.1 (7)C10—S1—C11100.9 (4)
C16—C15—H15120.4C9—S2—C8101.1 (4)
C14—C15—H15120.4C9—S3—C1088.6 (4)
C15—C16—C17120.4 (6)
O1—C1—C2—C39.2 (9)S3—C9—N2—N10.8 (9)
O2—C1—C2—C3171.9 (5)S2—C9—N2—N1173.0 (6)
O1—C1—C2—C7166.7 (6)C10—N1—N2—C90.8 (11)
O2—C1—C2—C712.2 (9)O2—C1—O1—Cu18.4 (8)
C7—C2—C3—C43.1 (10)C2—C1—O1—Cu1170.4 (4)
C1—C2—C3—C4172.9 (6)O2i—Cu1—O1—C13.1 (12)
C2—C3—C4—C51.6 (11)O3—Cu1—O1—C181.2 (5)
C3—C4—C5—C60.7 (12)O4i—Cu1—O1—C186.5 (5)
C4—C5—C6—C71.5 (11)O5—Cu1—O1—C1178.0 (5)
C4—C5—C6—C8179.1 (7)Cu1i—Cu1—O1—C13.8 (5)
C5—C6—C7—C20.1 (10)O1—C1—O2—Cu1i8.4 (8)
C8—C6—C7—C2179.2 (6)C2—C1—O2—Cu1i170.4 (4)
C3—C2—C7—C62.4 (9)O4—C18—O3—Cu17.1 (9)
C1—C2—C7—C6173.6 (6)C16—C18—O3—Cu1173.4 (4)
C7—C6—C8—S29.8 (9)O2i—Cu1—O3—C1889.7 (5)
C5—C6—C8—S2169.5 (5)O1—Cu1—O3—C1878.8 (5)
S1—C11—C12—C1394.0 (8)O4i—Cu1—O3—C1812.7 (12)
S1—C11—C12—C1787.0 (7)O5—Cu1—O3—C18175.0 (5)
C17—C12—C13—C142.8 (12)Cu1i—Cu1—O3—C184.8 (4)
C11—C12—C13—C14178.2 (8)O3—C18—O4—Cu1i4.9 (9)
C12—C13—C14—C150.6 (13)C16—C18—O4—Cu1i175.7 (4)
C13—C14—C15—C161.4 (13)N3—C19—O5—Cu1177.2 (6)
C14—C15—C16—C171.1 (11)O2i—Cu1—O5—C1940.1 (6)
C14—C15—C16—C18180.0 (6)O1—Cu1—O5—C19139.7 (6)
C15—C16—C17—C121.1 (10)O3—Cu1—O5—C19130.1 (6)
C18—C16—C17—C12177.7 (6)O4i—Cu1—O5—C1948.3 (6)
C13—C12—C17—C163.0 (10)N1—C10—S1—C1118.6 (8)
C11—C12—C17—C16178.0 (6)S3—C10—S1—C11165.8 (5)
C15—C16—C18—O4158.1 (7)C12—C11—S1—C1082.2 (6)
C17—C16—C18—O423.1 (9)N2—C9—S2—C8142.3 (7)
C15—C16—C18—O321.4 (9)S3—C9—S2—C846.6 (6)
C17—C16—C18—O3157.4 (6)C6—C8—S2—C962.7 (6)
O5—C19—N3—C210.0 (13)N2—C9—S3—C101.5 (7)
O5—C19—N3—C20178.2 (9)S2—C9—S3—C10173.1 (6)
S3—C10—N1—N21.9 (10)N1—C10—S3—C91.9 (7)
S1—C10—N1—N2177.9 (6)S1—C10—S3—C9178.1 (5)
Symmetry code: (i) x+1, y+1, z+1.
(II) bis{µ-3,3'-[1,3,4-thiadiazole-2,5- diyldi(thiomethylene)]dibenzoato}bis[(N,N- dimethylformamide)zinc(II)] top
Crystal data top
[Zn2(C18H12N2O4S3)2(C3H7NO)2]F(000) = 1136
Mr = 1109.88Dx = 1.609 Mg m3
Monoclinic, P21/cMelting point = 547–549 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.0860 (13) ÅCell parameters from 6375 reflections
b = 11.2252 (13) Åθ = 2.6–28.2°
c = 18.440 (2) ŵ = 1.39 mm1
β = 93.169 (2)°T = 173 K
V = 2291.2 (5) Å3Block, colorless
Z = 20.49 × 0.29 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4246 independent reflections
Radiation source: fine-focus sealed tube3873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.550, Tmax = 0.819k = 1213
11782 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0467P)2 + 1.1983P]
where P = (Fo2 + 2Fc2)/3
4246 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn2(C18H12N2O4S3)2(C3H7NO)2]V = 2291.2 (5) Å3
Mr = 1109.88Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.0860 (13) ŵ = 1.39 mm1
b = 11.2252 (13) ÅT = 173 K
c = 18.440 (2) Å0.49 × 0.29 × 0.15 mm
β = 93.169 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4246 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3873 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.819Rint = 0.023
11782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
4246 reflectionsΔρmin = 0.33 e Å3
300 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47488 (19)0.69589 (19)0.42810 (12)0.0325 (5)
C20.47581 (19)0.80604 (18)0.38213 (12)0.0304 (5)
C30.4189 (2)0.8066 (2)0.31317 (13)0.0384 (5)
H30.37260.73970.29660.046*
C40.4297 (3)0.9046 (2)0.26859 (15)0.0481 (6)
H40.39140.90490.22120.058*
C50.4962 (2)1.0017 (2)0.29299 (14)0.0445 (6)
H50.50501.06800.26170.053*
C60.5502 (2)1.00418 (19)0.36252 (13)0.0352 (5)
C70.5397 (2)0.90545 (19)0.40672 (13)0.0324 (5)
H70.57660.90590.45440.039*
C80.6195 (2)1.1156 (2)0.38590 (16)0.0482 (6)
H8A0.56061.18130.38960.058*
H8B0.67331.13690.34680.058*
C90.8148 (2)1.0001 (2)0.45105 (14)0.0417 (6)
C100.9718 (2)0.8752 (2)0.41201 (15)0.0421 (6)
C111.1113 (2)0.6711 (2)0.42113 (15)0.0434 (6)
H11A1.19440.64200.41500.052*
H11B1.10470.69190.47290.052*
C121.0236 (2)0.5731 (2)0.40145 (13)0.0342 (5)
C131.0530 (2)0.4851 (2)0.35298 (15)0.0460 (6)
H131.12970.48600.33250.055*
C140.9711 (3)0.3958 (3)0.33416 (16)0.0525 (7)
H140.99240.33540.30120.063*
C150.8589 (2)0.3936 (2)0.36277 (14)0.0425 (6)
H150.80250.33300.34870.051*
C160.82869 (19)0.4803 (2)0.41227 (12)0.0317 (5)
C170.9119 (2)0.56835 (19)0.43192 (13)0.0331 (5)
H170.89220.62640.46680.040*
C180.70732 (19)0.4814 (2)0.44474 (12)0.0320 (5)
C190.2984 (2)0.2581 (2)0.36068 (13)0.0400 (5)
H190.28140.23100.40780.048*
C200.1695 (4)0.1011 (3)0.3124 (2)0.0787 (11)
H20A0.20710.03010.29250.118*
H20B0.09160.11580.28620.118*
H20C0.15690.08840.36400.118*
C210.2699 (3)0.2375 (3)0.23141 (15)0.0578 (7)
H21A0.32030.30920.23230.087*
H21B0.19280.25400.20470.087*
H21C0.31160.17280.20730.087*
Zn10.44694 (2)0.43342 (2)0.437324 (13)0.02753 (9)
N30.24774 (19)0.20280 (18)0.30439 (12)0.0429 (5)
N10.9415 (2)0.8516 (2)0.47680 (12)0.0492 (5)
N20.8499 (2)0.9219 (2)0.49944 (13)0.0510 (6)
O10.43532 (17)0.60201 (14)0.39820 (10)0.0472 (4)
O20.51511 (16)0.70457 (14)0.49277 (9)0.0434 (4)
O30.62262 (15)0.42705 (15)0.41052 (10)0.0439 (4)
O40.69900 (15)0.53647 (16)0.50278 (10)0.0438 (4)
O50.36731 (15)0.34360 (15)0.35546 (9)0.0401 (4)
S11.08555 (6)0.80461 (6)0.36608 (4)0.04957 (18)
S20.70961 (6)1.10893 (6)0.46991 (4)0.04989 (18)
S30.89048 (6)0.99115 (6)0.37182 (4)0.04950 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0294 (11)0.0305 (12)0.0383 (13)0.0003 (9)0.0085 (9)0.0052 (9)
C20.0305 (11)0.0282 (11)0.0330 (12)0.0013 (9)0.0066 (9)0.0028 (9)
C30.0397 (13)0.0370 (12)0.0382 (13)0.0030 (10)0.0007 (10)0.0016 (10)
C40.0528 (15)0.0537 (15)0.0368 (14)0.0013 (12)0.0068 (11)0.0095 (12)
C50.0499 (15)0.0380 (13)0.0459 (15)0.0019 (11)0.0042 (11)0.0169 (11)
C60.0336 (12)0.0258 (11)0.0467 (14)0.0021 (9)0.0069 (10)0.0040 (10)
C70.0337 (11)0.0311 (11)0.0326 (12)0.0005 (9)0.0019 (9)0.0030 (9)
C80.0469 (15)0.0309 (12)0.0666 (18)0.0025 (11)0.0009 (13)0.0061 (12)
C90.0361 (13)0.0376 (13)0.0512 (15)0.0092 (10)0.0003 (11)0.0041 (11)
C100.0359 (13)0.0347 (12)0.0551 (16)0.0073 (10)0.0035 (11)0.0029 (11)
C110.0290 (11)0.0433 (13)0.0576 (16)0.0009 (10)0.0011 (11)0.0096 (12)
C120.0287 (11)0.0375 (12)0.0363 (12)0.0017 (9)0.0004 (9)0.0100 (10)
C130.0348 (13)0.0549 (15)0.0491 (15)0.0047 (12)0.0106 (11)0.0035 (13)
C140.0506 (16)0.0539 (16)0.0538 (17)0.0067 (13)0.0110 (13)0.0159 (14)
C150.0414 (13)0.0406 (13)0.0452 (15)0.0022 (11)0.0001 (11)0.0057 (11)
C160.0301 (11)0.0339 (11)0.0311 (12)0.0004 (9)0.0010 (9)0.0057 (9)
C170.0322 (11)0.0334 (12)0.0338 (12)0.0031 (9)0.0025 (9)0.0031 (9)
C180.0306 (11)0.0320 (11)0.0336 (12)0.0013 (9)0.0029 (9)0.0071 (10)
C190.0417 (13)0.0436 (14)0.0346 (13)0.0071 (11)0.0009 (10)0.0031 (10)
C200.093 (3)0.075 (2)0.069 (2)0.050 (2)0.0103 (19)0.0128 (18)
C210.0671 (18)0.0663 (19)0.0386 (15)0.0157 (15)0.0100 (13)0.0003 (13)
Zn10.03055 (15)0.02645 (15)0.02538 (15)0.00628 (9)0.00031 (10)0.00143 (9)
N30.0442 (11)0.0420 (11)0.0424 (12)0.0148 (9)0.0013 (9)0.0058 (9)
N10.0497 (13)0.0523 (13)0.0464 (13)0.0041 (11)0.0095 (10)0.0013 (11)
N20.0583 (14)0.0461 (13)0.0492 (14)0.0023 (11)0.0075 (11)0.0009 (10)
O10.0619 (12)0.0271 (8)0.0521 (11)0.0085 (8)0.0013 (9)0.0051 (8)
O20.0584 (11)0.0345 (9)0.0371 (10)0.0009 (8)0.0021 (8)0.0108 (7)
O30.0314 (9)0.0569 (11)0.0438 (10)0.0095 (8)0.0048 (7)0.0006 (8)
O40.0348 (9)0.0528 (10)0.0446 (10)0.0035 (8)0.0107 (7)0.0054 (8)
O50.0461 (9)0.0423 (9)0.0314 (9)0.0156 (8)0.0019 (7)0.0051 (7)
S10.0445 (4)0.0447 (4)0.0609 (4)0.0001 (3)0.0150 (3)0.0134 (3)
S20.0464 (4)0.0424 (4)0.0610 (4)0.0051 (3)0.0040 (3)0.0141 (3)
S30.0481 (4)0.0508 (4)0.0499 (4)0.0045 (3)0.0061 (3)0.0086 (3)
Geometric parameters (Å, º) top
C1—O21.254 (3)C13—H130.9500
C1—O11.257 (3)C14—C151.378 (4)
C1—C21.500 (3)C14—H140.9500
C2—C71.384 (3)C15—C161.388 (3)
C2—C31.388 (3)C15—H150.9500
C3—C41.382 (3)C16—C171.387 (3)
C3—H30.9500C16—C181.503 (3)
C4—C51.377 (4)C17—H170.9500
C4—H40.9500C18—O41.244 (3)
C5—C61.385 (4)C18—O31.259 (3)
C5—H50.9500C19—O51.234 (3)
C6—C71.385 (3)C19—N31.309 (3)
C6—C81.517 (3)C19—H190.9500
C7—H70.9500C20—N31.446 (4)
C8—S21.798 (3)C20—H20A0.9800
C8—H8A0.9900C20—H20B0.9800
C8—H8B0.9900C20—H20C0.9800
C9—N21.296 (3)C21—N31.435 (3)
C9—S31.728 (3)C21—H21A0.9800
C9—S21.737 (3)C21—H21B0.9800
C10—N11.286 (3)C21—H21C0.9800
C10—S31.727 (3)Zn1—O51.9817 (15)
C10—S11.748 (3)Zn1—O12.0269 (16)
C11—C121.499 (3)Zn1—O32.0369 (17)
C11—S11.824 (2)Zn1—O4i2.0370 (17)
C11—H11A0.9900Zn1—O2i2.0440 (16)
C11—H11B0.9900Zn1—Zn1i2.9429 (5)
C12—C131.383 (4)N1—N21.370 (3)
C12—C171.388 (3)O2—Zn1i2.0440 (16)
C13—C141.383 (4)O4—Zn1i2.0370 (17)
O2—C1—O1125.4 (2)C17—C16—C18119.2 (2)
O2—C1—C2117.4 (2)C15—C16—C18121.4 (2)
O1—C1—C2117.2 (2)C16—C17—C12121.1 (2)
C7—C2—C3119.7 (2)C16—C17—H17119.4
C7—C2—C1119.9 (2)C12—C17—H17119.4
C3—C2—C1120.3 (2)O4—C18—O3125.7 (2)
C4—C3—C2119.9 (2)O4—C18—C16117.2 (2)
C4—C3—H3120.1O3—C18—C16117.1 (2)
C2—C3—H3120.1O5—C19—N3123.2 (2)
C5—C4—C3119.9 (2)O5—C19—H19118.4
C5—C4—H4120.1N3—C19—H19118.4
C3—C4—H4120.1N3—C20—H20A109.5
C4—C5—C6121.0 (2)N3—C20—H20B109.5
C4—C5—H5119.5H20A—C20—H20B109.5
C6—C5—H5119.5N3—C20—H20C109.5
C7—C6—C5118.8 (2)H20A—C20—H20C109.5
C7—C6—C8123.4 (2)H20B—C20—H20C109.5
C5—C6—C8117.8 (2)N3—C21—H21A109.5
C2—C7—C6120.7 (2)N3—C21—H21B109.5
C2—C7—H7119.6H21A—C21—H21B109.5
C6—C7—H7119.6N3—C21—H21C109.5
C6—C8—S2117.32 (18)H21A—C21—H21C109.5
C6—C8—H8A108.0H21B—C21—H21C109.5
S2—C8—H8A108.0O5—Zn1—O1100.78 (7)
C6—C8—H8B108.0O5—Zn1—O3100.89 (7)
S2—C8—H8B108.0O1—Zn1—O389.38 (8)
H8A—C8—H8B107.2O5—Zn1—O4i99.42 (7)
N2—C9—S3113.7 (2)O1—Zn1—O4i90.08 (8)
N2—C9—S2121.2 (2)O3—Zn1—O4i159.41 (7)
S3—C9—S2124.96 (16)O5—Zn1—O2i99.34 (7)
N1—C10—S3113.4 (2)O1—Zn1—O2i159.86 (7)
N1—C10—S1126.1 (2)O3—Zn1—O2i87.72 (7)
S3—C10—S1120.48 (16)O4i—Zn1—O2i85.74 (7)
C12—C11—S1112.90 (17)O5—Zn1—Zn1i176.98 (5)
C12—C11—H11A109.0O1—Zn1—Zn1i79.64 (5)
S1—C11—H11A109.0O3—Zn1—Zn1i82.09 (5)
C12—C11—H11B109.0O4i—Zn1—Zn1i77.58 (5)
S1—C11—H11B109.0O2i—Zn1—Zn1i80.22 (5)
H11A—C11—H11B107.8C19—N3—C21121.8 (2)
C13—C12—C17118.8 (2)C19—N3—C20121.8 (2)
C13—C12—C11120.5 (2)C21—N3—C20116.4 (2)
C17—C12—C11120.7 (2)C10—N1—N2113.6 (2)
C12—C13—C14120.3 (2)C9—N2—N1112.3 (2)
C12—C13—H13119.8C1—O1—Zn1127.80 (16)
C14—C13—H13119.8C1—O2—Zn1i126.22 (15)
C15—C14—C13120.7 (2)C18—O3—Zn1123.90 (16)
C15—C14—H14119.6C18—O4—Zn1i130.38 (15)
C13—C14—H14119.6C19—O5—Zn1126.02 (16)
C14—C15—C16119.7 (2)C10—S1—C11101.40 (12)
C14—C15—H15120.2C9—S2—C8101.77 (13)
C16—C15—H15120.2C10—S3—C986.98 (13)
C17—C16—C15119.4 (2)
O2—C1—C2—C712.0 (3)S2—C9—N2—N1173.87 (18)
O1—C1—C2—C7167.0 (2)C10—N1—N2—C91.7 (3)
O2—C1—C2—C3171.8 (2)O2—C1—O1—Zn110.4 (4)
O1—C1—C2—C39.2 (3)C2—C1—O1—Zn1168.56 (15)
C7—C2—C3—C42.2 (4)O5—Zn1—O1—C1178.4 (2)
C1—C2—C3—C4174.0 (2)O3—Zn1—O1—C177.4 (2)
C2—C3—C4—C50.5 (4)O4i—Zn1—O1—C182.0 (2)
C3—C4—C5—C61.6 (4)O2i—Zn1—O1—C14.3 (4)
C4—C5—C6—C72.0 (4)Zn1i—Zn1—O1—C14.68 (19)
C4—C5—C6—C8178.6 (2)O1—C1—O2—Zn1i10.4 (3)
C3—C2—C7—C61.8 (3)C2—C1—O2—Zn1i168.49 (14)
C1—C2—C7—C6174.4 (2)O4—C18—O3—Zn17.2 (3)
C5—C6—C7—C20.3 (3)C16—C18—O3—Zn1172.21 (14)
C8—C6—C7—C2179.6 (2)O5—Zn1—O3—C18174.29 (18)
C7—C6—C8—S29.3 (3)O1—Zn1—O3—C1873.43 (19)
C5—C6—C8—S2170.0 (2)O4i—Zn1—O3—C1815.1 (3)
S1—C11—C12—C1394.7 (2)O2i—Zn1—O3—C1886.63 (19)
S1—C11—C12—C1785.8 (3)Zn1i—Zn1—O3—C186.19 (17)
C17—C12—C13—C141.5 (4)O3—C18—O4—Zn1i2.3 (4)
C11—C12—C13—C14179.0 (2)C16—C18—O4—Zn1i177.14 (15)
C12—C13—C14—C150.6 (4)N3—C19—O5—Zn1179.45 (18)
C13—C14—C15—C161.5 (4)O1—Zn1—O5—C19140.9 (2)
C14—C15—C16—C170.3 (4)O3—Zn1—O5—C19127.6 (2)
C14—C15—C16—C18179.9 (2)O4i—Zn1—O5—C1949.1 (2)
C15—C16—C17—C121.8 (3)O2i—Zn1—O5—C1938.1 (2)
C18—C16—C17—C12177.9 (2)Zn1i—Zn1—O5—C1943.3 (11)
C13—C12—C17—C162.7 (3)N1—C10—S1—C1115.9 (3)
C11—C12—C17—C16177.9 (2)S3—C10—S1—C11166.07 (15)
C17—C16—C18—O421.5 (3)C12—C11—S1—C1083.5 (2)
C15—C16—C18—O4158.9 (2)N2—C9—S2—C8140.6 (2)
C17—C16—C18—O3158.0 (2)S3—C9—S2—C844.71 (18)
C15—C16—C18—O321.6 (3)C6—C8—S2—C963.0 (2)
O5—C19—N3—C210.6 (4)N1—C10—S3—C90.3 (2)
O5—C19—N3—C20178.6 (3)S1—C10—S3—C9178.61 (16)
S3—C10—N1—N21.2 (3)N2—C9—S3—C100.6 (2)
S1—C10—N1—N2179.34 (18)S2—C9—S3—C10174.43 (17)
S3—C9—N2—N11.4 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu2(C18H12N2O4S3)2(C3H7NO)2][Zn2(C18H12N2O4S3)2(C3H7NO)2]
Mr1106.221109.88
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)298173
a, b, c (Å)11.092 (4), 11.165 (4), 18.426 (7)11.0860 (13), 11.2252 (13), 18.440 (2)
β (°) 92.699 (6) 93.169 (2)
V3)2279.5 (14)2291.2 (5)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.271.39
Crystal size (mm)0.26 × 0.09 × 0.080.49 × 0.29 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.733, 0.9050.550, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
11616, 4232, 2921 11782, 4246, 3873
Rint0.0660.023
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.186, 1.06 0.032, 0.084, 1.02
No. of reflections42324246
No. of parameters300300
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.650.33, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds