Download citation
Download citation
link to html
Dirubidium divanadyl phylloocta­silicate, Rb2(VO)2[Si8O19], is the first known anhydrous diphyllosilicate containing VIV. The structure consists of silicate double layers which are separated by [V2O8]8- dimers and is related to that of the compounds A2Cu2[Si8O19] (A = Rb or Cs), although the title compound crystallizes in a noncentrosymmetric ortho­rhom­bic space group. The silicate double layers contain four tetra­hedrally coordinated Si sites in general positions and 12 O sites, nine in general positions and the other three on mirror planes. The vanadyl dimers have two square-pyramidally coordinated V sites (site symmetry m). There are two different 10- and 12-fold coordinated Rb sites with site symmetry m, one of which is a split position located between the dimers in the inter­layer space, while the other is in a channel within the silicate layer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107068205/sq3119sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107068205/sq3119Isup2.hkl
Contains datablock I

Comment top

Low-dimensional VIV and mixed-valent VIV,V compounds are of great interest because of their peculiar magnetic properties, as evidenced by the two-dimensional spin-gap compound CaV4O9 (Taniguchi et al., 1995) or the Spin–Peierls system α-NaV2O5 (Smolinski et al., 1998). Among the few known silicates containing VIV, Li2(VO)SiO4 has been considered an ideal example of a frustrated two-dimensional square-lattice antiferromagnet (Millet & Satto, 1998). Likewise, few anhydrous double-layer silicates have been reported, among them the CuII-bearing compounds of general formula A2Cu2[Si8O19] (A = Rb, Cs) (Heinrich & Gramlich, 1982; Watanabe & Kawahara, 1993). These two isomorphous compounds crystallize in the space group P21/m. The staggered silicate double layers consist of corner-sharing SiO4 tetrahedra, with (Cu2O6)8- dimers (formed by two tetrahedrally distorted square-planar edge-sharing CuO4 units) interleaved between adjacent double layers.

The title vanadyl compound, (I) (Figs. 1–3), is related to the copper phases but differs in certain key respects. Firstly, it crystallizes in the noncentrosymmetric space group Pmc21, and secondly, the silicate double layers of the vanadyl compound are linked differently from those in the copper compounds. In both structures, each single sheet can be described in terms of rings of six corner-sharing SiO4 tetrahedra which link adjacent single sheets into a double layer (Figs. 1 and 3). Two crystallographically distinct silicate rings can be distinguished in the title compound. In the first kind of silicate ring, five of the six SiO4 tetrahedra are bonded to neighbouring SiO4 tetrahedra in the bc plane; only the Si4O4 tetrahedra of adjacent silicate layers share corners and link the sheets into a double layer. In the second kind of silicate ring, there are two Si4O4 tetrahedra per ring that link adjacent silicate sheets. In the copper compounds, in contrast, there is only one type of six-membered ring, with two linking SiO4 tetrahedra in neighbouring positions.

In the title compound, [V2O8]8- dimers of edge-sharing VO5 pyramids, replacing the (Cu2O6)8- dimers, link adjacent silicate double layers (Fig. 1). The two independent V atoms occupy special positions of site symmetry m. The square-pyramidal oxygen coordination, with one short vanadyl bond and four basal V—O bonds that are almost equal in length, is typical of VIV (Schindler et al., 2000). The pyramidal bases are inclined with respect to each other around the common O5—O5ii edge [symmetry code: (ii) -x, y, z]; the apices show a syn-orthogonal arrangement (Plass, 1996), i.e. they both point to the same side of the dimeric unit, which has rarely been observed in other substances (Fig. 2). The V1—O12i and V2—O12i distances [symmetry code: (i) -x, -y + 1, z - 1/2] between the apical O atom of the (V2)O5 pyramid and its next V1 and V2 neighbours along c are longer than the value of 2.6 Å which is usually considered the upper limit for a valid V—O distance of the trans bonds in the [1 + 4+1] coordination (Schindler et al., 2000). Therefore, the V coordination is discussed in terms of VO5 pyramids sharing edges rather than distorted VO6 octahedra sharing faces.

The disordered Rb1/Rb1' ions are located in between the dimers in channels parallel to c, while the Rb2 ions are enclosed within the double layers. In a projection onto the bc plane, they can be seen to occupy the channels formed by the six-tetrahedron silicate rings parallel to a in a zigzag manner (Fig. 3). Rb1/Rb1' are partially disordered sites that are tenfold coordinated by O, with Rb—O distances ranging from 2.849 (4) to 3.585 (4) Å and from 2.837 (7) to 3.366 (6) Å, respectively. The Rb2 site is 12-fold coordinated by O (distorted hexagonal prism), with Rb—O distances in the range 3.087 (3)–3.352 (3) Å.

Related literature top

For related literature, see: Heinrich & Gramlich (1982); Millet & Satto (1998); Plass (1996); Schindler et al. (2000); Smolinski et al. (1998); Taniguchi et al. (1995); Watanabe & Kawahara (1993).

Experimental top

RbVO3 was prepared by the decomposition of stoichiometric amounts of Rb2CO3 in the presence of V2O5 in air. The resulting single-phased RbVO3 powder and V2O3 were mixed in the molar proportion 2:1 and an excess quantity of SiO2 was added. The mixture was sealed in an evacuated SiO2 glass ampoule and heated in a furnace at 1123 K for 5 d, followed by subsequent furnace cooling. From the dark-grey powder obtained, blue to green plate-shaped crystals were isolated, which were then analysed by single-crystal X-ray diffraction on a Stoe IPDS II image-plate diffractometer.

Refinement top

During refinement, high maximal/minimal residual electron densities of circa ±1.5 e Å-3 were observed. The highest peak was located very close to the Rb1 site. When a split position Rb1' was introduced, expressing the partial disorder of the Rb1 site, the residual electron density was reduced substantially to circa ±0.6 e Å-3. The sum of the occupancies of the Rb1 and Rb1' sites was restrained to be equal to 1 and they refined to values of 0.809 (4) and 0.191 (4), respectively. The anisotropic displacement parameters of the two sites were restrained to be equal.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXS97 (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the Rb2(VO)2[Si8O19] structure in a perspective ab projection. Displacement ellipsoids are drawn at the 50% probability level and the unit cell is indicated by black lines. VO5 square pyramids are dark coloured and SiO4 tetrahedra are light coloured. Note the Rb filled channels along c.
[Figure 2] Fig. 2. A view of the Si and V polyhedra that make up the framework of Rb2(VO)2[Si8O19]. Displacement ellipsoids are drawn at the 50% probability level. The [V2O8]8- dimer is linked to the Si1O4, Si2O4 and Si3O4 tetrahedra via corner sharing, while the Si4O4 tetrahedra interlink the separate silicate layers of a double layer by sharing atom O10. [Symmetry codes: (ii) -x, y, z; (iii) x, -y + 1, z + 1/2; (iv) x, y + 1, z.]
[Figure 3] Fig. 3. A view of the Rb2(VO)2[Si8O19] structure in perspective bc projection. Displacement ellipsoids are drawn at the 50% probability level and the unit cell is indicated by black lines. VO5 square pyramids are dark coloured and SiO4 tetrahedra are light coloured. Note the zigzag pattern of channels occupied by Rb2 and the empty channels with two linking Si4O4 tetrahedra per six-tetrahedron ring.
Dirubidium divanadyl phyllo-octasilicate top
Crystal data top
Rb2(VO)2[Si8O19]F(000) = 800
Mr = 833.54Dx = 2.800 Mg m3
Orthorhombic, Pmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2c -2Cell parameters from 33551 reflections
a = 11.0513 (9) Åθ = 2.7–33.5°
b = 10.2765 (6) ŵ = 6.43 mm1
c = 8.7052 (6) ÅT = 301 K
V = 988.64 (12) Å3Plate, green
Z = 20.3 × 0.2 × 0.08 mm
Data collection top
Stoe IPDS II
diffractometer
4022 independent reflections
Radiation source: fine-focus sealed tube3669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 0 pixels mm-1θmax = 33.5°, θmin = 2.7°
Rotation method scansh = 1717
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
k = 1515
Tmin = 0.251, Tmax = 0.649l = 1313
37398 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0175P)2 + 2.137P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.065Δρmax = 0.61 e Å3
S = 1.10Δρmin = 0.64 e Å3
4022 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
165 parametersExtinction coefficient: 0.0039 (4)
2 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (6)
Crystal data top
Rb2(VO)2[Si8O19]V = 988.64 (12) Å3
Mr = 833.54Z = 2
Orthorhombic, Pmc21Mo Kα radiation
a = 11.0513 (9) ŵ = 6.43 mm1
b = 10.2765 (6) ÅT = 301 K
c = 8.7052 (6) Å0.3 × 0.2 × 0.08 mm
Data collection top
Stoe IPDS II
diffractometer
4022 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
3669 reflections with I > 2σ(I)
Tmin = 0.251, Tmax = 0.649Rint = 0.069
37398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.065Δρmax = 0.61 e Å3
S = 1.10Δρmin = 0.64 e Å3
4022 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
165 parametersAbsolute structure parameter: 0.004 (6)
Special details top

Experimental. n

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.00000.88996 (13)0.43786 (13)0.0240 (2)0.809 (4)
Rb1'0.00000.8930 (7)0.3970 (6)0.0240 (2)0.191 (4)
Rb20.50000.39467 (5)0.16154 (6)0.02358 (10)
V10.00000.24109 (7)0.37703 (9)0.01270 (12)
V20.00000.54043 (6)0.45624 (8)0.01113 (11)
Si10.25795 (7)0.13292 (8)0.28905 (9)0.01054 (14)
Si20.25695 (7)0.37945 (7)0.46804 (9)0.01041 (13)
Si30.26184 (7)0.63946 (7)0.32673 (9)0.01053 (14)
Si40.36339 (6)0.89959 (7)0.46157 (9)0.00983 (12)
O10.26916 (19)0.0020 (3)0.3936 (3)0.0219 (4)
O20.3469 (2)0.1134 (3)0.1440 (3)0.0278 (5)
O30.1210 (2)0.1585 (2)0.2466 (3)0.0164 (4)
O40.31694 (19)0.2555 (2)0.3824 (3)0.0185 (4)
O50.11425 (17)0.3881 (2)0.4333 (2)0.0135 (4)
O60.32496 (19)0.5090 (2)0.4027 (3)0.0189 (4)
O70.2912 (2)0.6268 (3)0.1457 (3)0.0280 (5)
O80.1235 (2)0.6522 (2)0.3685 (3)0.0178 (4)
O90.3443 (2)0.7580 (3)0.3896 (4)0.0268 (5)
O100.50000.9458 (3)0.4280 (3)0.0128 (5)
O110.00000.1560 (4)0.5296 (4)0.0270 (8)
O120.00000.5741 (4)0.6351 (4)0.0231 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0206 (2)0.0151 (2)0.0362 (6)0.0000.0000.0038 (5)
Rb1'0.0206 (2)0.0151 (2)0.0362 (6)0.0000.0000.0038 (5)
Rb20.01929 (19)0.0287 (2)0.0227 (2)0.0000.0000.0027 (2)
V10.0097 (3)0.0096 (3)0.0188 (3)0.0000.0000.0014 (2)
V20.0086 (2)0.0103 (2)0.0146 (3)0.0000.0000.0014 (2)
Si10.0090 (3)0.0112 (3)0.0115 (3)0.0021 (2)0.0000 (2)0.0005 (3)
Si20.0090 (3)0.0110 (3)0.0112 (3)0.0003 (2)0.0001 (3)0.0002 (3)
Si30.0102 (3)0.0093 (3)0.0122 (3)0.0011 (2)0.0002 (3)0.0004 (3)
Si40.0084 (3)0.0089 (3)0.0122 (3)0.0004 (2)0.0001 (2)0.0007 (3)
O10.0115 (9)0.0167 (9)0.0376 (12)0.0023 (9)0.0006 (9)0.0111 (9)
O20.0178 (10)0.0498 (16)0.0159 (10)0.0058 (11)0.0043 (9)0.0057 (11)
O30.0121 (9)0.0164 (10)0.0206 (10)0.0039 (8)0.0025 (8)0.0042 (8)
O40.0103 (8)0.0161 (9)0.0290 (10)0.0015 (8)0.0005 (9)0.0071 (8)
O50.0087 (8)0.0124 (8)0.0194 (10)0.0004 (7)0.0017 (7)0.0020 (7)
O60.0122 (9)0.0131 (9)0.0313 (11)0.0026 (8)0.0011 (9)0.0072 (8)
O70.0212 (10)0.0512 (16)0.0117 (9)0.0030 (11)0.0005 (9)0.0023 (11)
O80.0125 (9)0.0133 (9)0.0276 (11)0.0001 (7)0.0044 (8)0.0026 (8)
O90.0206 (11)0.0145 (10)0.0454 (15)0.0046 (9)0.0018 (11)0.0104 (10)
O100.0097 (11)0.0137 (12)0.0149 (13)0.0000.0000.0015 (10)
O110.035 (2)0.0209 (17)0.0247 (17)0.0000.0000.0017 (14)
O120.0210 (15)0.0271 (17)0.0214 (17)0.0000.0000.0051 (13)
Geometric parameters (Å, º) top
Rb1—O11i2.849 (4)V1—Rb2x7.1188 (7)
Rb1—O8ii2.863 (3)V1—Rb2iv7.1188 (7)
Rb1—O82.863 (3)V2—O121.595 (4)
Rb1—O3iii3.043 (3)V2—O81.941 (2)
Rb1—O3iv3.043 (3)V2—O8ii1.941 (2)
Rb1—O1i3.213 (2)V2—O5ii2.021 (2)
Rb1—O1v3.213 (2)V2—O52.021 (2)
Rb1—O3v3.489 (3)V2—O12vi3.033 (4)
Rb1—O3i3.489 (3)V2—Si33.2680 (9)
Rb1—O11vi3.585 (4)V2—Si3ii3.2680 (9)
Rb1—V23.5954 (15)V2—Si2ii3.2880 (8)
Rb1—V1i3.6471 (15)V2—Si23.2880 (8)
Rb1'—O8ii2.837 (7)V2—O63.636 (2)
Rb1'—O82.837 (7)V2—O6ii3.636 (2)
Rb1'—O11i2.939 (8)V2—O114.002 (4)
Rb1'—O1i3.179 (3)V2—O7iv4.004 (3)
Rb1'—O1v3.179 (3)V2—O7iii4.004 (3)
Rb1'—O11vi3.238 (7)V2—O3iii4.213 (2)
Rb1'—O3i3.308 (7)V2—O3iv4.213 (2)
Rb1'—O3v3.308 (7)V2—O7ii4.295 (3)
Rb1'—O3iii3.366 (6)V2—O74.295 (3)
Rb1'—O3iv3.366 (6)V2—V1iv4.2964 (10)
Rb1'—V1i3.581 (7)V2—O8iii4.320 (3)
Rb1'—V23.660 (7)V2—O8iv4.320 (3)
Rb2—O6vii3.087 (3)V2—V2vi4.4312 (10)
Rb2—O63.087 (3)V2—V2iv4.4312 (10)
Rb2—O6viii3.130 (2)V2—Si3iii4.7109 (10)
Rb2—O6ix3.130 (2)V2—Si3iv4.7109 (10)
Rb2—O4vii3.136 (3)V2—V1vi5.5194 (10)
Rb2—O43.136 (3)V2—Rb2x5.8457 (5)
Rb2—O9viii3.321 (3)V2—Rb2iv5.8457 (5)
Rb2—O9ix3.321 (3)V2—Rb1'iv5.879 (6)
Rb2—O7vii3.322 (3)V2—Rb1iv6.0942 (15)
Rb2—O73.322 (3)V2—Rb2xii6.2736 (6)
Rb2—O23.352 (3)V2—Rb2xv8.3949 (8)
Rb2—O2vii3.352 (3)V2—Rb2xvi8.3949 (8)
Rb2—Si2vii3.7892 (9)Si1—O31.580 (2)
Rb2—Si23.7892 (9)Si1—O21.613 (3)
Rb2—Si4viii3.8018 (9)Si1—O11.629 (3)
Rb2—Si4ix3.8018 (9)Si1—O41.635 (2)
Rb2—Si3vii3.9145 (9)Si1—Rb1'xi3.884 (5)
Rb2—Si33.9145 (9)Si1—Rb1xi4.0049 (13)
Rb2—Si2ix3.9294 (9)Si1—Rb2x6.4217 (10)
Rb2—Si2viii3.9294 (9)Si2—O7iii1.594 (3)
Rb2—Si3viii3.9428 (9)Si2—O51.608 (2)
Rb2—Si3ix3.9428 (9)Si2—O41.618 (2)
Rb2—Si13.9525 (9)Si2—O61.631 (2)
Rb2—Si1vii3.9525 (9)Si2—Rb2x3.9294 (9)
Rb2—O10ix4.047 (3)Si2—Rb2xv6.6095 (10)
Rb2—O9vii4.565 (3)Si3—O81.577 (2)
Rb2—O94.565 (3)Si3—O71.614 (3)
Rb2—O4ix4.788 (2)Si3—O91.617 (3)
Rb2—O4viii4.788 (2)Si3—O61.649 (2)
Rb2—O7x4.810 (3)Si3—Rb2x3.9428 (9)
Rb2—O7iii4.810 (3)Si3—V2vi4.7109 (10)
Rb2—Rb2x4.8613 (5)Si3—Rb2ix6.3704 (10)
Rb2—Rb2ix4.8613 (5)Si4—O1i1.595 (2)
Rb2—O5vii4.876 (2)Si4—O91.598 (3)
Rb2—O54.876 (2)Si4—O2iii1.604 (3)
Rb2—O34.897 (2)Si4—O101.6093 (13)
Rb2—O3vii4.897 (2)Si4—Rb2x3.8018 (9)
Rb2—O8viii4.904 (2)Si4—Rb2i5.9148 (9)
Rb2—O8ix4.904 (2)O1—Si4xi1.595 (2)
Rb2—O7viii5.053 (3)O1—Rb1'xi3.179 (3)
V1—O111.590 (4)O1—Rb1xi3.213 (2)
V1—O3ii1.949 (2)O1—Rb2xvii5.345 (2)
V1—O31.949 (2)O2—Si4viii1.604 (3)
V1—O52.029 (2)O3—Rb1vi3.043 (3)
V1—O5ii2.029 (2)O3—Rb1'xi3.308 (7)
V1—O12vi2.836 (4)O3—Rb1'vi3.366 (6)
V1—V23.1525 (9)O3—Rb1xi3.489 (3)
V1—Si1ii3.1542 (9)O3—V2vi4.213 (2)
V1—Si13.1542 (9)O4—Rb2x4.788 (2)
V1—Si23.2731 (9)O5—Rb2x5.206 (2)
V1—Si2ii3.2731 (9)O6—Rb2x3.130 (2)
V1—O4ii3.506 (2)O7—Si2viii1.594 (3)
V1—O43.506 (2)O7—V2vi4.004 (3)
V1—Rb1'xi3.581 (7)O7—V1vi4.204 (3)
V1—Rb1xi3.6471 (15)O7—Rb2ix4.810 (3)
V1—O1ii3.861 (2)O7—Rb2x5.053 (3)
V1—O13.861 (2)O8—V2vi4.320 (3)
V1—Rb1vi4.0533 (15)O8—Rb2x4.904 (2)
V1—O124.093 (4)O9—Rb2x3.321 (3)
V1—O7iii4.204 (3)O10—Si4vii1.6093 (13)
V1—O7iv4.204 (3)O10—Rb2x4.047 (3)
V1—V2vi4.2964 (10)O10—Rb2i5.163 (3)
V1—Rb1'vi4.400 (6)O11—Rb1xi2.849 (4)
V1—Rb1'iv4.732 (6)O11—Rb1'xi2.939 (8)
V1—Rb1iv5.0645 (15)O11—Rb1'iv3.238 (7)
V1—V2iv5.5194 (10)O11—Rb1iv3.585 (4)
V1—Rb2xii6.0450 (6)O12—V1iv2.836 (4)
V1—V1xiii6.5954 (11)O12—V2iv3.033 (4)
V1—V1xiv6.5954 (11)O12—Rb2x5.5398 (5)
V1—V1iv6.8747 (12)O12—Rb2iv5.5398 (5)
V1—V1vi6.8747 (12)
O11—V1—O3ii104.31 (13)O5ii—V2—O7iii102.15 (7)
O11—V1—O3104.31 (13)O5—V2—O7iii37.46 (7)
O3ii—V1—O386.65 (13)O12vi—V2—O7iii102.31 (6)
O11—V1—O5101.99 (13)O6—V2—O7iii38.81 (5)
O3ii—V1—O5153.12 (10)O6ii—V2—O7iii143.96 (6)
O3—V1—O592.17 (9)O11—V2—O7iii60.69 (5)
O11—V1—O5ii101.99 (13)O7iv—V2—O7iii106.98 (8)
O3ii—V1—O5ii92.17 (9)O12—V2—O3iii41.86 (13)
O3—V1—O5ii153.12 (10)O8—V2—O3iii65.05 (8)
O5—V1—O5ii76.97 (12)O8ii—V2—O3iii91.41 (8)
O11—V1—O12vi171.29 (16)O5ii—V2—O3iii145.74 (7)
O3ii—V1—O12vi81.91 (9)O5—V2—O3iii115.46 (7)
O3—V1—O12vi81.91 (9)O12vi—V2—O3iii146.92 (7)
O5—V1—O12vi71.36 (9)O6—V2—O3iii80.13 (5)
O5ii—V1—O12vi71.36 (9)O6ii—V2—O3iii117.10 (5)
O11—V1—O4ii90.69 (5)O11—V2—O3iii128.99 (6)
O3ii—V1—O4ii48.75 (8)O7iv—V2—O3iii108.85 (5)
O3—V1—O4ii135.37 (8)O7iii—V2—O3iii79.22 (5)
O5—V1—O4ii125.95 (7)O12—V2—O3iv41.86 (13)
O5ii—V1—O4ii48.98 (7)O8—V2—O3iv91.41 (8)
O12vi—V1—O4ii88.94 (5)O8ii—V2—O3iv65.05 (8)
O11—V1—O490.69 (5)O5ii—V2—O3iv115.46 (7)
O3ii—V1—O4135.37 (8)O5—V2—O3iv145.74 (7)
O3—V1—O448.75 (8)O12vi—V2—O3iv146.92 (7)
O5—V1—O448.98 (7)O6—V2—O3iv117.10 (5)
O5ii—V1—O4125.95 (7)O6ii—V2—O3iv80.13 (5)
O12vi—V1—O488.94 (5)O11—V2—O3iv128.99 (6)
O4ii—V1—O4174.92 (8)O7iv—V2—O3iv79.22 (5)
O11—V1—O1ii67.61 (9)O7iii—V2—O3iv108.85 (5)
O3ii—V1—O1ii38.36 (8)O3iii—V2—O3iv37.01 (6)
O3—V1—O1ii105.86 (8)O12—V2—O7ii124.72 (7)
O5—V1—O1ii160.80 (8)O8—V2—O7ii99.03 (9)
O5ii—V1—O1ii89.16 (7)O8ii—V2—O7ii26.25 (8)
O12vi—V1—O1ii117.00 (6)O5ii—V2—O7ii68.27 (7)
O4ii—V1—O1ii41.98 (5)O5—V2—O7ii124.46 (7)
O4—V1—O1ii142.76 (6)O12vi—V2—O7ii60.01 (5)
O11—V1—O167.61 (9)O6—V2—O7ii132.66 (6)
O3ii—V1—O1105.86 (8)O6ii—V2—O7ii36.64 (5)
O3—V1—O138.36 (8)O11—V2—O7ii107.72 (6)
O5—V1—O189.16 (7)O7iv—V2—O7ii75.27 (5)
O5ii—V1—O1160.80 (8)O7iii—V2—O7ii161.83 (5)
O12vi—V1—O1117.00 (6)O3iii—V2—O7ii117.62 (5)
O4ii—V1—O1142.76 (6)O3iv—V2—O7ii89.32 (5)
O4—V1—O141.98 (5)O12—V2—O7124.72 (7)
O1ii—V1—O1100.80 (8)O8—V2—O726.25 (8)
O11—V1—O1290.05 (15)O8ii—V2—O799.03 (9)
O3ii—V1—O12133.15 (7)O5ii—V2—O7124.46 (7)
O3—V1—O12133.15 (7)O5—V2—O768.27 (7)
O5—V1—O1240.99 (6)O12vi—V2—O760.01 (5)
O5ii—V1—O1240.99 (6)O6—V2—O736.64 (5)
O12vi—V1—O1281.24 (3)O6ii—V2—O7132.66 (6)
V2—V1—O1220.65 (5)O11—V2—O7107.72 (6)
O4ii—V1—O1287.56 (4)O7iv—V2—O7161.83 (5)
O4—V1—O1287.56 (4)O7iii—V2—O775.27 (5)
O1ii—V1—O12120.76 (5)O3iii—V2—O789.32 (5)
O1—V1—O12120.76 (5)O3iv—V2—O7117.62 (5)
O11—V1—O7iii73.30 (9)O7ii—V2—O797.04 (7)
O3ii—V1—O7iii171.96 (8)O12—V2—O8iii44.63 (13)
O3—V1—O7iii86.54 (7)O8—V2—O8iii112.08 (10)
O5—V1—O7iii31.66 (7)O8ii—V2—O8iii145.13 (9)
O5ii—V1—O7iii95.84 (7)O5ii—V2—O8iii85.68 (7)
O12vi—V1—O7iii101.35 (6)O5—V2—O8iii61.96 (7)
O4ii—V1—O7iii138.05 (6)O12vi—V2—O8iii126.01 (7)
O4—V1—O7iii38.20 (5)O6—V2—O8iii75.74 (5)
O1ii—V1—O7iii140.77 (6)O6ii—V2—O8iii112.21 (5)
O1—V1—O7iii66.10 (6)O11—V2—O8iii54.19 (6)
O12—V1—O7iii54.87 (4)O7iv—V2—O8iii73.44 (5)
O11—V1—O7iv73.30 (9)O7iii—V2—O8iii37.54 (5)
O3ii—V1—O7iv86.54 (7)O3iii—V2—O8iii74.80 (4)
O3—V1—O7iv171.96 (8)O3iv—V2—O8iii86.47 (4)
O5—V1—O7iv95.84 (7)O7ii—V2—O8iii148.67 (5)
O5ii—V1—O7iv31.66 (7)O7—V2—O8iii112.38 (5)
O12vi—V1—O7iv101.35 (6)V1iv—V2—O8iii62.05 (3)
O4ii—V1—O7iv38.20 (5)O12—V2—O8iv44.63 (13)
O4—V1—O7iv138.05 (6)O8—V2—O8iv145.13 (9)
O1ii—V1—O7iv66.10 (6)O8ii—V2—O8iv112.08 (10)
O1—V1—O7iv140.77 (6)O5ii—V2—O8iv61.96 (7)
O12—V1—O7iv54.87 (4)O5—V2—O8iv85.68 (7)
O7iii—V1—O7iv99.91 (7)O12vi—V2—O8iv126.01 (7)
O12—V2—O8104.83 (12)V1—V2—O8iv74.60 (3)
O12—V2—O8ii104.83 (12)O6—V2—O8iv112.21 (5)
O8—V2—O8ii89.39 (14)O6ii—V2—O8iv75.74 (5)
O12—V2—O5ii105.33 (12)O11—V2—O8iv54.19 (6)
O8—V2—O5ii149.20 (11)O7iv—V2—O8iv37.54 (5)
O8ii—V2—O5ii88.86 (9)O7iii—V2—O8iv73.44 (5)
O12—V2—O5105.33 (12)O3iii—V2—O8iv86.47 (4)
O8—V2—O588.86 (8)O3iv—V2—O8iv74.80 (4)
O8ii—V2—O5149.20 (11)O7ii—V2—O8iv112.38 (5)
O5ii—V2—O577.33 (12)O7—V2—O8iv148.67 (5)
O12—V2—O12vi169.69 (10)V1iv—V2—O8iv62.05 (3)
O8—V2—O12vi82.35 (9)O8iii—V2—O8iv36.84 (6)
O8ii—V2—O12vi82.35 (9)O3—Si1—O2114.93 (14)
O5ii—V2—O12vi66.94 (8)O3—Si1—O1109.92 (13)
O5—V2—O12vi66.94 (8)O2—Si1—O1106.77 (15)
O12—V2—O698.30 (4)O3—Si1—O4111.72 (12)
O8—V2—O646.16 (8)O2—Si1—O4104.00 (14)
O8ii—V2—O6134.17 (8)O1—Si1—O4109.17 (15)
O5ii—V2—O6122.39 (7)O7iii—Si2—O5114.69 (12)
O5—V2—O645.69 (7)O7iii—Si2—O4108.56 (15)
O12vi—V2—O681.22 (4)O5—Si2—O4111.01 (12)
O12—V2—O6ii98.30 (4)O7iii—Si2—O6105.18 (14)
O8—V2—O6ii134.17 (8)O5—Si2—O6109.93 (12)
O8ii—V2—O6ii46.16 (8)O4—Si2—O6107.05 (13)
O5ii—V2—O6ii45.69 (7)O8—Si3—O7115.26 (14)
O5—V2—O6ii122.39 (7)O8—Si3—O9113.93 (14)
O12vi—V2—O6ii81.22 (4)O7—Si3—O9106.13 (15)
O6—V2—O6ii162.06 (9)O8—Si3—O6112.66 (12)
O12—V2—O1193.32 (15)O7—Si3—O6103.94 (15)
O8—V2—O11130.33 (7)O9—Si3—O6103.78 (14)
O8ii—V2—O11130.33 (7)O1i—Si4—O9111.66 (15)
O5ii—V2—O1141.51 (6)O1i—Si4—O2iii110.38 (15)
O5—V2—O1141.51 (6)O9—Si4—O2iii107.30 (16)
O12vi—V2—O1176.36 (9)O1i—Si4—O10110.52 (14)
O6—V2—O1186.15 (4)O9—Si4—O10108.74 (15)
O6ii—V2—O1186.15 (4)O2iii—Si4—O10108.11 (14)
O12—V2—O7iv71.99 (8)V1—O3—V2vi79.15 (7)
O8—V2—O7iv168.97 (8)V2—O5—V1102.23 (9)
O8ii—V2—O7iv81.42 (8)V2vi—O7—V1vi45.09 (3)
O5ii—V2—O7iv37.46 (7)V2vi—O7—V264.43 (4)
O5—V2—O7iv102.15 (8)V1vi—O7—V280.99 (4)
O12vi—V2—O7iv102.31 (6)V2—O8—V2vi80.41 (8)
O6—V2—O7iv143.96 (6)V1—O11—V247.47 (11)
O6ii—V2—O7iv38.81 (5)V2—O12—V1iv150.5 (2)
O11—V2—O7iv60.69 (5)V2—O12—V2iv144.7 (2)
O12—V2—O7iii71.99 (8)V1iv—O12—V2iv64.87 (8)
O8—V2—O7iii81.42 (8)V1iv—O12—V1165.34 (13)
O8ii—V2—O7iii168.97 (8)V2iv—O12—V1100.46 (10)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y+1, z+1/2; (iv) x, y+1, z+1/2; (v) x, y+1, z; (vi) x, y+1, z1/2; (vii) x+1, y, z; (viii) x, y+1, z1/2; (ix) x+1, y+1, z1/2; (x) x+1, y+1, z+1/2; (xi) x, y1, z; (xii) x1, y, z; (xiii) x, y, z1/2; (xiv) x, y, z+1/2; (xv) x, y, z+1; (xvi) x1, y, z+1; (xvii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaRb2(VO)2[Si8O19]
Mr833.54
Crystal system, space groupOrthorhombic, Pmc21
Temperature (K)301
a, b, c (Å)11.0513 (9), 10.2765 (6), 8.7052 (6)
V3)988.64 (12)
Z2
Radiation typeMo Kα
µ (mm1)6.43
Crystal size (mm)0.3 × 0.2 × 0.08
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1996)
Tmin, Tmax0.251, 0.649
No. of measured, independent and
observed [I > 2σ(I)] reflections
37398, 4022, 3669
Rint0.069
(sin θ/λ)max1)0.776
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.065, 1.10
No. of reflections4022
No. of parameters165
No. of restraints2
Δρmax, Δρmin (e Å3)0.61, 0.64
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.004 (6)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
V1—O111.590 (4)V1—V23.1525 (9)
V1—O31.949 (2)V2—O121.595 (4)
V1—O52.029 (2)V2—O81.941 (2)
V1—O12i2.836 (4)V2—O52.021 (2)
O11—V1—O3104.31 (13)O12—V2—O8104.83 (12)
O11—V1—O5101.99 (13)O12—V2—O5105.33 (12)
O3—V1—O592.17 (9)O8—V2—O588.86 (8)
Symmetry code: (i) x, y+1, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds