Download citation
Download citation
link to html
The isomorphous title compounds, [Ni{(NH2)2CO}4(H2O)2](NO3)2 and [Co{(NH2)2CO}4(H2O)2](NO3)2, feature discrete centrosymmetric cations in octa­hedral coordinations, formed by four urea mol­ecules linked via their O atoms to the central ion in equatorial positions and two water mol­ecules in trans positions. The complexes are packed in a pseudo-hexa­gonal manner separated by the nitrate counter-ions. All H atoms are involved in moderate hydrogen bonds of four types: N-H...O=C, N-H...O-N, O-H...O-N and N-H...O-H. Graph-set analysis was applied to distinguish the hydrogen-bond patterns at unitary and higher level graph sets.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107040437/sq3094sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107040437/sq3094Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107040437/sq3094IIsup3.hkl
Contains datablock II

CCDC references: 665486; 665487

Comment top

Urea plays an important role in crystal engineering. Possessing donor and acceptor functional groups (one carbonyl and two amino groups), it can form rich hydrogen-bond networks. Due to lone electron pairs on the N and O atoms, urea can also coordinate to metal ions through either N or O. Several nickel(II) and cobalt(II) complexes containing more than two urea molecules in the coordination environment are found in the Cambridge Structural Database (CSD, Version 5.28, 2006; Allen, 2002) with refcodes ADUFEK (Rybak-Akimova et al., 2002), FOWQIR (Kuzmina et al., 2000), NIIURC (Suleyman & Porai-Koshits, 1971), COLLAQ (Suleymanov et al., 1984), FADGEX (Kuzmina et al., 2001) and FOWQOX (Kuzmina et al., 2000). They consist mainly of discrete M(urea)6 cations, one additional free urea molecule per cation, and counterions such as Cl, Br, I, I3 and NO3.

Here, we report the crystal structures of the isostructural complexes diaquatetrakis(urea)nickel(II) nitrate, (I), and diaquatetrakis(urea)cobalt(II) nitrate, (II). The crystal structure of (II), previously reported by Rau & Kurkutova (1971), was redetermined because of the high R-factor (0.192) and lack of H atoms in the earlier work. The presence of many hydrogen bonds in (I) and (II) results in characteristic arrays which may be described by graph-set analysis according to Etter et al. (1990) and Bernstein et al. (1995).

The centrosymmetric complex cation of (I) consists of four urea molecules coordinated via O atoms to the NiII central atom in equatorial positions and two water molecules in trans positions. The coordination polyhedron is a near-perfect octahedron, with angular deviations of less than 0.5°. The positive charge of the Ni cation is balanced by two nitrate anions, NO3, as shown in Fig. 1. The urea CO bond lengths (Table 1) are shortened and the C—N bonds (C1—N1 and C2—N4) are elongated in both symmetry-independent molecules. The shortening of the CO bond lengths is caused by two functions of the O atom: it acts as an acceptor in intramolecular N—H···O hydrogen bonds and, at the same time, as the ligand to the central cation. The elongation of the urea C—N bond lengths is induced by the strong acceptor properties of the O atoms of the nitrate groups in intermolecular hydrogen bonds of N—H···O—N type. The packing in (I) viewed along [100] is shown in Fig. 2. The discrete coordination polyhedra are packed in a pseudo-hexagonal pattern and are separated by nitrate anions.

For both structures, the geometric parameters of the urea molecules are equal within the limits of error, whereas the M—O bond lengths of (I) are relatively short compared with those of (II), which is caused by the difference in the Ni2+ and Co2+ ionic radii (Shannon, 1976). The differences in M—O bond lengths are typical for all structures quoted from the CSD.

All H atoms participate in hydrogen bonds, which can be classified into four types by functional group: (a) N—H···OC, (b) N—H···O—N, (c) O—H···O—N and (d) N—H···O—H. For the network of observed hydrogen bonds, graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) was applied, taking into account unitary, binary and ternary graph sets.

The unitary graph sets (N1) are shown in Fig. 3. Patterns for (a), (b) and (c) type hydrogen bonds are in the same layer, perpendicular to [101]. Inside the complex cation, there is an R44(16) motif built of N—H···OC hydrogen bonds [i.e. type(a)]. The patterns consisting of type (b) hydrogen bonds can be described as ring arrays. However, the hydrogen bonds are not crystallographically equivalent, so the pattern should have a DD descriptor assigned, which on the binary graph level converts to an R22(8) descriptor. A similar situation is observed in the case of type (c) bond patterns. The motifs composed of bifurcated hydrogen bonds between water molecules and nitrate anions have DD descriptors on the first-level graph set and R12(4) on the second-level graph set. For type (c) hydrogen bonds, one can also distinguish an R22(8) ring at the unitary level and an R42(12) ring, which can be obtained by assembling three rings, two R12(4) and one R22(8).

Additionally, there is a motif composed of type (c) hydrogen bonds which occurs as a `chain of rings', having descriptor D21(8)[R22(8)], which describes the chain along the [001] direction with only one branch of the R22(8) ring included. The motif built of type (d) hydrogen bonds, in the form of an R22(12) ring, is shown in Fig. 4; it joins neighbouring layers perpendicular to [101] into a three-dimensional structure. Higher level graph sets, not marked in the figures, can also be defined. Among them there are, for example, a D44(16) binary graph set (N2) built with (a) and (b) type hydrogen bonds, and a D46(20) third-level graph set (N3) formed by (a), (b) and (c) type hydrogen bonds. The quantitative descriptors of hydrogen-bond patterns at the unitary and binary graph set levels, identical for the isostructural crystalline phases of (I) and (II), are given in Table 3.

In conclusion, the most important description seems to be that of the first-level graph sets (motifs), as, in general, assembling the unitary graph sets provides the patterns consisting of a few hydrogen-bond types which are then described by higher level graph sets.

Experimental top

Nickel(II) nitrate hexahydrate was dissolved in hot propan-2-ol under reflux, to which crystalline urea was added. The molar ratio of nickel salt to urea was 1:4. The solution was filtered and then left to evaporate slowly at room temperature. Green crystals of (I) were obtained after a few weeks.

Diaquatetrakis(urea)cobalt(II) nitrate, (II), was obtained by spontaneous recrystallization of tetrakis(urea)cobalt(II) nitrate (Gentile et al., 1974) in the presence of a trace amount of water.

Refinement top

The H atoms of the water molecules and urea amino groups were found in difference Fourier maps and refined in a riding model, with O—H = ? and N—H = ? [Please complete], and with Uiso(H) = 1.2Ueq of the parent atom.

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Version 1.4; Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of compound (I), with the atom-labelling scheme. Intramolecular hydrogen bonds are shown by dashed lines. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) −x,-y,-z.] Compound (II) is isostructural.
[Figure 2] Fig. 2. The pseudo-hexagonal packing in the structure of (I), viewed along the a axis. Some of the hydrogen bonds are shown, N—H···OC as dashed bonds and O—H···O—N as open bonds. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Graph-set assignment of the unitary level for (I); the same assignment is valid for (II). Different hydrogen-bond patterns are distinguished by different graphical symbols and defined by specific descriptors. (a) N—H···OC shaded; (b) N—H···O—N cross-hatched; (c) O—H···O—N dark grey.
[Figure 4] Fig. 4. The hydrogen-bond pattern composed of type (d) hydrogen bonds (N—H···O—H).
(I) Diaquatetrakis(urea-κO)nickel(II) dinitrate top
Crystal data top
[Ni(CH4N2O)4(H2O)2](NO3)2F(000) = 476
Mr = 459.01Dx = 1.745 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1746 reflections
a = 6.4580 (2) Åθ = 1.0–27.5°
b = 18.0522 (5) ŵ = 1.19 mm1
c = 7.5331 (3) ÅT = 293 K
β = 95.758 (2)°Block, green
V = 873.79 (5) Å30.50 × 0.48 × 0.35 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
1950 independent reflections
Radiation source: fine-focus sealed tube1663 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.029
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scans to fill Ewald sphereh = 88
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 2320
Tmin = 0.569, Tmax = 0.660l = 99
5566 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.3336P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.20 e Å3
1950 reflectionsΔρmin = 0.43 e Å3
124 parameters
Crystal data top
[Ni(CH4N2O)4(H2O)2](NO3)2V = 873.79 (5) Å3
Mr = 459.01Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.4580 (2) ŵ = 1.19 mm1
b = 18.0522 (5) ÅT = 293 K
c = 7.5331 (3) Å0.50 × 0.48 × 0.35 mm
β = 95.758 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1950 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
1663 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.660Rint = 0.029
5566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
1950 reflectionsΔρmin = 0.43 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.02691 (11)
O10.2551 (2)0.06238 (7)0.09298 (18)0.0376 (3)
C10.3259 (3)0.12642 (9)0.0760 (2)0.0318 (4)
N10.5128 (3)0.14395 (10)0.1590 (3)0.0498 (4)
H1A0.59760.10750.19080.060*
H1B0.56910.18660.13640.060*
N20.2204 (3)0.17820 (9)0.0177 (3)0.0526 (5)
H2A0.27260.22250.03130.063*
H2B0.09840.16720.07420.063*
O20.1384 (2)0.09345 (7)0.11655 (18)0.0369 (3)
C20.2888 (3)0.10667 (9)0.2303 (2)0.0319 (4)
N30.3903 (3)0.05388 (10)0.3254 (3)0.0554 (5)
H3A0.36790.00770.29240.066*
H3B0.50710.06300.39260.066*
N40.3443 (3)0.17702 (9)0.2661 (2)0.0477 (4)
H4A0.29580.20970.18670.057*
H4B0.46490.18390.32790.057*
O3W0.1327 (2)0.02209 (7)0.23516 (17)0.0360 (3)
H1W0.13940.01700.29170.043*
H2W0.06990.05340.30180.043*
N50.1171 (3)0.15980 (8)0.4816 (2)0.0379 (4)
O40.1725 (3)0.09362 (7)0.5065 (2)0.0519 (4)
O50.2291 (3)0.21104 (8)0.5462 (2)0.0598 (5)
O60.0461 (3)0.17342 (10)0.3884 (3)0.0618 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02700 (17)0.02084 (15)0.03216 (17)0.00152 (11)0.00065 (11)0.00122 (11)
O10.0351 (7)0.0276 (6)0.0483 (8)0.0081 (5)0.0042 (6)0.0056 (5)
C10.0313 (8)0.0280 (8)0.0367 (9)0.0046 (7)0.0070 (7)0.0038 (7)
N10.0377 (9)0.0422 (9)0.0676 (12)0.0143 (7)0.0045 (8)0.0039 (9)
N20.0429 (10)0.0292 (8)0.0828 (14)0.0080 (7)0.0082 (9)0.0103 (9)
O20.0353 (7)0.0264 (6)0.0469 (8)0.0005 (5)0.0064 (6)0.0034 (5)
C20.0308 (9)0.0301 (8)0.0346 (9)0.0029 (6)0.0025 (7)0.0045 (7)
N30.0580 (11)0.0341 (8)0.0673 (12)0.0042 (8)0.0273 (10)0.0048 (8)
N40.0557 (11)0.0309 (8)0.0531 (10)0.0109 (7)0.0108 (8)0.0012 (7)
O3W0.0409 (7)0.0322 (6)0.0348 (6)0.0052 (5)0.0036 (5)0.0012 (5)
N50.0485 (9)0.0299 (7)0.0348 (8)0.0017 (7)0.0015 (7)0.0007 (6)
O40.0722 (10)0.0270 (6)0.0574 (9)0.0074 (7)0.0106 (8)0.0043 (6)
O50.0652 (10)0.0340 (7)0.0733 (11)0.0022 (7)0.0267 (9)0.0089 (7)
O60.0508 (9)0.0526 (9)0.0768 (12)0.0023 (7)0.0185 (8)0.0029 (8)
Geometric parameters (Å, º) top
Ni1—O1i2.060 (1)O2—C21.252 (2)
Ni1—O12.060 (1)C2—N31.326 (3)
Ni1—O22.064 (1)C2—N41.340 (2)
Ni1—O2i2.064 (1)N3—H3A0.8777
Ni1—O3Wi2.082 (1)N3—H3B0.8803
Ni1—O3W2.082 (1)N4—H4A0.8753
O1—C11.254 (2)N4—H4B0.8750
C1—N21.319 (3)O3W—H1W0.8278
C1—N11.340 (2)O3W—H2W0.8336
N1—H1A0.8746N5—O61.231 (2)
N1—H1B0.8757N5—O51.243 (2)
N2—H2A0.8779N5—O41.256 (2)
N2—H2B0.8797
O1i—Ni1—O1180.0 (1)H1A—N1—H1B117.1
O1i—Ni1—O290.28 (5)C1—N2—H2A121.6
O1—Ni1—O289.72 (5)C1—N2—H2B119.3
O1i—Ni1—O2i89.72 (5)H2A—N2—H2B119.0
O1—Ni1—O2i90.28 (5)C2—O2—Ni1136.1 (1)
O2—Ni1—O2i180.00 (8)O2—C2—N3122.7 (2)
O1i—Ni1—O3Wi89.39 (5)O2—C2—N4119.5 (2)
O1—Ni1—O3Wi90.61 (5)N3—C2—N4117.7 (2)
O2—Ni1—O3Wi89.55 (5)C2—N3—H3A118.1
O2i—Ni1—O3Wi90.45 (5)C2—N3—H3B121.7
O1i—Ni1—O3W90.61 (5)H3A—N3—H3B116.6
O1—Ni1—O3W89.39 (5)C2—N4—H4A115.5
O2—Ni1—O3W90.45 (5)C2—N4—H4B116.5
O2i—Ni1—O3W89.55 (5)H4A—N4—H4B120.4
O3Wi—Ni1—O3W180.00 (10)Ni1—O3W—H1W108.8
C1—O1—Ni1139.16 (13)Ni1—O3W—H2W115.2
O1—C1—N2122.3 (2)H1W—O3W—H2W108.4
O1—C1—N1119.4 (2)O6—N5—O5120.4 (2)
N2—C1—N1118.4 (2)O6—N5—O4119.3 (2)
C1—N1—H1A117.4O5—N5—O4120.3 (2)
C1—N1—H1B119.3
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3Wii0.872.323.185 (2)168
N1—H1B···O5iii0.882.253.125 (2)172
N2—H2A···O6iii0.882.333.188 (2)167
N2—H2B···O20.882.032.814 (2)148
N3—H3A···O1i0.882.042.815 (2)146
N3—H3B···O4iv0.882.203.062 (3)165
N4—H4A···O5v0.882.263.101 (3)162
N4—H4B···O5iv0.882.163.031 (2)173
O3W—H1W···O4vi0.832.082.884 (2)163
O3W—H2W···O40.832.212.987 (2)156
O3W—H2W···O60.832.262.996 (2)147
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2; (iv) x1, y, z1; (v) x1/2, y+1/2, z1/2; (vi) x, y, z+1.
(II) Diaquatetrakis(urea-κO)cobalt(II) nitrate top
Crystal data top
[Co(CH4N2O)4(H2O)2](NO3)2F(000) = 474
Mr = 459.23Dx = 1.731 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2469 reflections
a = 6.4655 (2) Åθ = 1.0–30.5°
b = 17.9321 (5) ŵ = 1.06 mm1
c = 7.6201 (2) ÅT = 293 K
β = 94.428 (1)°Block, pink
V = 880.84 (4) Å30.32 × 0.32 × 0.20 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2661 independent reflections
Radiation source: fine-focus sealed tube2133 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.017
Detector resolution: 9 pixels mm-1θmax = 30.5°, θmin = 2.9°
ϕ and ω scans to fill Ewald sphereh = 99
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 2516
Tmin = 0.729, Tmax = 0.816l = 1010
8072 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.3065P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.22 e Å3
2661 reflectionsΔρmin = 0.31 e Å3
124 parameters
Crystal data top
[Co(CH4N2O)4(H2O)2](NO3)2V = 880.84 (4) Å3
Mr = 459.23Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.4655 (2) ŵ = 1.06 mm1
b = 17.9321 (5) ÅT = 293 K
c = 7.6201 (2) Å0.32 × 0.32 × 0.20 mm
β = 94.428 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2661 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
2133 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.816Rint = 0.017
8072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2661 reflectionsΔρmin = 0.31 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.03007 (9)
O10.25432 (17)0.06469 (6)0.09121 (16)0.0399 (3)
C10.3279 (2)0.12845 (8)0.0699 (2)0.0336 (3)
N10.5123 (2)0.14661 (9)0.1514 (2)0.0506 (4)
H1A0.58910.10870.19010.061*
H1B0.57510.18780.12600.061*
N20.2265 (2)0.17982 (8)0.0271 (2)0.0505 (4)
H2A0.28420.22270.04700.061*
H2B0.10460.16860.07910.061*
O20.13365 (18)0.09466 (6)0.12187 (16)0.0405 (3)
C20.2825 (2)0.10766 (8)0.2332 (2)0.0336 (3)
N30.3842 (3)0.05372 (9)0.3228 (2)0.0575 (5)
H3A0.35580.00780.29060.069*
H3B0.49970.06380.38720.069*
N40.3378 (3)0.17796 (8)0.2710 (2)0.0474 (4)
H4A0.28520.21150.19790.057*
H4B0.45290.18680.33470.057*
O3W0.13752 (18)0.02501 (6)0.23823 (15)0.0387 (2)
H1W0.14000.01390.29800.046*
H2W0.07300.05750.29880.046*
N50.1322 (2)0.15805 (7)0.48042 (18)0.0400 (3)
O40.1887 (2)0.09217 (7)0.50999 (19)0.0557 (4)
O50.2408 (2)0.21074 (7)0.5405 (2)0.0594 (4)
O60.0294 (2)0.17065 (8)0.3883 (2)0.0598 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03102 (15)0.02249 (13)0.03619 (16)0.00132 (10)0.00070 (11)0.00200 (10)
O10.0393 (6)0.0289 (5)0.0504 (7)0.0090 (4)0.0045 (5)0.0054 (5)
C10.0353 (7)0.0294 (7)0.0367 (8)0.0044 (6)0.0069 (6)0.0036 (6)
N10.0399 (8)0.0429 (8)0.0677 (11)0.0138 (6)0.0043 (7)0.0064 (7)
N20.0473 (9)0.0290 (7)0.0733 (11)0.0076 (6)0.0075 (8)0.0085 (7)
O20.0394 (6)0.0274 (5)0.0528 (7)0.0002 (4)0.0076 (5)0.0049 (5)
C20.0339 (7)0.0296 (7)0.0376 (8)0.0031 (6)0.0040 (6)0.0042 (6)
N30.0615 (10)0.0336 (7)0.0725 (11)0.0018 (7)0.0275 (9)0.0048 (7)
N40.0573 (9)0.0298 (6)0.0530 (9)0.0096 (6)0.0096 (7)0.0018 (6)
O3W0.0424 (6)0.0349 (5)0.0384 (6)0.0060 (5)0.0017 (5)0.0005 (5)
N50.0520 (8)0.0305 (6)0.0376 (7)0.0030 (6)0.0040 (6)0.0000 (5)
O40.0792 (10)0.0292 (6)0.0593 (8)0.0086 (6)0.0089 (7)0.0064 (5)
O50.0677 (9)0.0350 (6)0.0709 (9)0.0016 (6)0.0235 (7)0.0079 (6)
O60.0524 (8)0.0509 (8)0.0728 (10)0.0026 (6)0.0159 (7)0.0052 (7)
Geometric parameters (Å, º) top
Co1—O1i2.087 (1)O2—C21.254 (2)
Co1—O12.087 (1)C2—N31.328 (2)
Co1—O2i2.090 (1)C2—N41.336 (2)
Co1—O22.090 (1)N3—H3A0.8743
Co1—O3Wi2.130 (1)N3—H3B0.8801
Co1—O3W2.130 (1)N4—H4A0.8711
O1—C11.254 (2)N4—H4B0.8713
C1—N21.323 (2)O3W—H1W0.8334
C1—N11.341 (2)O3W—H2W0.8352
N1—H1A0.8784N5—O61.234 (2)
N1—H1B0.8712N5—O51.244 (2)
N2—H2A0.8732N5—O41.252 (2)
N2—H2B0.8779
O1i—Co1—O1180.00 (9)H1A—N1—H1B117.9
O1i—Co1—O2i89.12 (4)C1—N2—H2A120.7
O1—Co1—O2i90.88 (4)C1—N2—H2B118.8
O1i—Co1—O290.88 (4)H2A—N2—H2B120.3
O1—Co1—O289.12 (4)C2—O2—Co1136.1 (1)
O2i—Co1—O2180.00 (7)O2—C2—N3122.4 (1)
O1i—Co1—O3Wi88.23 (5)O2—C2—N4120.0 (2)
O1—Co1—O3Wi91.77 (5)N3—C2—N4117.5 (2)
O2i—Co1—O3Wi91.27 (5)C2—N3—H3A117.1
O2—Co1—O3Wi88.73 (5)C2—N3—H3B120.2
O1i—Co1—O3W91.77 (5)H3A—N3—H3B120.0
O1—Co1—O3W88.23 (5)C2—N4—H4A115.4
O2i—Co1—O3W88.73 (5)C2—N4—H4B119.7
O2—Co1—O3W91.27 (5)H4A—N4—H4B120.3
O3Wi—Co1—O3W180.00 (8)Co1—O3W—H1W108.4
C1—O1—Co1139.5 (1)Co1—O3W—H2W113.2
O1—C1—N2122.1 (2)H1W—O3W—H2W108.2
O1—C1—N1119.6 (2)O6—N5—O5120.0 (1)
N2—C1—N1118.3 (1)O6—N5—O4119.9 (2)
C1—N1—H1A115.3O5—N5—O4120.1 (2)
C1—N1—H1B121.0
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3Wii0.882.333.176 (2)163
N1—H1B···O5iii0.872.233.104 (2)176
N2—H2A···O6iii0.872.333.202 (2)173
N2—H2B···O20.882.042.831 (2)150
N3—H3A···O1i0.872.072.846 (2)148
N3—H3B···O4iv0.882.163.030 (2)167
N4—H4A···O5v0.872.293.113 (2)159
N4—H4B···O5iv0.872.173.037 (2)172
O3W—H1W···O4vi0.832.072.882 (2)165
O3W—H2W···O40.842.333.084 (2)151
O3W—H2W···O60.842.152.914 (2)152
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2; (iv) x1, y, z1; (v) x1/2, y+1/2, z1/2; (vi) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(CH4N2O)4(H2O)2](NO3)2[Co(CH4N2O)4(H2O)2](NO3)2
Mr459.01459.23
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)6.4580 (2), 18.0522 (5), 7.5331 (3)6.4655 (2), 17.9321 (5), 7.6201 (2)
β (°) 95.758 (2) 94.428 (1)
V3)873.79 (5)880.84 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.191.06
Crystal size (mm)0.50 × 0.48 × 0.350.32 × 0.32 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.569, 0.6600.729, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
5566, 1950, 1663 8072, 2661, 2133
Rint0.0290.017
(sin θ/λ)max1)0.6490.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.04 0.032, 0.082, 1.04
No. of reflections19502661
No. of parameters124124
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.430.22, 0.31

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Version 1.4; Macrae et al., 2006), SHELXL97.

Selected bond lengths (Å) for (I) top
Ni1—O12.060 (1)O2—C21.252 (2)
Ni1—O22.064 (1)C2—N31.326 (3)
Ni1—O3W2.082 (1)C2—N41.340 (2)
O1—C11.254 (2)N5—O61.231 (2)
C1—N21.319 (3)N5—O51.243 (2)
C1—N11.340 (2)N5—O41.256 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3Wi0.872.323.185 (2)168
N1—H1B···O5ii0.882.253.125 (2)172
N2—H2A···O6ii0.882.333.188 (2)167
N2—H2B···O20.882.032.814 (2)148
N3—H3A···O1iii0.882.042.815 (2)146
N3—H3B···O4iv0.882.203.062 (3)165
N4—H4A···O5v0.882.263.101 (3)162
N4—H4B···O5iv0.882.163.031 (2)173
O3W—H1W···O4vi0.832.082.884 (2)163
O3W—H2W···O40.832.212.987 (2)156
O3W—H2W···O60.832.262.996 (2)147
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z; (iv) x1, y, z1; (v) x1/2, y+1/2, z1/2; (vi) x, y, z+1.
Quantitative graph-set descriptors of the first and second levels for structures (I) and (II) top
H-bond type(a)(b)(c)(d)
(a)R44(16)
(b)D44(16)DD, R22(8)
(c)R22(8), R12(4), D21(8)[R22(8)]
(d)R22(12)
(a) N—H···OC; (b) N—H···O—N; (c) O—H···O—N; (d) N—H···O—H.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds