organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Hydrogen-bonded chains of rings in methyl 4-[(5-methyl-1H-pyrazol-3-yl)amino]-3-nitro­benzoate and hydrogen-bonded sheets in methyl 1-(5-methyl-1H-pyrazol-3-yl)-1H-benzimidazole-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bCONICET–Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Suipacha 531, S2002LRK, Argentina, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 3 October 2006; accepted 25 October 2006; online 12 December 2006)

Mol­ecules of methyl 4-[(5-methyl-1H-pyrazol-3-yl)amino]-3-nitro­benzoate, C12H12N4O4, (I)[link], exhibit a polarized (charge-separated) structure in the nitro­aniline portion. The mol­ecules are linked into chains of edge-fused R22(16) and R22(22) rings by a combination of N—H⋯O(carbon­yl) and C—H⋯O(nitro) hydrogen bonds. Methyl 1-(5-methyl-1H-pyrazol-3-yl)-1H-benzimidazole-5-carboxyl­ate, C13H12N4O2, (II)[link], which is readily formed from (I)[link] by reduction followed by ring formation, crystallizes with Z′ = 2 in the space group P[\overline{1}]. Each of the two independent mol­ecular types is linked into sheets of R44(28) rings by a combination of N—H⋯N and C—H⋯O(carbon­yl) hydrogen bonds.

Comment

As part of our continuing study of biologically active mol­ecules containing fused pyrazole systems, we have attempted the preparation of pyrazolo[1,5-a][1,3,5]benzotriazepine, which is useful for drug, agrochemical or dye inter­mediates (Tachibana & Kaneko, 1989[Tachibana, K. & Kaneko, Y. (1989). Jpn Kokai Tokkyo Koho, Jpn Patent 01003187 A2, Jpn Patent Application 87-159281, 1987; Chem. Abstr. (1989), 111, 97297.]), by means of a simple three-step procedure from 3-amino-5-methyl-1H-pyrazole and methyl 4-fluoro-3-nitro­benzoate. However, the first step of that procedure in fact provided not the anti­cipated compound, (III) (see scheme), but instead the isomeric compound, methyl 4-[(5-methyl-1H-pyrazol-3-yl)amino]-3-nitro­benzoate, (I)[link], which afforded methyl 1-(5-methyl-1H-pyrazol-3-yl)-1H-benz­imid­azole-5-carboxyl­ate, (II)[link], as the final product instead of the expected pyrazolo[1,5-a][1,3,5]benzotriazepine. We report here the mol­ecular and supra­molecular structures of compounds (I)[link] and (II)[link].

[Scheme 1]

The mol­ecule of compound (I)[link] (Fig. 1[link]) is almost planar, as shown by the key torsion angles (Table 1[link]), and this is possibly influenced by the intra­molecular hydrogen bond (Table 2[link]). Within the aryl ring, the C1—C2 and C5—C6 bonds are significantly shorter than the remainder. In addition, the C3—N3 bond is short for its type (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), while the N—O bonds are both long, and the C4—N45 bond is significantly shorter than N45—C45. These observations indicate that the charge-separated form (Ia)[link] (see scheme[link]) is a significant contributor to the overall mol­ecular electronic structure.

Compound (II)[link] crystallizes with Z′ = 2, and the mol­ecular geometries of the two independent mol­ecules (Fig. 2[link]) are very similar. As for compound (I)[link], the mol­ecules of (II)[link] are almost planar. The dihedral angle between the pyrazole and imidazole rings is 5.5 (2)° in mol­ecule A (containing N11) and 5.9 (2)° in mol­ecule B (containing N31). There is marked bond fixation in the imidazole rings (Table 3[link]), with only a modest variation in the C—C distances in the aryl rings, indicating that the form shown in the scheme[link] is the appropriate representation for this compound.

The mol­ecules of compound (I)[link] are linked into chains of edge-fused rings by a combination of N—H⋯O(carbon­yl) and C—H⋯O(nitro) hydrogen bonds (Table 2[link]). Pyrazole atom N42 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O11 in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating by inversion an R22(22) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring centred at ([{1 \over 2}], [{1 \over 2}], [{1 \over 2}]), and atom C44 at (x, y, z) acts as hydrogen-bond donor to nitro atom O31 in the mol­ecule at (−x, 1 − y, −z), so generating a second centrosymmetric ring, this time of R22(16) type and centred at (0, [{1 \over 2}], 0). The combination of these two motifs generates a chain of edge-fused rings running parallel to the [101] direction, with R22(16) rings centred at (n, [{1 \over 2}], n) (n = zero or integer) alternating with R22(22) rings centred at (n + [{1 \over 2}], [{1 \over 2}], n + [{1 \over 2}]) (n = zero or integer) (Fig. 3[link]). Within the R22(16) ring, there is a short contact between the two atoms of type O32, separated by only 2.875 (2) Å.

In the crystal structure of compound (II)[link], there are two virtually identical substructures, each containing only one of the two independent mol­ecules and each built from a combination of N—H⋯N and C—H⋯O(carbon­yl) hydrogen bonds (Table 4[link]). Atoms N12 and C14 in the type A mol­ecule at (x, y, z) act as hydrogen-bond donors to, respectively, imid­azole atom N23 in the type A mol­ecule at (−1 + x, y, z) and carbonyl atom O251 in the type A mol­ecule at (x, −1 + y, z), so generating by translation an almost planar sheet parallel to (001) in the domain 0.05 < z < 0.20 and containing a single R44(28) ring (Fig. 4[link]a). This sheet lies in the domain 0.05 < z < 0.20, with an inversion-related sheet of type A mol­ecules in the domain 0.80 < z < 0.95. A very similar sheet is built from type B mol­ecules (Fig. 4[link]b and Table 4[link]), and inversion-related pairs of type B sheets lie in the domains 0.36 < z < 0.43 and 0.57 < z < 0.64. Thus, the overall structure consists of a millefeuille-style stack of almost planar sheets, with pairs of sheets of type A mol­ecules alternating with pairs of type B mol­ecules. However, there are no direction-specific inter­actions between adjacent sheets. The only stacking contacts between adjacent sheets all involve the imidazole rings. They exhibit very strong bond fixation and hence are non-aromatic, so that such contacts are unlikely to be energetically and hence structurally significant.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The two independent mol­ecules in compound (II)[link], viz. (a) a type A mol­ecule and (b) a type B mol­ecule. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a chain of edge-fused R22(16) and R22(22) rings along [101]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 4]
Figure 4
Stereoviews of parts of the crystal structure of compound (II)[link], showing the formation of sheets of R44(28) rings parallel to (001) for (a) a sheet of type A mol­ecules and (b) a sheet of type B mol­ecules. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

For the synthesis of compound (I)[link], a solution of 3-amino-5-methyl-1H-pyrazole (2 mmol) and methyl 4-fluoro-3-nitro­benzoate (2 mmol) in dimethyl ­sulfoxide (2 ml) was stirred at 298 K for 2 h. The resulting solid product was collected by filtration and washed with methanol (10 ml) to give methyl 4-[(5-methyl-1H-pyrazol-3-yl)amino]-3-nitro­benzoate, (I)[link]. Crystallization of the compound from dimethyl ­sulfoxide gave orange crystals suitable for single-crystal X-ray diffraction (m.p. 498–499 K; yield 93%). MS (m/z, %): 276 (100, M+), 245 (12). For the synthesis of compound (II)[link], a mixture of compound (I)[link] (1 mmol), hydrazine hydrate (3 mmol) and Raney Nickel (50 mg) in methanol (10 ml) was heated under reflux with magnetic stirring for 15 min. The Raney Nickel was removed by filtration of the hot solution and the filtrate was then cooled. The resulting solid was collected by filtration and recrystallized from methanol to yield the inter­mediate methyl 3-amino-4-[(5-methyl-1H-pyrazol-3-yl)amino]benzoate as a white solid (m.p. 483–484 K; yield 92%). MS (m/z, %): 246 (33, M+), 215 (100). A mixture of this inter­mediate (1 mmol) and trimethyl orthoformate (3 ml) was heated under reflux with magnetic stirring for 1 h. The mixture was then cooled and the resulting solid product was collected by filtration and recrystallized from dimethyl sulfoxide to yield compound (II)[link] as colourless crystals suitable for single-crystal X-ray diffraction (m.p. 518–519 K; yield 90%). MS (m/z, %): 256 (93, M+), 225 (100), 197 (24).

Compound (I)[link]

Crystal data
  • C12H12N4O4

  • Mr = 276.26

  • Triclinic, [P \overline 1]

  • a = 5.9233 (3) Å

  • b = 8.8858 (6) Å

  • c = 11.7819 (6) Å

  • α = 85.690 (4)°

  • β = 83.500 (4)°

  • γ = 84.015 (3)°

  • V = 611.51 (6) Å3

  • Z = 2

  • Dx = 1.500 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Lath, orange

  • 0.42 × 0.26 × 0.15 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.983

  • 12027 measured reflections

  • 2829 independent reflections

  • 2117 reflections with I > 2σ(I)

  • Rint = 0.055

  • θmax = 27.7°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.128

  • S = 1.06

  • 2829 reflections

  • 183 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0711P)2 + 0.097P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

C1—C2 1.378 (2)
C2—C3 1.391 (2)
C3—C4 1.420 (2)
C4—C5 1.426 (2)
C5—C6 1.367 (2)
C6—C1 1.408 (2)
C3—N3 1.4512 (18)
N3—O31 1.2337 (16)
N3—O32 1.2423 (16)
C4—N45 1.3556 (18)
C2—C1—C11—O12 −2.0 (2)
C1—C11—O12—C12 −178.75 (12)
C2—C3—N3—O31 −3.7 (2)
C4—N45—C45—N41 6.5 (2)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N45—H45⋯O32 0.88 1.92 2.6221 (16) 136
N42—H42⋯O11i 0.88 1.98 2.8400 (17) 164
C44—H44⋯O31ii 0.95 2.49 3.4180 (18) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

Compound (II)[link]

Crystal data
  • C13H12N4O2

  • Mr = 256.27

  • Triclinic, [P \overline 1]

  • a = 8.3646 (3) Å

  • b = 11.5735 (6) Å

  • c = 12.7953 (7) Å

  • α = 88.328 (3)°

  • β = 88.526 (3)°

  • γ = 75.362 (3)°

  • V = 1197.75 (10) Å3

  • Z = 4

  • Dx = 1.421 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.46 × 0.45 × 0.40 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.961

  • 25906 measured reflections

  • 5488 independent reflections

  • 3945 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 27.7°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.173

  • S = 1.20

  • 5488 reflections

  • 347 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0417P)2 + 1.6885P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

N21—C22 1.385 (3)
C22—N23 1.301 (3)
N23—C23A 1.392 (3)
C23A—C27A 1.400 (4)
C27A—N21 1.393 (3)
N41—C42 1.380 (3)
C42—N43 1.295 (3)
N43—C43A 1.395 (3)
C43A—C47A 1.398 (4)
C47A—N41 1.395 (3)
N11—C15—N21—C22 −173.5 (2)
C24—C25—C251—O252 15.7 (4)
C25—C251—O252—C252 −177.1 (2)
N31—C35—N41—C42 −173.1 (2)
C44—C45—C451—O452 14.2 (4)
C45—C451—O452—C452 −177.1 (2)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯N23i 0.96 1.88 2.836 (4) 173
N32—H32⋯N43ii 0.96 1.88 2.840 (4) 174
C14—H14⋯O251iii 0.95 2.46 3.269 (3) 143
C34—H34⋯O451iv 0.95 2.45 3.248 (3) 141
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) x, y-1, z; (iv) x, y+1, z.

Crystals of both (I)[link] and (II)[link] are triclinic. For each compound, the space group P[\overline{1}] was selected and confirmed by the successful structure refinement. All H atoms were located in difference maps and then treated as riding atoms. For H atoms bonded to C atoms, C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and heteroaromatic H atoms or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. H atoms bonded to N atoms were permitted to ride at the N—H distances deduced from the difference maps [0.88 Å in (I)[link] and 0.96 Å in (II)], with Uiso(H) = 1.2Ueq(N).

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]) for (I); KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]) for (II). Cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT for (I); DENZO–SMN for (II). Data reduction: DENZO and COLLECT for (I); DENZO–SMN for (II). Program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) for (I); SHELXS97 for (II). Program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) for (I); SHELXL97 for (II). For both compounds, molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As part of our continuing study of biologically active molecules containing fused pyrazole systems, we have attempted the preparation of pyrazolo[1,5-a][1,3,5]benzotriazepine, which is useful for drug, agrochemical or dye intermediates (Tachibana & Kaneko, 1989), by means of a simple three-step procedure from 3-amino-5-methyl-1H-pyrazole and methyl 4-fluoro-3-nitrobenzoate. However, the first step of that procedure in fact provided not the anticipated compound, (III) (see scheme), but instead the isomeric compound, (I), methyl 4-[(5-methyl-1H-pyrazol-3-yl)amino]-3-nitrobenzoate, which afforded methyl 1-(5-methyl-1H-pyrazol-3-yl)-1H-benzimidazole-5-carboxylate, (II), as the final product instead of the expected pyrazolo[1,5-a][1,3,5]benzotriazepine. Here, we report the molecular and supramolecular structures of compounds (I) and (II).

The molecule of compound (I) (Fig. 1) is almost planar, as shown by the key torsion angles (Table 1), and this is possibly influenced by the intramolecular hydrogen bond (Table 2). Within the aryl ring, the C1—C2 and C5—C6 bonds are significantly shorter than the remainder. In addition, the C3—N3 bond is short for its type (Allen et al., 1987), while the N—O bonds are both long, and the C4—N45 bond is significantly shorter than N45—C45. These observations indicate that the charge-separated form (Ia) (see scheme) is a significant contributor to the overall molecular electronic structure.

Compound (II) crystallizes with Z' = 2, and the molecular geometries of the two independent molecules (Fig. 2) are very similar. As for compound (I), the molecules of (II) are almost planar. The dihedral angles between the pyrazole and imidazole rings are 5.5 (2)° in molecule A (containing N11) and 5.9 (2)° in molecule B (containing N31). There is marked bond fixation in the imidazole rings (Table 3), with only a modest variation in the C—C distances in the aryl rings, indicating that the form shown in the scheme is the appropriate representation for this compound.

The molecules of compound (I) are linked into chains of edge-fused rings by a combination of NH···O(carbonyl) and CH···O(nitro) hydrogen bonds (Table 2). Pyrazole atom N42 in the molecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O11 in the molecule at (1 − x, 1 − y, 1 − z), so generating by inversion an R22(22) (Bernstein et al., 1995) ring centred at (1/2, 1/2, 1/2), and atom C44 at (x, y, z) acts as hydrogen-bond donor to nitro atom O31 in the molecule at (−x, 1 − y, −z), so generating a second centrosymmetric ring, this time of R22(16) type and centred at (0, 1/2, 0). The combination of these two motifs generates a chain of edge-fused rings running parallel to the [101] direction, with R22(16) rings centred at (n, 1/2, n) (n = zero or integer) alternating with R22(22) rings centred at (n + 1/2, 1/2, n + 1/2) (n = zero or integer) (Fig. 3). Within the R22(16) ring, there is a short contact between the two atoms of type O32, separated by only 2.875 (2) Å.

In the crystal structure of compound (II), there are two virtually identical sub-structures, each containing only one of the two independent molecules and each built from a combination of N—H···N and CH···O(carbonyl) hydrogen bonds (Table 4). Atoms N12 and C14 in the type A molecule at (x, y, z) act as hydrogen-bond donors to, respectively, imidazole atom N23 in the type A molecule at (−1 + x, y, z) and carbonyl atom O251 in the type A molecule at (x, −1 + y, z), so generating by translation an almost planar sheet parallel to (001) in the domain 0.05 < z < 0.20 and containing a single R44(28) ring (Fig. 4a). This sheet lies in the domain 0.05 < z < 1/5, with an inversion-related sheet of type A molecules in the domain 0.80 < z < 0.95. A very similar sheet is built from type B molecules (Fig. 4b, Table 4), and inversion-related pairs of type B sheets lie in the domains 0.36 < z < 0.43 and 0.57 < z < 0.64. Thus, the overall structure consists of a millefeuille-style stack of almost planar sheets, with pairs of sheets of type A molecules alternating with pairs of type B molecules. However, there are no direction-specific interactions between adjacent sheets. The only stacking contacts between adjacent sheets all involve the imidazole rings. They exhibit very strong bond fixation and hence are non-aromatic, so that such contacts are unlikely to be energetically and hence structurally significant.

Experimental top

For the synthesis of compound (I), a solution of 3-amino-5-methyl-1H-pyrazole (2 mmol) and methyl 4-fluoro-3-nitrobenzoate (2 mmol) in dimethylsulfoxide (2 ml) was stirred at 298 K for 2 h. The resulting solid product was collected by filtration and washed with methanol (10 ml) to give methyl 4-[(5-methyl-1H-pyrazol-3-yl)amino]-3-nitrobenzoate, (I). Crystallization of the compound from dimethylsulfoxide gave orange crystals suitable for single-crystal X-ray diffraction (m.p. 498–499 K; yield 93%). MS m/z (%) 276 (100, M+), 245?(12).

For the synthesis of compound (II), a mixture of compound (I) (1 mmol), hydrazine hydrate (3 mmol) and Raney-Nickel (50 mg) in methanol (10 ml) was heated under reflux with magnetic stirring for 15 min. The Raney-Nickel was removed by filtration of the hot solution and the filtrate was then cooled. The resulting solid was collected by filtration and recrystallized from methanol to yield the intermediate methyl 3-amino-4-[(5-methyl-1H-pyrazol-3-yl)amino]benzoate as a white solid (m.p. 483–484 K; yield 92%). MS m/z (%) 246 (33, M+), 215?(100). A mixture of this intermediate (1 mmol) and trimethyl orthoformate (3 ml) was heated under reflux with magnetic stirring for 1 h. The mixture was then cooled and the resulting solid product was collected by filtration and recrystallized from dimethylsulfoxide to yield compound (II) as colourless crystals suitable for single-crystal X-ray diffraction (m.p. 518–519 K; yield 90%) MS m/z (%) 256 (93, M+), 225?(100), 197?(24).

Refinement top

Crystals of both (I) and (II) are triclinic. For each compound, the space group P1 was selected and confirmed by the successful structure refinement. All H atoms were located in difference maps and then treated as riding atoms. For H atoms bonded to C atoms, C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) (aromatic and heteroaromatic H) or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) (methyl). H atoms bonded to N atoms were permitted to ride at the N—H distances deduced from the difference maps [0.88 Å in (I) and 0.96 Å in (II)], with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 1999) for (I); Kappa-CCD Server Software (Nonius, 1997) for (II). Cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT for (I); DENZO-SMN (Otwinowski & Minor, 1997) for (II). Data reduction: DENZO and COLLECT for (I); DENZO-SMN for (II). Program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (I); SHELXS97 (Sheldrick, 1997) for (II). Program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997) for (I); SHELXL97 (Sheldrick, 1997) for (II). For both compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The two independent molecules in compound (II). (a) A type A molecule. (b) A type B molecule. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of compound (I), showing the formation of a chain of edge-fused R22(16) and R22(22) rings along [101]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 4] Fig. 4. Stereoviews of parts of the crystal structure of compound (II), showing the formation of sheets of R44(28) rings parallel to (001). (a) A sheet of type A molecules. (b) A sheet of type B molecules. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) methyl 4-[(5-methyl-1H-pyrazol-3-yl)amino]-3-nitrobenzoate top
Crystal data top
C12H12N4O4Z = 2
Mr = 276.26F(000) = 288
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9233 (3) ÅCell parameters from 2829 reflections
b = 8.8858 (6) Åθ = 3.5–27.7°
c = 11.7819 (6) ŵ = 0.12 mm1
α = 85.690 (4)°T = 120 K
β = 83.500 (4)°Lath, orange
γ = 84.015 (3)°0.42 × 0.26 × 0.15 mm
V = 611.51 (6) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2829 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.5°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.959, Tmax = 0.983l = 1514
12027 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.097P]
where P = (Fo2 + 2Fc2)/3
2829 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C12H12N4O4γ = 84.015 (3)°
Mr = 276.26V = 611.51 (6) Å3
Triclinic, P1Z = 2
a = 5.9233 (3) ÅMo Kα radiation
b = 8.8858 (6) ŵ = 0.12 mm1
c = 11.7819 (6) ÅT = 120 K
α = 85.690 (4)°0.42 × 0.26 × 0.15 mm
β = 83.500 (4)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2829 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2117 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.983Rint = 0.055
12027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
2829 reflectionsΔρmin = 0.33 e Å3
183 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0102 (2)0.25092 (17)0.48425 (12)0.0198 (3)
C110.1011 (3)0.16449 (17)0.58825 (13)0.0205 (3)
O110.01697 (19)0.15137 (13)0.67849 (9)0.0286 (3)
O120.28797 (18)0.09922 (12)0.57315 (9)0.0238 (3)
C120.3924 (3)0.01442 (18)0.67134 (13)0.0257 (4)
C20.1104 (3)0.25526 (17)0.38384 (13)0.0202 (3)
C30.0232 (2)0.33629 (16)0.28586 (12)0.0187 (3)
N30.1387 (2)0.32637 (14)0.18482 (10)0.0208 (3)
O310.29427 (19)0.24313 (13)0.19017 (9)0.0299 (3)
O320.07614 (18)0.39991 (12)0.09495 (8)0.0241 (3)
C40.1675 (2)0.42110 (17)0.28497 (12)0.0189 (3)
C50.2687 (2)0.41214 (17)0.38974 (13)0.0208 (3)
C60.1831 (3)0.33033 (17)0.48494 (13)0.0215 (3)
N410.5690 (2)0.61095 (14)0.25428 (10)0.0210 (3)
N420.7122 (2)0.71132 (15)0.20095 (10)0.0216 (3)
C430.6617 (3)0.76128 (17)0.09524 (13)0.0211 (3)
C4310.7883 (3)0.87870 (19)0.02643 (14)0.0286 (4)
C440.4781 (3)0.68857 (17)0.07527 (12)0.0218 (3)
C450.4275 (2)0.59795 (16)0.17602 (12)0.0191 (3)
N450.2489 (2)0.50448 (14)0.19101 (10)0.0204 (3)
H12A0.38160.06600.74090.038*
H12B0.31300.08780.67750.038*
H12C0.55330.00760.66220.038*
H20.24070.20220.38150.024*
H50.39930.46450.39350.025*
H60.25580.32700.55310.026*
H420.82660.74060.23260.026*
H43A0.95280.85140.02710.043*
H43B0.74630.97710.05940.043*
H43C0.74930.88510.05250.043*
H440.40190.69750.00800.026*
H450.17840.49900.12980.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (8)0.0209 (8)0.0189 (7)0.0030 (6)0.0044 (6)0.0013 (6)
C110.0213 (8)0.0208 (8)0.0208 (8)0.0044 (6)0.0052 (6)0.0033 (6)
O110.0315 (6)0.0385 (7)0.0195 (6)0.0156 (5)0.0109 (5)0.0038 (5)
O120.0235 (6)0.0296 (6)0.0208 (6)0.0126 (5)0.0061 (4)0.0024 (4)
C120.0267 (8)0.0263 (9)0.0240 (8)0.0094 (6)0.0008 (6)0.0022 (6)
C20.0199 (7)0.0211 (8)0.0211 (8)0.0041 (6)0.0058 (6)0.0033 (6)
C30.0193 (7)0.0211 (8)0.0172 (7)0.0026 (6)0.0069 (6)0.0021 (6)
N30.0217 (7)0.0237 (7)0.0186 (6)0.0051 (5)0.0070 (5)0.0002 (5)
O310.0313 (6)0.0366 (7)0.0265 (6)0.0198 (5)0.0119 (5)0.0035 (5)
O320.0269 (6)0.0301 (6)0.0174 (6)0.0095 (5)0.0077 (4)0.0021 (4)
C40.0184 (7)0.0196 (7)0.0192 (7)0.0017 (6)0.0043 (6)0.0019 (6)
C50.0192 (8)0.0241 (8)0.0213 (8)0.0073 (6)0.0074 (6)0.0007 (6)
C60.0219 (8)0.0263 (8)0.0186 (7)0.0056 (6)0.0078 (6)0.0023 (6)
N410.0205 (7)0.0236 (7)0.0210 (7)0.0084 (5)0.0063 (5)0.0008 (5)
N420.0204 (7)0.0255 (7)0.0214 (7)0.0099 (5)0.0071 (5)0.0003 (5)
C430.0212 (8)0.0226 (8)0.0201 (8)0.0048 (6)0.0028 (6)0.0007 (6)
C4310.0279 (9)0.0288 (9)0.0304 (9)0.0111 (7)0.0031 (7)0.0019 (7)
C440.0227 (8)0.0265 (8)0.0173 (7)0.0063 (6)0.0060 (6)0.0013 (6)
C450.0190 (7)0.0204 (8)0.0190 (7)0.0049 (6)0.0044 (6)0.0010 (6)
N450.0200 (7)0.0256 (7)0.0179 (6)0.0091 (5)0.0075 (5)0.0013 (5)
Geometric parameters (Å, º) top
C1—C21.378 (2)C2—H20.95
C2—C31.391 (2)C5—H50.95
C3—C41.420 (2)C6—H60.95
C4—C51.426 (2)N41—C451.3331 (18)
C5—C61.367 (2)N41—N421.3648 (17)
C6—C11.408 (2)N42—C431.346 (2)
C3—N31.4512 (18)N42—H420.88
N3—O311.2337 (16)C43—C441.372 (2)
N3—O321.2423 (16)C43—C4311.485 (2)
C4—N451.3556 (18)C431—H43A0.98
C1—C111.475 (2)C431—H43B0.98
C11—O111.2172 (18)C431—H43C0.98
C11—O121.3367 (17)C44—C451.405 (2)
O12—C121.4467 (18)C44—H440.95
C12—H12A0.98C45—N451.3996 (18)
C12—H12B0.98N45—H450.88
C12—H12C0.98
C2—C1—C6118.22 (14)C4—C5—H5119.1
C2—C1—C11121.18 (13)C5—C6—C1121.47 (13)
C6—C1—C11120.60 (13)C5—C6—H6119.3
O11—C11—O12122.65 (14)C1—C6—H6119.3
O11—C11—C1124.72 (14)C45—N41—N42102.96 (11)
O12—C11—C1112.62 (12)C43—N42—N41113.54 (12)
C11—O12—C12116.65 (12)C43—N42—H42123.2
O12—C12—H12A109.5N41—N42—H42123.2
O12—C12—H12B109.5N42—C43—C44106.19 (13)
H12A—C12—H12B109.5N42—C43—C431121.62 (14)
O12—C12—H12C109.5C44—C43—C431132.11 (14)
H12A—C12—H12C109.5C43—C431—H43A109.5
H12B—C12—H12C109.5C43—C431—H43B109.5
C1—C2—C3120.93 (14)H43A—C431—H43B109.5
C1—C2—H2119.5C43—C431—H43C109.5
C3—C2—H2119.5H43A—C431—H43C109.5
C2—C3—C4122.07 (13)H43B—C431—H43C109.5
C2—C3—N3115.35 (13)C43—C44—C45104.94 (13)
C4—C3—N3122.58 (13)C43—C44—H44127.5
O31—N3—O32121.82 (12)C45—C44—H44127.5
O31—N3—C3118.96 (12)N41—C45—N45124.42 (13)
O32—N3—C3119.21 (12)N41—C45—C44112.36 (13)
N45—C4—C3122.50 (13)N45—C45—C44123.22 (13)
N45—C4—C5122.07 (13)C4—N45—C45130.16 (12)
C3—C4—C5115.43 (13)C4—N45—H45114.9
C6—C5—C4121.84 (13)C45—N45—H45114.9
C6—C5—H5119.1
C2—C1—C11—O11177.34 (15)N45—C4—C5—C6178.67 (13)
C6—C1—C11—O112.1 (2)C3—C4—C5—C61.6 (2)
C2—C1—C11—O122.0 (2)C4—C5—C6—C10.1 (2)
C6—C1—C11—O12178.50 (13)C2—C1—C6—C51.1 (2)
O11—C11—O12—C121.9 (2)C11—C1—C6—C5179.42 (13)
C1—C11—O12—C12178.75 (12)C45—N41—N42—C431.02 (16)
C6—C1—C2—C30.2 (2)N41—N42—C43—C441.28 (17)
C11—C1—C2—C3179.66 (13)N41—N42—C43—C431175.93 (13)
C1—C2—C3—C41.7 (2)N42—C43—C44—C450.96 (17)
C1—C2—C3—N3177.54 (14)C431—C43—C44—C45175.84 (16)
C2—C3—N3—O313.7 (2)N42—N41—C45—N45179.29 (13)
C4—C3—N3—O31175.59 (13)N42—N41—C45—C440.36 (16)
C2—C3—N3—O32177.46 (12)C43—C44—C45—N410.38 (18)
C4—C3—N3—O323.3 (2)C43—C44—C45—N45179.97 (13)
C2—C3—C4—N45177.75 (13)C3—C4—N45—C45177.51 (14)
N3—C3—C4—N453.1 (2)C5—C4—N45—C452.8 (2)
C2—C3—C4—C52.5 (2)C4—N45—C45—N416.5 (2)
N3—C3—C4—C5176.65 (13)C44—C45—N45—C4173.91 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N45—H45···O320.881.922.6221 (16)136
N42—H42···O11i0.881.982.8400 (17)164
C44—H44···O31ii0.952.493.4180 (18)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
(II) methyl 1-(5-methyl-1H-pyrazol-3-yl)-1H-benzimidazole-5-carboxylate top
Crystal data top
C13H12N4O2Z = 4
Mr = 256.27F(000) = 536
Triclinic, P1Dx = 1.421 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3646 (3) ÅCell parameters from 5488 reflections
b = 11.5735 (6) Åθ = 1.6–27.7°
c = 12.7953 (7) ŵ = 0.10 mm1
α = 88.328 (3)°T = 120 K
β = 88.526 (3)°Block, colourless
γ = 75.362 (3)°0.46 × 0.45 × 0.40 mm
V = 1197.75 (10) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5488 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 1.6°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.945, Tmax = 0.961l = 1616
25906 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0417P)2 + 1.6885P]
where P = (Fo2 + 2Fc2)/3
5488 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C13H12N4O2γ = 75.362 (3)°
Mr = 256.27V = 1197.75 (10) Å3
Triclinic, P1Z = 4
a = 8.3646 (3) ÅMo Kα radiation
b = 11.5735 (6) ŵ = 0.10 mm1
c = 12.7953 (7) ÅT = 120 K
α = 88.328 (3)°0.46 × 0.45 × 0.40 mm
β = 88.526 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5488 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3945 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.961Rint = 0.051
25906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.20Δρmax = 0.38 e Å3
5488 reflectionsΔρmin = 0.33 e Å3
347 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.2782 (3)0.61649 (19)0.11910 (17)0.0220 (5)
N120.3715 (3)0.53540 (19)0.12083 (17)0.0233 (5)
C130.2807 (3)0.4207 (2)0.1275 (2)0.0225 (6)
C1310.3584 (3)0.3180 (2)0.1279 (2)0.0267 (6)
C140.1183 (3)0.4248 (2)0.1309 (2)0.0228 (6)
C150.1249 (3)0.5472 (2)0.12581 (19)0.0217 (5)
N210.0092 (3)0.59979 (19)0.12690 (16)0.0206 (5)
C220.1730 (3)0.5353 (2)0.1235 (2)0.0228 (6)
N230.2781 (3)0.60129 (19)0.12240 (17)0.0216 (5)
C23A0.1807 (3)0.7181 (2)0.12465 (19)0.0209 (5)
C240.2325 (3)0.8228 (2)0.1239 (2)0.0226 (5)
C250.1105 (3)0.9300 (2)0.1278 (2)0.0256 (6)
C2510.1574 (4)1.0450 (2)0.1282 (2)0.0280 (6)
O2510.0658 (3)1.14040 (18)0.15236 (17)0.0380 (5)
O2520.3159 (2)1.03288 (17)0.09840 (16)0.0323 (5)
C2520.3768 (4)1.1383 (3)0.1010 (3)0.0381 (7)
C260.0581 (3)0.9301 (2)0.1334 (2)0.0250 (6)
C270.1109 (3)0.8264 (2)0.1329 (2)0.0240 (6)
C27A0.0128 (3)0.7194 (2)0.12815 (19)0.0206 (5)
N310.7672 (3)0.37685 (19)0.61914 (17)0.0229 (5)
N320.8603 (3)0.4571 (2)0.62117 (17)0.0241 (5)
C330.7690 (3)0.5716 (2)0.62794 (19)0.0222 (6)
C3310.8478 (3)0.6739 (2)0.6301 (2)0.0279 (6)
C340.6058 (3)0.5678 (2)0.6316 (2)0.0224 (6)
C350.6126 (3)0.4457 (2)0.62592 (19)0.0203 (5)
N410.4785 (3)0.39343 (19)0.62722 (16)0.0201 (5)
C420.3152 (3)0.4571 (2)0.62326 (19)0.0220 (6)
N430.2112 (3)0.39119 (19)0.62160 (17)0.0221 (5)
C43A0.3092 (3)0.2742 (2)0.62407 (19)0.0205 (5)
C440.2585 (3)0.1691 (2)0.6223 (2)0.0222 (5)
C450.3816 (3)0.0622 (2)0.6270 (2)0.0241 (6)
C4510.3364 (4)0.0531 (3)0.6264 (2)0.0278 (6)
O4510.4286 (3)0.14931 (18)0.65002 (17)0.0371 (5)
O4520.1797 (2)0.04120 (18)0.59762 (17)0.0327 (5)
C4520.1207 (4)0.1478 (3)0.5994 (3)0.0381 (7)
C460.5489 (3)0.0628 (2)0.6337 (2)0.0252 (6)
C470.6009 (3)0.1665 (2)0.6340 (2)0.0239 (6)
C47A0.4765 (3)0.2732 (2)0.62843 (19)0.0199 (5)
H120.48960.56200.11620.028*
H13A0.41130.31110.19620.040*
H13B0.27340.24420.11430.040*
H13C0.44170.33120.07330.040*
H140.02320.35960.13570.027*
H220.20570.45060.12200.027*
H240.34650.82170.12080.027*
H25A0.30671.20190.05820.057*
H25B0.49041.12040.07320.057*
H25C0.37471.16440.17330.057*
H260.13831.00440.13770.030*
H270.22490.82750.13550.029*
H320.97880.43880.61770.029*
H33A0.90140.67320.69740.042*
H33B0.76310.74910.62100.042*
H33C0.93050.66640.57340.042*
H340.51060.63280.63670.027*
H420.28200.54190.62190.026*
H440.14510.16980.61810.027*
H45A0.19440.20840.55640.057*
H45B0.00890.12930.57140.057*
H45C0.11860.17840.67150.057*
H460.62940.01150.63810.030*
H470.71440.16570.63780.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0153 (10)0.0219 (12)0.0271 (12)0.0020 (9)0.0004 (8)0.0001 (9)
N120.0182 (11)0.0221 (12)0.0284 (12)0.0026 (9)0.0003 (8)0.0011 (9)
C130.0221 (13)0.0234 (14)0.0196 (13)0.0014 (11)0.0003 (10)0.0007 (10)
C1310.0243 (14)0.0270 (15)0.0300 (15)0.0086 (12)0.0025 (11)0.0015 (11)
C140.0209 (13)0.0201 (13)0.0237 (13)0.0013 (11)0.0004 (10)0.0011 (10)
C150.0212 (13)0.0229 (14)0.0186 (12)0.0011 (11)0.0009 (9)0.0004 (10)
N210.0173 (11)0.0197 (11)0.0228 (11)0.0010 (9)0.0002 (8)0.0001 (8)
C220.0198 (13)0.0217 (13)0.0231 (13)0.0018 (11)0.0003 (10)0.0004 (10)
N230.0191 (11)0.0193 (11)0.0247 (12)0.0018 (9)0.0017 (8)0.0003 (9)
C23A0.0180 (12)0.0239 (13)0.0183 (12)0.0008 (10)0.0008 (9)0.0001 (10)
C240.0230 (13)0.0250 (14)0.0207 (13)0.0080 (11)0.0004 (10)0.0007 (10)
C250.0293 (15)0.0251 (14)0.0209 (13)0.0042 (12)0.0004 (10)0.0001 (10)
C2510.0336 (16)0.0261 (15)0.0240 (14)0.0070 (13)0.0026 (11)0.0000 (11)
O2510.0424 (13)0.0237 (11)0.0463 (13)0.0054 (10)0.0065 (10)0.0052 (9)
O2520.0301 (11)0.0260 (11)0.0435 (12)0.0120 (9)0.0003 (9)0.0005 (9)
C2520.0413 (18)0.0343 (17)0.0427 (18)0.0171 (14)0.0034 (14)0.0013 (14)
C260.0256 (14)0.0208 (13)0.0253 (14)0.0004 (11)0.0004 (10)0.0019 (10)
C270.0209 (13)0.0256 (14)0.0216 (13)0.0015 (11)0.0011 (10)0.0015 (10)
C27A0.0231 (13)0.0197 (13)0.0179 (12)0.0034 (10)0.0008 (9)0.0007 (10)
N310.0151 (10)0.0238 (12)0.0291 (12)0.0033 (9)0.0000 (8)0.0023 (9)
N320.0171 (11)0.0255 (12)0.0268 (12)0.0004 (9)0.0002 (8)0.0003 (9)
C330.0245 (14)0.0233 (14)0.0194 (13)0.0070 (11)0.0011 (10)0.0002 (10)
C3310.0282 (15)0.0282 (15)0.0278 (15)0.0078 (12)0.0033 (11)0.0007 (11)
C340.0194 (13)0.0227 (14)0.0235 (13)0.0022 (11)0.0007 (10)0.0001 (10)
C350.0221 (13)0.0206 (13)0.0183 (12)0.0053 (10)0.0014 (9)0.0003 (10)
N410.0195 (11)0.0185 (11)0.0221 (11)0.0044 (9)0.0005 (8)0.0014 (8)
C420.0182 (12)0.0213 (13)0.0223 (13)0.0025 (10)0.0011 (10)0.0005 (10)
N430.0174 (11)0.0217 (11)0.0262 (12)0.0032 (9)0.0008 (8)0.0005 (9)
C43A0.0197 (12)0.0233 (13)0.0176 (12)0.0036 (10)0.0012 (9)0.0013 (10)
C440.0201 (13)0.0241 (14)0.0230 (13)0.0071 (11)0.0015 (10)0.0002 (10)
C450.0268 (14)0.0238 (14)0.0221 (13)0.0071 (11)0.0010 (10)0.0006 (10)
C4510.0337 (16)0.0271 (15)0.0235 (14)0.0096 (13)0.0035 (11)0.0017 (11)
O4510.0434 (13)0.0226 (11)0.0437 (13)0.0057 (10)0.0034 (10)0.0037 (9)
O4520.0317 (11)0.0261 (11)0.0433 (12)0.0125 (9)0.0001 (9)0.0037 (9)
C4520.0445 (19)0.0309 (16)0.0464 (19)0.0234 (14)0.0040 (14)0.0045 (14)
C460.0260 (14)0.0223 (14)0.0247 (14)0.0014 (11)0.0002 (10)0.0011 (11)
C470.0205 (13)0.0263 (14)0.0217 (13)0.0004 (11)0.0005 (10)0.0008 (10)
C47A0.0214 (13)0.0185 (13)0.0198 (13)0.0054 (10)0.0013 (9)0.0001 (10)
Geometric parameters (Å, º) top
N11—N121.364 (3)N31—N321.356 (3)
N12—C131.354 (3)N32—C331.356 (3)
C13—C141.373 (4)C33—C341.376 (4)
C14—C151.403 (4)C34—C351.404 (4)
C15—N111.333 (3)C35—N311.339 (3)
N12—H120.96N32—H320.9601
C13—C1311.492 (4)C33—C3311.495 (4)
C131—H13A0.98C331—H33A0.98
C131—H13B0.98C331—H33B0.98
C131—H13C0.98C331—H33C0.98
C14—H140.95C34—H340.95
C15—N211.406 (3)C35—N411.402 (3)
N21—C221.385 (3)N41—C421.380 (3)
C22—N231.301 (3)C42—N431.295 (3)
N23—C23A1.392 (3)N43—C43A1.395 (3)
C23A—C241.386 (4)C43A—C441.386 (4)
C24—C251.394 (4)C44—C451.396 (4)
C25—C261.409 (4)C45—C461.405 (4)
C26—C271.380 (4)C46—C471.376 (4)
C27—C27A1.401 (4)C47—C47A1.401 (4)
C23A—C27A1.400 (4)C43A—C47A1.398 (4)
C27A—N211.393 (3)C47A—N411.395 (3)
C22—H220.95C42—H420.95
C24—H240.95C44—H440.95
C25—C2511.480 (4)C45—C4511.476 (4)
C251—O2511.218 (3)C451—O4511.218 (3)
C251—O2521.344 (3)C451—O4521.343 (3)
O252—C2521.437 (3)O452—C4521.440 (3)
C252—H25A0.98C452—H45A0.98
C252—H25B0.98C452—H45B0.98
C252—H25C0.98C452—H45C0.98
C26—H260.95C46—H460.95
C27—H270.95C47—H470.95
C15—N11—N12102.6 (2)C35—N31—N32103.0 (2)
C13—N12—N11113.3 (2)C33—N32—N31113.2 (2)
C13—N12—H12126.6C33—N32—H32120.9
N11—N12—H12120.1N31—N32—H32125.9
N12—C13—C14106.5 (2)N32—C33—C34106.7 (2)
N12—C13—C131122.0 (2)N32—C33—C331121.7 (2)
C14—C13—C131131.5 (2)C34—C33—C331131.5 (2)
C13—C131—H13A109.5C33—C331—H33A109.5
C13—C131—H13B109.5C33—C331—H33B109.5
H13A—C131—H13B109.5H33A—C331—H33B109.5
C13—C131—H13C109.5C33—C331—H33C109.5
H13A—C131—H13C109.5H33A—C331—H33C109.5
H13B—C131—H13C109.5H33B—C331—H33C109.5
C13—C14—C15104.2 (2)C33—C34—C35104.0 (2)
C13—C14—H14127.9C33—C34—H34128.0
C15—C14—H14127.9C35—C34—H34128.0
N11—C15—C14113.3 (2)N31—C35—N41120.0 (2)
N11—C15—N21119.6 (2)N31—C35—C34113.0 (2)
C14—C15—N21127.1 (2)N41—C35—C34127.0 (2)
C22—N21—C27A105.6 (2)C42—N41—C47A105.8 (2)
C22—N21—C15123.7 (2)C42—N41—C35124.2 (2)
C27A—N21—C15130.7 (2)C47A—N41—C35130.0 (2)
N23—C22—N21114.0 (2)N43—C42—N41114.2 (2)
N23—C22—H22123.0N43—C42—H42122.9
N21—C22—H22123.0N41—C42—H42122.9
C22—N23—C23A104.7 (2)C42—N43—C43A104.7 (2)
C24—C23A—N23127.9 (2)C44—C43A—N43128.0 (2)
C24—C23A—C27A121.6 (2)C44—C43A—C47A121.5 (2)
N23—C23A—C27A110.5 (2)N43—C43A—C47A110.5 (2)
C23A—C24—C25117.3 (2)C43A—C44—C45117.0 (2)
C23A—C24—H24121.4C43A—C44—H44121.5
C25—C24—H24121.4C45—C44—H44121.5
C24—C25—C26120.6 (3)C44—C45—C46120.7 (2)
C24—C25—C251120.0 (3)C44—C45—C451119.9 (2)
C26—C25—C251119.3 (2)C46—C45—C451119.3 (2)
O251—C251—O252122.8 (3)O451—C451—O452122.7 (3)
O251—C251—C25125.1 (3)O451—C451—C45124.7 (3)
O252—C251—C25112.0 (2)O452—C451—C45112.6 (2)
C251—O252—C252116.6 (2)C451—O452—C452117.0 (2)
O252—C252—H25A109.5O452—C452—H45A109.5
O252—C252—H25B109.5O452—C452—H45B109.5
H25A—C252—H25B109.5H45A—C452—H45B109.5
O252—C252—H25C109.5O452—C452—H45C109.5
H25A—C252—H25C109.5H45A—C452—H45C109.5
H25B—C252—H25C109.5H45B—C452—H45C109.5
C27—C26—C25122.5 (2)C47—C46—C45122.8 (2)
C27—C26—H26118.8C47—C46—H46118.6
C25—C26—H26118.8C45—C46—H46118.6
C26—C27—C27A116.3 (2)C46—C47—C47A116.0 (2)
C26—C27—H27121.9C46—C47—H47122.0
C27A—C27—H27121.9C47A—C47—H47122.0
N21—C27A—C23A105.2 (2)N41—C47A—C43A104.9 (2)
N21—C27A—C27133.1 (2)N41—C47A—C47133.2 (2)
C23A—C27A—C27121.7 (2)C43A—C47A—C47121.9 (2)
C15—N11—N12—C130.4 (3)C35—N31—N32—C330.5 (3)
N11—N12—C13—C140.3 (3)N31—N32—C33—C340.5 (3)
N11—N12—C13—C131178.5 (2)N31—N32—C33—C331179.4 (2)
N12—C13—C14—C150.0 (3)N32—C33—C34—C350.3 (3)
C131—C13—C14—C15178.6 (3)C331—C33—C34—C35179.6 (3)
N12—N11—C15—C140.4 (3)N32—N31—C35—N41179.4 (2)
N12—N11—C15—N21179.7 (2)N32—N31—C35—C340.3 (3)
C13—C14—C15—N110.3 (3)C33—C34—C35—N310.0 (3)
C13—C14—C15—N21179.8 (2)C33—C34—C35—N41179.7 (2)
N11—C15—N21—C22173.5 (2)N31—C35—N41—C42173.1 (2)
C14—C15—N21—C226.4 (4)C34—C35—N41—C427.2 (4)
N11—C15—N21—C27A4.3 (4)N31—C35—N41—C47A4.1 (4)
C14—C15—N21—C27A175.8 (3)C34—C35—N41—C47A175.5 (3)
C27A—N21—C22—N230.0 (3)C47A—N41—C42—N430.1 (3)
C15—N21—C22—N23178.3 (2)C35—N41—C42—N43177.7 (2)
N21—C22—N23—C23A0.3 (3)N41—C42—N43—C43A0.3 (3)
C22—N23—C23A—C24179.5 (3)C42—N43—C43A—C44179.1 (3)
C22—N23—C23A—C27A0.6 (3)C42—N43—C43A—C47A0.6 (3)
N23—C23A—C24—C25179.3 (2)N43—C43A—C44—C45179.1 (2)
C27A—C23A—C24—C250.6 (4)C47A—C43A—C44—C451.1 (4)
C23A—C24—C25—C260.7 (4)C43A—C44—C45—C460.3 (4)
C23A—C24—C25—C251179.4 (2)C43A—C44—C45—C451179.4 (2)
C24—C25—C251—O251164.3 (3)C44—C45—C451—O451165.3 (3)
C26—C25—C251—O25114.5 (4)C46—C45—C451—O45113.9 (4)
C24—C25—C251—O25215.7 (4)C44—C45—C451—O45214.2 (4)
C26—C25—C251—O252165.6 (2)C46—C45—C451—O452166.7 (2)
O251—C251—O252—C2522.9 (4)O451—C451—O452—C4522.4 (4)
C25—C251—O252—C252177.1 (2)C45—C451—O452—C452177.1 (2)
C24—C25—C26—C271.6 (4)C44—C45—C46—C471.2 (4)
C251—C25—C26—C27179.7 (2)C451—C45—C46—C47179.6 (2)
C25—C26—C27—C27A1.1 (4)C45—C46—C47—C47A0.7 (4)
C22—N21—C27A—C23A0.4 (3)C42—N41—C47A—C43A0.5 (3)
C15—N21—C27A—C23A177.7 (2)C35—N41—C47A—C43A177.1 (2)
C22—N21—C27A—C27179.0 (3)C42—N41—C47A—C47178.6 (3)
C15—N21—C27A—C272.9 (5)C35—N41—C47A—C473.8 (5)
C24—C23A—C27A—N21179.5 (2)C44—C43A—C47A—N41179.0 (2)
N23—C23A—C27A—N210.6 (3)N43—C43A—C47A—N410.7 (3)
C24—C23A—C27A—C271.1 (4)C44—C43A—C47A—C471.7 (4)
N23—C23A—C27A—C27178.8 (2)N43—C43A—C47A—C47178.5 (2)
C26—C27—C27A—N21179.5 (3)C46—C47—C47A—N41179.8 (3)
C26—C27—C27A—C23A0.3 (4)C46—C47—C47A—C43A0.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···N23i0.961.882.836 (4)173
N32—H32···N43ii0.961.882.840 (4)174
C14—H14···O251iii0.952.463.269 (3)143
C34—H34···O451iv0.952.453.248 (3)141
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H12N4O4C13H12N4O2
Mr276.26256.27
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)5.9233 (3), 8.8858 (6), 11.7819 (6)8.3646 (3), 11.5735 (6), 12.7953 (7)
α, β, γ (°)85.690 (4), 83.500 (4), 84.015 (3)88.328 (3), 88.526 (3), 75.362 (3)
V3)611.51 (6)1197.75 (10)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.120.10
Crystal size (mm)0.42 × 0.26 × 0.150.46 × 0.45 × 0.40
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.959, 0.9830.945, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
12027, 2829, 2117 25906, 5488, 3945
Rint0.0550.051
(sin θ/λ)max1)0.6530.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.06 0.068, 0.173, 1.20
No. of reflections28295488
No. of parameters183347
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.330.38, 0.33

Computer programs: COLLECT (Nonius, 1999), Kappa-CCD Server Software (Nonius, 1997), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO-SMN (Otwinowski & Minor, 1997), DENZO and COLLECT, DENZO-SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
C1—C21.378 (2)C6—C11.408 (2)
C2—C31.391 (2)C3—N31.4512 (18)
C3—C41.420 (2)N3—O311.2337 (16)
C4—C51.426 (2)N3—O321.2423 (16)
C5—C61.367 (2)C4—N451.3556 (18)
C2—C1—C11—O122.0 (2)C2—C3—N3—O313.7 (2)
C1—C11—O12—C12178.75 (12)C4—N45—C45—N416.5 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N45—H45···O320.881.922.6221 (16)136
N42—H42···O11i0.881.982.8400 (17)164
C44—H44···O31ii0.952.493.4180 (18)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Selected geometric parameters (Å, º) for (II) top
N21—C221.385 (3)N41—C421.380 (3)
C22—N231.301 (3)C42—N431.295 (3)
N23—C23A1.392 (3)N43—C43A1.395 (3)
C23A—C27A1.400 (4)C43A—C47A1.398 (4)
C27A—N211.393 (3)C47A—N411.395 (3)
N11—C15—N21—C22173.5 (2)N31—C35—N41—C42173.1 (2)
C24—C25—C251—O25215.7 (4)C44—C45—C451—O45214.2 (4)
C25—C251—O252—C252177.1 (2)C45—C451—O452—C452177.1 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N12—H12···N23i0.961.882.836 (4)173
N32—H32···N43ii0.961.882.840 (4)174
C14—H14···O251iii0.952.463.269 (3)143
C34—H34···O451iv0.952.453.248 (3)141
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+1, z.
 

Acknowledgements

The X-ray data were collected at the EPSRC National Crystallography Service, University of Southampton, England; the authors thank the staff for all their help and advice. MN and JC thank the Consejería de innovadíon, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JP thanks COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support that has also supported a short stay at Instituto de Química Orgánica de Síntesis, Universidad Nacional de Rosario. EGM thanks CONICET and Universidad Nacional de Rosario for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, K. & Kaneko, Y. (1989). Jpn Kokai Tokkyo Koho, Jpn Patent 01003187 A2, Jpn Patent Application 87-159281, 1987; Chem. Abstr. (1989), 111, 97297.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds