Download citation
Download citation
link to html
In the novel title binuclear zinc(II) Schiff base complex, bis­([mu]-11-thio­semicarbazonoindeno[1,2-b]quinoxaline-8-carboxylato)bis­[(dimethyl sulfoxide)zinc(II)] dimethyl sulfoxide tri­solvate, [Zn2(C17H9N5O2S)2(C2H6OS)2]·3C2H6OS, each ZnII atom is five-coordinated and situated in a distorted square-pyramidal environment, coordinated by two L2- ligands and one dimethyl sulfoxide mol­ecule. Each L2- ligand, which coordinates to two ZnII atoms, has two parts. One part, acting in a tridentate chelating mode, coordinates to one ZnII atom through two N atoms and one S atom, while another part coordinates to another ZnII atom through a monodentate carboxylate group. The whole complex has a dimeric structure. The coordination mode of the nearly planar L2- ligand is quite different from the most common mode for Schiff bases.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106027582/sq3031sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106027582/sq3031Isup2.hkl
Contains datablock I

CCDC reference: 609947

Comment top

Due to their photoelectromagnetic characteristics and physiologically important bactericidal and cancer-fighting activities, the hydrazone class of Schiff bases and their complexes have always attracted great attention (Reiter et al., 1985; Kovala-Demertzi et al., 1999; Matthews et al., 2001). Among these, the thiosemicarbazide Schiff base and its complexes have been particularly widely studied, because they are not only organic colorants with excellent performance, showing antibacterial and antiviral activities, but also templates for studying biocatalytic activity (Singh et al., 1978). Belonging to an important class of nitrogen-containing heterocyclic rings, indeno(1,2 - b)quinoxaline-11-one derivatives have always been closely watched (Javad et al., 2005), but there are few studies of the synthesis of these Schiff bases: to date, only two papers have been found in the literature (Rao, Kumar & Rao, 1984; Rao, Rao & Girisham, 1984), and there is no single-crystal structure report on either ligands or complexes. In the present work, the title indeno(1,2 - b)quinoxaline-11-one-8-carboxylic acid thiosemicarbazone Schiff base zinc(II) complex, [Zn2L2(C2H6OS)2]·3C2H6OS, (I) (L is the indeno(1,2 - b)quinoxaline-11-one-8-carboxylic acid thiosemicarbazone anion), has been synthesized and its crystal structure determined.

To the best of our knowledge, this is the first report of the crystal structure of an indeno(1,2 - b)quinoxaline-11-one Schiff base derivative. This ligand has many interesting characteristics. Firstly, this type of thiosemicarbazide Schiff base has a large conformational diversity, so that cistrans isomerism is observed (always configured differently in the free state and complex) (Mathew & Palenik, 1971; Restivo & Palenik, 1970; Gabe et al., 1969). Secondly, within the H2L ligand, multiple N atoms, one S atom and one carboxyl group may participate in coordination to produce additional structural diversity. Thirdly, in the previously reported Schiff base structures, the ligands are typically synthesized from the carbonyl groups outside the aromatic rings, while in the present ligand, the Schiff base was synthesized directly from the carbonyl group in the aromatic ring. This type of Schiff base has rarely been reported (Liu et al., 1999, 2000). Therefore, we wish to determine the single-crystal structures of this class of compounds, in order to understand their coordination mode and structural characteristics, as a guide for further studies.

The title complex, (I), in which the molecular structure unit is identical to the asymmetric unit, is a dimer composed of two ZnIIL units and five DMSO molecules, three of which are solvent molecules not participating in coordination. Each ZnII is five-coordinate (Fig. 1), with one S and two N atoms from one L2- ligand, one O atom from the carboxyl group of the other L2- ligand and one O atom from DMSO. The coordination mode of each ZnII in the coordination dimer is the same. For example, for atom Zn1, the bond angles formed between Zn1 and coordination atoms N2, N4, S1, O3 and O5 are in the range 63.62 (15)–153.25 (14)°. The Zn atom is displaced by 0.320 (3) Å towards atom O5 of the DMSO, from the mean plane of basal atoms N4, N2, S1 and O3 of L2-. Thus, the central Zn1 is best described as having distorted square-pyramidal (not trigonal–bipyramidal) geometry (Table 1). Each L2- ligand provides two N atoms, one from the quinoxaline ring and another from the thiosemicarbazone, along with one S atom, to coordinate to one ZnII atom in a tridentate mode, and provides one O atom of the carboxyl group to coordinate to the other ZnII atom in a monodentate mode. Each L2- ligand links two ZnII atoms, and each ZnII atom connects two L2- ligands, so as to form a binuclear ZnII coordination dimer.

As demonstrated by the relevant literature, the coordination modes of thiosemicarbazide Schiff base ligands are richly diverse. Although thiosemicarbazide Schiff bases are often of cis-geometry in the free state, they convert into trans-configurations on formation of the complex (Gabe et al., 1969; Liu et al., 1999, 2000; Mathew & Palenik, 1971; Restivo & Palenik, 1970). However, the coordination mode of L2- is very different from these. Taking one L2- ligand in (I) as an example, atom N2 is in the cis (not trans) position with respect to atom N4 in the quinoxaline ring. Moreover, it is atom N2 and not N3 that coordinates to ZnII. The reason is probably that the Schiff base H2L is synthesized directly from the carbonyl groups in the indeno-quinoxaline aromatic ring. To the best of our knowledge, this coordination mode has not been reported previously.

The bond length of C2—N3 is 1.299 (7) Å, which demonstrates that this is a double bond and that compound (I) exists in the imide form. The C1—S1 bond length is 1.692 (7) Å, which agrees very well with the values found in related compounds (Liu et al., 1999), being intermediate between 1.82 Å for a C—S single bond and 1.56 Å for a CS double bond. The corresponding C1—N1, C1—N2 and N2—N3 distances [1.308 (8), 1.371 (8) 1.350 (7) Å, respectively] are indicative of some double-bond character, which is similar to other related compounds (Liu et al., 1999, 2000).

When forming the complex, N2 loses an H atom from the tautomeric thiol form and the ligand coordinates with ZnII in the form of an anion. The anionic carboxyl group on another L2- ligand coordinates to ZnII to balance the electric charge of whole complex. Except for the carboxyl group, the other non-H atoms C1–C16, N1–N4 and S1, within ligand L2- are in the same plane (the mean deviation of the atoms from the least-squares plane is 0.0631 Å). The ZnII atom is also in this plane [the distance of ZnII from the least-squares plane is 0.0004 (1) Å]. Within this coordination dimer, the dihedral angle between the two least-squares planes of the L2- ligands is 70.64 (6)°. Atom N5 at another potential coordinating position of the quinoxaline ring does not participate in coordination, and so only a simple coordination compound forms rather than a coordination polymer. The cause is probably the steric hindrance of two neighbouring H atoms (H7 and H13) in L2-, for if atom N5 were to coordinate to a metal ion, atoms H7 and H13 would occupy the metal coordination sites. This would make it difficult for the metal ion to form a stable complex and link to another L2- ligand.

The packing of complex (I) is shown in Fig. 2. The intermolecular interactions are mainly mediated by the hydrogen bonds N1—H1A···O4i and N6—H6A···O2ii (Table 2). In this way, a one-dimensional supermolecular chain is formed along the [111] direction. Note that there are also hydrogen bonds (N1—H1B···O8i and N6—H6B···O9iii) between the L2- ligand and the solvent DMSO molecules.

Experimental top

All reagents were purchased from Aldrich and used without further purification. The ligand L was synthesized according to the method of Rao, Kumar & Rao, 1984). Ligand L (0.698 g, 0.002 mol) was dissolved in DMSO (20 ml) and then Zn(OAc)2·2H2O (0.220 g, 0.001 mol) was added. After heating at 343 K for 20 min, the mixture was allowed to cool and evaporate naturally. After a few days, red crystalline lumps formed (yield 0.48 g, ca 80% based on Zn). Analysis, found: C 43.10, H 3.89, N 11.62, S 18.81%; C44H48N10O9S7Zn2 requires: C 43.42, H 3.95, N 11.51, S 18.42%.

Refinement top

The DMSO molecule that coordinates to Zn1 is disordered over a major and minor orientation of the S and C atoms, with refined occupancies of 0.599(s.u.?) and 0.401(s.u.?) that were ultimately fixed at 0.6 and 0.4. Standard DFIX restraints were used for the dimensions of the disordered DMSO. The C atoms of the minor orientation were refined with an overall Uiso value. All other non-H atoms were refined anisotropically. The S atom in one solvent DMSO molecule is disordered, with refined occupancies of 0.772(s.u.?) and 0.228(s.u.?) that were subsequently fixed at 0.8 and 0.2. The maximum positive peak of 0.97 e Å-3 in the final difference electron-density map is located 1.05 Å from atom S3' and 1.14 Å from atom S3.

H atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 (CH) or 0.96 Å (CH3) and N—H = 0.86 Å (NH2), and with Uiso(H) = 1.2Ueq(C,N) for CH and NH2, or 1.5Ueq(C) for CH3. The H atoms attached to the disordered DMSO molecules were not located.

Computing details top

Data collection: APEX2 (Bruker, Year?); cell refinement: APEX 2; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: Please provide missing details.

Figures top
[Figure 1] Fig. 1. A view of the title complex, (I), with the atomic labelling scheme. Displacement ellipsoids are shown at the 30% probability level. Only the major orientation of the disordered DMSO molecule is shown. H atoms and the solvent DMSO molecules have been omitted for clarity.
[Figure 2] Fig. 2. A packing view of (I), showing the N—H···O hydrogen-bonded one-dimensional chain among the complex molecules, extending along [111]. Hydrogen bonds are shown as dashed lines. Solvent DMSO molecules have been omitted for clarity. [Symmetry codes: (i) 1 - x 1 - y 1 - z, (ii) -x 2 - y 2 - z.]
bis(µ-11-thiosemicarbazonoindeno[1,2-b]quinoxaline-8-carboxylato)bis[(dimethyl sulfoxide)zinc(II)] dimethyl sulfoxide trisolvate top
Crystal data top
[Zn2(C17H9N5O2S)2(C2H6OS)2]·3C2H6OSZ = 2
Mr = 1216.08F(000) = 1252
TriclinicP1Dx = 1.524 Mg m3
a = 11.716 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.063 (4) ÅCell parameters from 286 reflections
c = 15.837 (4) Åθ = 2.5–20.6°
α = 76.490 (5)°µ = 1.25 mm1
β = 80.577 (5)°T = 293 K
γ = 79.533 (5)°Block, dark red
V = 2650.6 (12) Å30.14 × 0.13 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9680 independent reflections
Radiation source: fine-focus sealed tube5453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1314
Tmin = 0.856, Tmax = 0.928k = 1318
14815 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0896P)2]
where P = (Fo2 + 2Fc2)/3
9680 reflections(Δ/σ)max = 0.002
666 parametersΔρmax = 0.97 e Å3
4 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Zn2(C17H9N5O2S)2(C2H6OS)2]·3C2H6OSγ = 79.533 (5)°
Mr = 1216.08V = 2650.6 (12) Å3
TriclinicP1Z = 2
a = 11.716 (3) ÅMo Kα radiation
b = 15.063 (4) ŵ = 1.25 mm1
c = 15.837 (4) ÅT = 293 K
α = 76.490 (5)°0.14 × 0.13 × 0.06 mm
β = 80.577 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9680 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5453 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.928Rint = 0.046
14815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0704 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 0.97Δρmax = 0.97 e Å3
9680 reflectionsΔρmin = 0.38 e Å3
666 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.34118 (7)0.53667 (5)0.67855 (5)0.0357 (2)
Zn20.15689 (7)0.81510 (5)0.95498 (5)0.0364 (2)
S10.53033 (17)0.40211 (14)0.70673 (13)0.0527 (5)
S20.03368 (17)0.78819 (13)1.07804 (13)0.0500 (5)
S30.2489 (7)0.4707 (6)0.8764 (5)0.085 (2)0.60
S3'0.2422 (13)0.4268 (9)0.8676 (8)0.107 (4)0.40
S40.23224 (19)0.63395 (14)1.09622 (13)0.0578 (6)
S50.32588 (19)0.98353 (14)0.52558 (15)0.0646 (6)
S60.16281 (19)0.82696 (15)0.34419 (15)0.0616 (6)
S70.3158 (2)0.15430 (19)0.67779 (17)0.0608 (7)0.80
S7'0.2100 (11)0.2042 (8)0.6859 (8)0.070 (3)*0.20
N10.5427 (5)0.3432 (4)0.5590 (4)0.0447 (15)
H1A0.51710.34510.51060.054*
H1B0.60390.30500.57340.054*
N20.3907 (4)0.4598 (3)0.5897 (3)0.0315 (12)
N30.3487 (4)0.4514 (3)0.5180 (3)0.0303 (12)
N40.1966 (4)0.6080 (3)0.6092 (3)0.0298 (12)
N50.0009 (4)0.6808 (3)0.5135 (3)0.0354 (13)
N60.0337 (5)0.9327 (4)1.1476 (3)0.0445 (15)
H6A0.00410.98031.14970.053*
H6B0.09450.91831.18320.053*
N70.1111 (4)0.9043 (3)1.0331 (3)0.0305 (12)
N80.1556 (5)0.9762 (4)1.0456 (3)0.0376 (13)
N90.3037 (4)0.8856 (4)0.8945 (3)0.0336 (12)
N100.4923 (5)0.9912 (4)0.8220 (3)0.0396 (14)
O10.1158 (4)0.7699 (3)0.8609 (3)0.0439 (12)
O20.0044 (5)0.8970 (3)0.8117 (3)0.0586 (14)
O30.3833 (4)0.6256 (3)0.7346 (3)0.0454 (12)
O40.4943 (5)0.6811 (4)0.6118 (3)0.0602 (15)
O50.2254 (4)0.4812 (3)0.7798 (3)0.0535 (13)
O60.2659 (4)0.7006 (3)1.0119 (3)0.0533 (13)
O70.2554 (5)1.0421 (4)0.4583 (4)0.089 (2)
O80.2323 (5)0.7789 (4)0.4184 (4)0.0680 (16)
O90.2308 (6)0.0913 (4)0.7204 (4)0.092 (2)
C10.4885 (6)0.3981 (4)0.6105 (4)0.0369 (16)
C20.2540 (5)0.5072 (4)0.4983 (4)0.0285 (14)
C30.1937 (5)0.5031 (4)0.4250 (4)0.0313 (15)
C40.2233 (6)0.4448 (5)0.3657 (4)0.0385 (16)
H40.29160.40230.36700.046*
C50.1479 (6)0.4520 (5)0.3046 (4)0.0451 (18)
H50.16670.41390.26430.054*
C60.0454 (6)0.5144 (5)0.3022 (5)0.0498 (19)
H60.00390.51730.26090.060*
C70.0161 (6)0.5725 (5)0.3610 (4)0.0456 (18)
H70.05250.61480.35960.055*
C80.0912 (5)0.5663 (4)0.4220 (4)0.0292 (14)
C90.0819 (5)0.6166 (4)0.4925 (4)0.0293 (14)
C100.1817 (5)0.5794 (4)0.5405 (4)0.0290 (14)
C110.1098 (5)0.6762 (4)0.6329 (4)0.0303 (14)
C120.0140 (5)0.7119 (4)0.5851 (4)0.0307 (14)
C130.0702 (6)0.7822 (4)0.6129 (4)0.0410 (17)
H130.13370.80680.58200.049*
C140.0602 (6)0.8150 (5)0.6841 (4)0.0426 (17)
H140.11660.86170.70100.051*
C150.0348 (6)0.7786 (4)0.7324 (4)0.0352 (15)
C160.1157 (5)0.7100 (4)0.7078 (4)0.0325 (15)
H160.17660.68440.74110.039*
C170.0467 (6)0.8195 (5)0.8070 (4)0.0381 (16)
C180.0140 (6)0.8821 (4)1.0904 (4)0.0369 (16)
C190.2502 (6)0.9976 (4)0.9934 (4)0.0343 (15)
C200.3085 (6)1.0738 (4)1.0002 (5)0.0398 (17)
C210.2821 (6)1.1319 (5)1.0591 (5)0.0475 (19)
H210.21651.12821.10100.057*
C220.3561 (7)1.1960 (5)1.0538 (5)0.053 (2)
H220.33961.23581.09250.064*
C230.4530 (7)1.2012 (5)0.9923 (5)0.060 (2)
H230.50181.24390.99120.071*
C240.4804 (7)1.1453 (5)0.9324 (5)0.052 (2)
H240.54561.15060.89030.063*
C250.4074 (6)1.0805 (4)0.9370 (4)0.0378 (16)
C260.4144 (6)1.0090 (4)0.8872 (4)0.0358 (16)
C270.3175 (6)0.9574 (4)0.9227 (4)0.0325 (15)
C280.3894 (5)0.8624 (4)0.8273 (4)0.0322 (15)
C290.4804 (6)0.9155 (4)0.7915 (4)0.0356 (16)
C300.5619 (6)0.8892 (5)0.7225 (4)0.0420 (17)
H300.62250.92320.69840.050*
C310.5531 (6)0.8152 (5)0.6909 (4)0.0443 (18)
H310.60650.80010.64420.053*
C320.4636 (6)0.7598 (4)0.7277 (4)0.0340 (15)
C330.3840 (5)0.7840 (4)0.7948 (4)0.0344 (15)
H330.32540.74810.81950.041*
C340.4481 (6)0.6828 (5)0.6873 (5)0.0420 (17)
C350.1348 (14)0.5508 (11)0.9183 (11)0.093 (5)*0.60
C35'0.265 (3)0.516 (2)0.921 (2)0.141 (13)*0.40
C360.1836 (16)0.3725 (11)0.9332 (12)0.094 (5)*0.60
C36'0.103 (2)0.420 (2)0.9305 (17)0.104 (9)*0.40
C370.3665 (8)0.5573 (6)1.1120 (6)0.081 (3)
H37A0.38690.52361.06580.121*
H37B0.35720.51491.16730.121*
H37C0.42750.59241.11120.121*
C380.2269 (7)0.6898 (5)1.1827 (5)0.064 (2)
H38A0.29910.71321.17820.096*
H38B0.21560.64671.23750.096*
H38C0.16320.74001.17980.096*
C390.2303 (7)0.9150 (6)0.6006 (6)0.086 (3)
H39A0.18020.95200.63770.129*
H39B0.27540.86450.63580.129*
H39C0.18360.89140.56890.129*
C400.4149 (7)0.8962 (6)0.4774 (5)0.068 (2)
H40A0.36770.86860.44960.102*
H40B0.45100.84990.52190.102*
H40C0.47430.92250.43470.102*
C410.0520 (8)0.9098 (6)0.3831 (6)0.089 (3)
H41A0.00800.88050.43560.133*
H41B0.00080.93660.33940.133*
H41C0.08720.95740.39560.133*
C420.2476 (9)0.9062 (7)0.2727 (6)0.099 (3)
H42A0.26010.95100.30320.148*
H42B0.20710.93690.22340.148*
H42C0.32170.87370.25260.148*
C430.2676 (9)0.2226 (6)0.5766 (6)0.077 (3)
C440.2906 (9)0.2446 (6)0.7377 (6)0.086 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0369 (5)0.0385 (5)0.0365 (4)0.0014 (4)0.0078 (3)0.0183 (4)
Zn20.0385 (5)0.0408 (5)0.0349 (4)0.0073 (4)0.0035 (3)0.0174 (4)
S10.0489 (12)0.0607 (13)0.0525 (12)0.0055 (10)0.0211 (9)0.0204 (10)
S20.0446 (11)0.0520 (12)0.0580 (12)0.0131 (9)0.0013 (9)0.0213 (10)
S30.098 (4)0.137 (7)0.037 (3)0.068 (5)0.014 (2)0.010 (3)
S3'0.145 (10)0.131 (11)0.054 (5)0.029 (8)0.018 (5)0.027 (6)
S40.0693 (14)0.0533 (13)0.0535 (12)0.0134 (11)0.0134 (11)0.0090 (10)
S50.0609 (14)0.0502 (13)0.0796 (16)0.0046 (11)0.0018 (12)0.0176 (11)
S60.0608 (14)0.0610 (13)0.0690 (14)0.0128 (11)0.0101 (11)0.0214 (11)
S70.0471 (16)0.0666 (17)0.0556 (16)0.0019 (13)0.0055 (13)0.0004 (13)
N10.044 (4)0.044 (3)0.045 (3)0.012 (3)0.010 (3)0.021 (3)
N20.030 (3)0.031 (3)0.034 (3)0.001 (2)0.005 (2)0.011 (2)
N30.032 (3)0.029 (3)0.032 (3)0.003 (2)0.002 (2)0.015 (2)
N40.031 (3)0.030 (3)0.032 (3)0.003 (2)0.006 (2)0.014 (2)
N50.033 (3)0.039 (3)0.037 (3)0.000 (3)0.011 (3)0.011 (3)
N60.046 (4)0.044 (3)0.046 (3)0.011 (3)0.002 (3)0.016 (3)
N70.025 (3)0.038 (3)0.032 (3)0.007 (2)0.003 (2)0.012 (2)
N80.038 (3)0.039 (3)0.041 (3)0.004 (3)0.009 (3)0.017 (3)
N90.035 (3)0.041 (3)0.028 (3)0.010 (3)0.000 (2)0.013 (2)
N100.034 (3)0.052 (4)0.039 (3)0.016 (3)0.000 (3)0.017 (3)
O10.040 (3)0.054 (3)0.045 (3)0.005 (2)0.007 (2)0.028 (2)
O20.076 (4)0.047 (3)0.061 (3)0.003 (3)0.015 (3)0.032 (3)
O30.048 (3)0.045 (3)0.052 (3)0.008 (2)0.009 (2)0.026 (2)
O40.071 (4)0.071 (4)0.045 (3)0.003 (3)0.003 (3)0.037 (3)
O50.053 (3)0.062 (3)0.045 (3)0.013 (3)0.004 (2)0.008 (3)
O60.050 (3)0.053 (3)0.050 (3)0.002 (2)0.007 (2)0.004 (3)
O70.087 (4)0.062 (4)0.083 (4)0.023 (3)0.010 (4)0.013 (3)
O80.052 (3)0.061 (4)0.086 (4)0.002 (3)0.013 (3)0.011 (3)
O90.104 (5)0.072 (4)0.093 (5)0.033 (4)0.042 (4)0.027 (4)
C10.038 (4)0.029 (4)0.044 (4)0.011 (3)0.005 (3)0.005 (3)
C20.026 (3)0.032 (3)0.031 (3)0.003 (3)0.003 (3)0.014 (3)
C30.028 (4)0.035 (4)0.034 (4)0.013 (3)0.002 (3)0.008 (3)
C40.037 (4)0.045 (4)0.036 (4)0.007 (3)0.004 (3)0.014 (3)
C50.063 (5)0.042 (4)0.037 (4)0.014 (4)0.005 (4)0.018 (3)
C60.051 (5)0.058 (5)0.051 (5)0.015 (4)0.018 (4)0.018 (4)
C70.033 (4)0.058 (5)0.047 (4)0.003 (3)0.011 (3)0.011 (4)
C80.029 (4)0.034 (4)0.026 (3)0.007 (3)0.005 (3)0.004 (3)
C90.027 (3)0.040 (4)0.025 (3)0.010 (3)0.006 (3)0.007 (3)
C100.030 (4)0.030 (3)0.027 (3)0.007 (3)0.004 (3)0.003 (3)
C110.030 (4)0.024 (3)0.039 (4)0.005 (3)0.007 (3)0.008 (3)
C120.030 (4)0.025 (3)0.036 (4)0.002 (3)0.003 (3)0.008 (3)
C130.037 (4)0.041 (4)0.047 (4)0.001 (3)0.018 (3)0.011 (3)
C140.035 (4)0.043 (4)0.049 (4)0.007 (3)0.002 (3)0.020 (3)
C150.038 (4)0.034 (4)0.039 (4)0.007 (3)0.007 (3)0.014 (3)
C160.033 (4)0.032 (4)0.035 (4)0.005 (3)0.006 (3)0.011 (3)
C170.032 (4)0.043 (4)0.041 (4)0.006 (3)0.003 (3)0.016 (3)
C180.033 (4)0.044 (4)0.033 (4)0.002 (3)0.002 (3)0.017 (3)
C190.031 (4)0.039 (4)0.036 (4)0.005 (3)0.006 (3)0.014 (3)
C200.039 (4)0.035 (4)0.050 (4)0.003 (3)0.013 (3)0.014 (3)
C210.046 (5)0.046 (4)0.057 (5)0.001 (4)0.010 (4)0.025 (4)
C220.070 (6)0.045 (5)0.056 (5)0.006 (4)0.019 (4)0.026 (4)
C230.067 (6)0.046 (5)0.078 (6)0.021 (4)0.011 (5)0.027 (4)
C240.056 (5)0.043 (4)0.065 (5)0.019 (4)0.010 (4)0.017 (4)
C250.043 (4)0.036 (4)0.040 (4)0.005 (3)0.014 (3)0.012 (3)
C260.038 (4)0.036 (4)0.036 (4)0.007 (3)0.006 (3)0.010 (3)
C270.035 (4)0.034 (4)0.031 (3)0.006 (3)0.003 (3)0.011 (3)
C280.033 (4)0.036 (4)0.031 (3)0.005 (3)0.008 (3)0.011 (3)
C290.037 (4)0.038 (4)0.035 (4)0.013 (3)0.003 (3)0.010 (3)
C300.038 (4)0.057 (5)0.037 (4)0.024 (3)0.001 (3)0.012 (3)
C310.035 (4)0.058 (5)0.040 (4)0.003 (4)0.004 (3)0.020 (4)
C320.032 (4)0.040 (4)0.036 (4)0.007 (3)0.004 (3)0.017 (3)
C330.033 (4)0.040 (4)0.037 (4)0.013 (3)0.006 (3)0.015 (3)
C340.031 (4)0.047 (4)0.053 (5)0.009 (3)0.010 (3)0.028 (4)
C370.100 (7)0.059 (6)0.076 (6)0.019 (5)0.022 (5)0.014 (5)
C380.069 (6)0.072 (6)0.059 (5)0.001 (5)0.024 (4)0.027 (4)
C390.053 (6)0.090 (7)0.086 (7)0.003 (5)0.005 (5)0.020 (6)
C400.055 (5)0.074 (6)0.076 (6)0.012 (4)0.016 (4)0.028 (5)
C410.066 (6)0.098 (7)0.082 (7)0.024 (6)0.010 (5)0.008 (6)
C420.098 (8)0.130 (9)0.066 (6)0.037 (7)0.007 (6)0.003 (6)
C430.107 (8)0.066 (6)0.060 (5)0.006 (5)0.037 (5)0.017 (5)
C440.125 (9)0.084 (7)0.059 (6)0.040 (6)0.006 (6)0.017 (5)
Geometric parameters (Å, º) top
Zn1—O31.941 (4)C4—H40.9300
Zn1—N21.976 (5)C5—C61.384 (9)
Zn1—O52.045 (5)C5—H50.9300
Zn1—N42.151 (5)C6—C71.385 (9)
Zn1—S12.736 (2)C6—H60.9300
Zn2—O11.935 (4)C7—C81.386 (8)
Zn2—N71.980 (5)C7—H70.9300
Zn2—O62.066 (5)C8—C91.469 (8)
Zn2—N92.157 (5)C9—C101.454 (8)
Zn2—S22.735 (2)C11—C161.411 (8)
S1—C11.692 (7)C11—C121.412 (8)
S2—C181.675 (7)C12—C131.409 (8)
S3—O51.564 (8)C13—C141.360 (9)
S3—C361.774 (15)C13—H130.9300
S3—C351.783 (14)C14—C151.410 (9)
S3'—O51.463 (14)C14—H140.9300
S3'—C36'1.774 (17)C15—C161.352 (8)
S3'—C35'1.830 (18)C15—C171.490 (9)
S4—O61.514 (5)C16—H160.9300
S4—C381.755 (7)C19—C271.448 (8)
S4—C371.790 (8)C19—C201.470 (9)
S5—O71.477 (6)C20—C211.386 (9)
S5—C401.763 (7)C20—C251.403 (9)
S5—C391.773 (8)C21—C221.390 (10)
S6—O81.506 (6)C21—H210.9300
S6—C421.768 (9)C22—C231.370 (10)
S6—C411.770 (8)C22—H220.9300
S7—O91.474 (6)C23—C241.373 (10)
S7—C441.790 (9)C23—H230.9300
S7—C431.805 (8)C24—C251.393 (9)
S7'—C441.621 (15)C24—H240.9300
S7'—O91.646 (13)C25—C261.461 (9)
S7'—C431.729 (14)C26—C271.454 (9)
N1—C11.308 (8)C28—C331.408 (8)
N1—H1A0.8600C28—C291.414 (8)
N1—H1B0.8600C29—C301.410 (9)
N2—N31.350 (7)C30—C311.349 (9)
N2—C11.371 (8)C30—H300.9300
N3—C21.299 (7)C31—C321.423 (9)
N4—C101.307 (7)C31—H310.9300
N4—C111.380 (7)C32—C331.367 (8)
N5—C91.301 (7)C32—C341.500 (9)
N5—C121.371 (8)C33—H330.9300
N6—C181.310 (7)C37—H37A0.9600
N6—H6A0.8600C37—H37B0.9600
N6—H6B0.8600C37—H37C0.9600
N7—N81.351 (7)C38—H38A0.9600
N7—C181.374 (8)C38—H38B0.9600
N8—C191.312 (8)C38—H38C0.9600
N9—C271.307 (8)C39—H39A0.9600
N9—C281.400 (7)C39—H39B0.9600
N10—C261.305 (8)C39—H39C0.9600
N10—C291.374 (8)C40—H40A0.9600
O1—C171.285 (7)C40—H40B0.9600
O2—C171.223 (7)C40—H40C0.9600
O3—C341.276 (8)C41—H41A0.9600
O4—C341.232 (8)C41—H41B0.9600
C2—C101.471 (8)C41—H41C0.9600
C2—C31.473 (8)C42—H42A0.9600
C3—C81.390 (8)C42—H42B0.9600
C3—C41.392 (8)C42—H42C0.9600
C4—C51.387 (9)
O3—Zn1—N2146.2 (2)N5—C12—C11123.0 (5)
O3—Zn1—O597.4 (2)C13—C12—C11118.2 (6)
N2—Zn1—O5112.9 (2)C14—C13—C12121.3 (6)
O3—Zn1—N4105.88 (19)C14—C13—H13119.4
N2—Zn1—N489.77 (19)C12—C13—H13119.4
O5—Zn1—N489.41 (19)C13—C14—C15120.5 (6)
O3—Zn1—S198.57 (14)C13—C14—H14119.7
N2—Zn1—S163.62 (15)C15—C14—H14119.7
O5—Zn1—S198.18 (14)C16—C15—C14119.2 (6)
N4—Zn1—S1153.25 (14)C16—C15—C17121.5 (6)
O1—Zn2—N7146.2 (2)C14—C15—C17119.2 (6)
O1—Zn2—O6100.3 (2)C15—C16—C11121.7 (6)
N7—Zn2—O6110.7 (2)C15—C16—H16119.1
O1—Zn2—N9103.75 (19)C11—C16—H16119.1
N7—Zn2—N989.0 (2)O2—C17—O1124.7 (6)
O6—Zn2—N991.7 (2)O2—C17—C15119.7 (6)
O1—Zn2—S2101.09 (14)O1—C17—C15115.5 (6)
N7—Zn2—S263.33 (15)N6—C18—N7120.7 (6)
O6—Zn2—S295.92 (14)N6—C18—S2125.6 (5)
N9—Zn2—S2152.26 (14)N7—C18—S2113.7 (5)
C1—S1—Zn172.9 (2)N8—C19—C27131.2 (6)
C18—S2—Zn273.2 (2)N8—C19—C20122.0 (6)
O5—S3—C36103.2 (7)C27—C19—C20106.8 (6)
O5—S3—C35103.6 (8)C21—C20—C25120.3 (6)
C36—S3—C3594.1 (9)C21—C20—C19130.0 (7)
O5—S3'—C36'108.5 (13)C25—C20—C19109.7 (6)
O5—S3'—C35'100.7 (15)C20—C21—C22118.3 (7)
C36'—S3'—C35'90.4 (16)C20—C21—H21120.9
O6—S4—C38107.6 (4)C22—C21—H21120.9
O6—S4—C37102.3 (4)C23—C22—C21120.9 (7)
C38—S4—C3798.1 (4)C23—C22—H22119.6
O7—S5—C40106.8 (4)C21—C22—H22119.6
O7—S5—C39106.4 (4)C22—C23—C24122.1 (7)
C40—S5—C3998.9 (4)C22—C23—H23118.9
O8—S6—C42107.0 (4)C24—C23—H23118.9
O8—S6—C41107.7 (4)C23—C24—C25117.7 (7)
C42—S6—C4196.8 (5)C23—C24—H24121.1
O9—S7—C44106.2 (4)C25—C24—H24121.1
O9—S7—C43109.0 (5)C24—C25—C20120.8 (6)
C44—S7—C4397.8 (4)C24—C25—C26131.6 (7)
C44—S7'—O9106.4 (8)C20—C25—C26107.6 (6)
C44—S7'—C43107.9 (8)N10—C26—C27123.7 (6)
O9—S7'—C43104.9 (7)N10—C26—C25128.0 (6)
C1—N1—H1A120.0C27—C26—C25108.3 (5)
C1—N1—H1B120.0N9—C27—C19129.7 (6)
H1A—N1—H1B120.0N9—C27—C26122.7 (6)
N3—N2—C1114.5 (5)C19—C27—C26107.6 (5)
N3—N2—Zn1135.5 (4)N9—C28—C33118.7 (6)
C1—N2—Zn1109.9 (4)N9—C28—C29121.7 (5)
C2—N3—N2115.7 (5)C33—C28—C29119.6 (6)
C10—N4—C11114.8 (5)N10—C29—C30119.2 (6)
C10—N4—Zn1117.5 (4)N10—C29—C28122.3 (6)
C11—N4—Zn1127.5 (4)C30—C29—C28118.4 (6)
C9—N5—C12114.2 (5)C31—C30—C29120.9 (6)
C18—N6—H6A120.0C31—C30—H30119.6
C18—N6—H6B120.0C29—C30—H30119.6
H6A—N6—H6B120.0C30—C31—C32121.3 (6)
N8—N7—C18114.7 (5)C30—C31—H31119.4
N8—N7—Zn2135.4 (4)C32—C31—H31119.4
C18—N7—Zn2109.7 (4)C33—C32—C31118.7 (6)
C19—N8—N7116.2 (5)C33—C32—C34120.0 (6)
C27—N9—C28114.7 (5)C31—C32—C34120.9 (6)
C27—N9—Zn2118.3 (4)C32—C33—C28121.0 (6)
C28—N9—Zn2127.0 (4)C32—C33—H33119.5
C26—N10—C29114.8 (6)C28—C33—H33119.5
C17—O1—Zn2122.3 (4)O4—C34—O3125.6 (7)
C34—O3—Zn1116.9 (4)O4—C34—C32118.7 (7)
S3'—O5—S327.5 (5)O3—C34—C32115.7 (6)
S3'—O5—Zn1131.5 (7)S4—C37—H37A109.5
S3—O5—Zn1119.7 (4)S4—C37—H37B109.5
S4—O6—Zn2125.0 (3)H37A—C37—H37B109.5
S7—O9—S7'50.1 (5)S4—C37—H37C109.5
N1—C1—N2121.7 (6)H37A—C37—H37C109.5
N1—C1—S1124.8 (5)H37B—C37—H37C109.5
N2—C1—S1113.4 (5)S4—C38—H38A109.5
N3—C2—C10131.7 (5)S4—C38—H38B109.5
N3—C2—C3122.2 (5)H38A—C38—H38B109.5
C10—C2—C3106.0 (5)S4—C38—H38C109.5
C8—C3—C4120.2 (6)H38A—C38—H38C109.5
C8—C3—C2110.3 (5)H38B—C38—H38C109.5
C4—C3—C2129.4 (6)S5—C39—H39A109.5
C5—C4—C3118.1 (6)S5—C39—H39B109.5
C5—C4—H4120.9H39A—C39—H39B109.5
C3—C4—H4120.9S5—C39—H39C109.5
C6—C5—C4121.7 (6)H39A—C39—H39C109.5
C6—C5—H5119.2H39B—C39—H39C109.5
C4—C5—H5119.2S5—C40—H40A109.5
C5—C6—C7120.3 (7)S5—C40—H40B109.5
C5—C6—H6119.9H40A—C40—H40B109.5
C7—C6—H6119.9S5—C40—H40C109.5
C6—C7—C8118.5 (6)H40A—C40—H40C109.5
C6—C7—H7120.7H40B—C40—H40C109.5
C8—C7—H7120.7S6—C41—H41A109.5
C7—C8—C3121.3 (6)S6—C41—H41B109.5
C7—C8—C9130.5 (6)H41A—C41—H41B109.5
C3—C8—C9108.2 (5)S6—C41—H41C109.5
N5—C9—C10123.7 (5)H41A—C41—H41C109.5
N5—C9—C8128.3 (5)H41B—C41—H41C109.5
C10—C9—C8107.9 (5)S6—C42—H42A109.5
N4—C10—C9122.8 (5)S6—C42—H42B109.5
N4—C10—C2129.7 (5)H42A—C42—H42B109.5
C9—C10—C2107.6 (5)S6—C42—H42C109.5
N4—C11—C16119.3 (5)H42A—C42—H42C109.5
N4—C11—C12121.7 (5)H42B—C42—H42C109.5
C16—C11—C12119.0 (5)S7'—C43—S744.2 (4)
N5—C12—C13118.8 (6)S7'—C44—S745.6 (5)
O3—Zn1—S1—C1147.8 (3)C11—N4—C10—C2178.5 (6)
N2—Zn1—S1—C11.8 (3)Zn1—N4—C10—C24.1 (8)
O5—Zn1—S1—C1113.4 (3)N5—C9—C10—N40.3 (9)
N4—Zn1—S1—C18.2 (4)C8—C9—C10—N4177.9 (5)
O1—Zn2—S2—C18147.6 (3)N5—C9—C10—C2178.7 (6)
N7—Zn2—S2—C180.4 (3)C8—C9—C10—C21.1 (6)
O6—Zn2—S2—C18110.6 (3)N3—C2—C10—N42.0 (11)
N9—Zn2—S2—C185.6 (4)C3—C2—C10—N4178.7 (6)
O3—Zn1—N2—N3122.2 (6)N3—C2—C10—C9176.9 (6)
O5—Zn1—N2—N386.2 (6)C3—C2—C10—C90.2 (6)
N4—Zn1—N2—N33.1 (6)C10—N4—C11—C16178.1 (5)
S1—Zn1—N2—N3174.0 (6)Zn1—N4—C11—C164.4 (8)
O3—Zn1—N2—C161.5 (6)C10—N4—C11—C120.8 (8)
O5—Zn1—N2—C190.2 (4)Zn1—N4—C11—C12174.5 (4)
N4—Zn1—N2—C1179.5 (4)C9—N5—C12—C13179.3 (6)
S1—Zn1—N2—C12.3 (3)C9—N5—C12—C111.1 (9)
C1—N2—N3—C2178.0 (5)N4—C11—C12—N51.2 (9)
Zn1—N2—N3—C21.8 (8)C16—C11—C12—N5177.6 (6)
O3—Zn1—N4—C10153.3 (4)N4—C11—C12—C13179.2 (5)
N2—Zn1—N4—C103.7 (4)C16—C11—C12—C132.0 (9)
O5—Zn1—N4—C10109.2 (4)N5—C12—C13—C14179.3 (6)
S1—Zn1—N4—C102.0 (7)C11—C12—C13—C140.3 (10)
O3—Zn1—N4—C1133.1 (5)C12—C13—C14—C150.4 (10)
N2—Zn1—N4—C11177.3 (5)C13—C14—C15—C160.7 (10)
O5—Zn1—N4—C1164.4 (5)C13—C14—C15—C17176.7 (6)
S1—Zn1—N4—C11171.6 (4)C14—C15—C16—C112.5 (10)
O1—Zn2—N7—N8116.0 (6)C17—C15—C16—C11174.8 (6)
O6—Zn2—N7—N889.1 (6)N4—C11—C16—C15178.0 (6)
N9—Zn2—N7—N82.3 (6)C12—C11—C16—C153.1 (9)
S2—Zn2—N7—N8175.3 (6)Zn2—O1—C17—O23.9 (9)
O1—Zn2—N7—C1868.2 (5)Zn2—O1—C17—C15173.2 (4)
O6—Zn2—N7—C1886.8 (4)C16—C15—C17—O2157.7 (6)
N9—Zn2—N7—C18178.2 (4)C14—C15—C17—O219.5 (10)
S2—Zn2—N7—C180.5 (3)C16—C15—C17—O119.5 (9)
C18—N7—N8—C19178.3 (5)C14—C15—C17—O1163.2 (6)
Zn2—N7—N8—C192.6 (8)N8—N7—C18—N64.4 (8)
O1—Zn2—N9—C27147.9 (4)Zn2—N7—C18—N6178.8 (5)
N7—Zn2—N9—C270.5 (5)N8—N7—C18—S2175.9 (4)
O6—Zn2—N9—C27111.1 (5)Zn2—N7—C18—S20.9 (5)
S2—Zn2—N9—C275.1 (7)Zn2—S2—C18—N6179.0 (6)
O1—Zn2—N9—C2832.9 (5)Zn2—S2—C18—N70.6 (4)
N7—Zn2—N9—C28178.7 (5)N7—N8—C19—C270.4 (10)
O6—Zn2—N9—C2868.1 (5)N7—N8—C19—C20179.4 (5)
S2—Zn2—N9—C28174.1 (3)N8—C19—C20—C212.5 (11)
N7—Zn2—O1—C1723.4 (7)C27—C19—C20—C21177.4 (7)
O6—Zn2—O1—C17179.6 (5)N8—C19—C20—C25179.6 (6)
N9—Zn2—O1—C1786.1 (5)C27—C19—C20—C250.2 (7)
S2—Zn2—O1—C1781.4 (5)C25—C20—C21—C220.3 (10)
N2—Zn1—O3—C3433.2 (6)C19—C20—C21—C22176.6 (7)
O5—Zn1—O3—C34173.0 (4)C20—C21—C22—C230.3 (11)
N4—Zn1—O3—C3481.5 (5)C21—C22—C23—C241.3 (12)
S1—Zn1—O3—C3487.5 (4)C22—C23—C24—C251.5 (12)
C36'—S3'—O5—S394 (2)C23—C24—C25—C200.8 (10)
C35'—S3'—O5—S30.2 (16)C23—C24—C25—C26176.7 (7)
C36'—S3'—O5—Zn1168.6 (10)C21—C20—C25—C240.1 (10)
C35'—S3'—O5—Zn174.5 (16)C19—C20—C25—C24177.4 (6)
C36—S3—O5—S3'26.0 (16)C21—C20—C25—C26178.1 (6)
C35—S3—O5—S3'124 (2)C19—C20—C25—C260.6 (7)
C36—S3—O5—Zn1149.9 (7)C29—N10—C26—C273.5 (9)
C35—S3—O5—Zn1112.4 (7)C29—N10—C26—C25176.1 (6)
O3—Zn1—O5—S3'66.1 (7)C24—C25—C26—N102.7 (12)
N2—Zn1—O5—S3'98.5 (7)C20—C25—C26—N10179.6 (6)
N4—Zn1—O5—S3'172.0 (7)C24—C25—C26—C27176.9 (7)
S1—Zn1—O5—S3'33.7 (7)C20—C25—C26—C270.8 (7)
O3—Zn1—O5—S335.3 (5)C28—N9—C27—C19176.5 (6)
N2—Zn1—O5—S3129.3 (5)Zn2—N9—C27—C192.8 (9)
N4—Zn1—O5—S3141.2 (5)C28—N9—C27—C260.1 (9)
S1—Zn1—O5—S364.5 (5)Zn2—N9—C27—C26179.2 (4)
C38—S4—O6—Zn273.4 (5)N8—C19—C27—N93.4 (12)
C37—S4—O6—Zn2176.2 (4)C20—C19—C27—N9176.5 (6)
O1—Zn2—O6—S4103.5 (4)N8—C19—C27—C26179.9 (6)
N7—Zn2—O6—S462.6 (4)C20—C19—C27—C260.3 (7)
N9—Zn2—O6—S4152.2 (4)N10—C26—C27—N93.3 (10)
S2—Zn2—O6—S41.1 (4)C25—C26—C27—N9176.4 (6)
C44—S7—O9—S7'50.5 (7)N10—C26—C27—C19179.7 (6)
C43—S7—O9—S7'54.0 (6)C25—C26—C27—C190.7 (7)
C44—S7'—O9—S758.5 (7)C27—N9—C28—C33177.8 (5)
C43—S7'—O9—S755.7 (6)Zn2—N9—C28—C331.4 (8)
N3—N2—C1—N17.1 (8)C27—N9—C28—C292.2 (8)
Zn1—N2—C1—N1175.7 (5)Zn2—N9—C28—C29178.5 (4)
N3—N2—C1—S1173.5 (4)C26—N10—C29—C30178.6 (6)
Zn1—N2—C1—S13.7 (6)C26—N10—C29—C281.1 (9)
Zn1—S1—C1—N1176.7 (6)N9—C28—C29—N101.9 (9)
Zn1—S1—C1—N22.6 (4)C33—C28—C29—N10178.1 (6)
N2—N3—C2—C100.2 (9)N9—C28—C29—C30178.5 (6)
N2—N3—C2—C3176.5 (5)C33—C28—C29—C301.5 (9)
N3—C2—C3—C8176.3 (6)N10—C29—C30—C31179.9 (6)
C10—C2—C3—C80.8 (7)C28—C29—C30—C310.3 (10)
N3—C2—C3—C40.9 (10)C29—C30—C31—C321.8 (10)
C10—C2—C3—C4178.0 (6)C30—C31—C32—C331.5 (10)
C8—C3—C4—C50.1 (9)C30—C31—C32—C34174.6 (6)
C2—C3—C4—C5176.8 (6)C31—C32—C33—C280.3 (9)
C3—C4—C5—C60.5 (10)C34—C32—C33—C28172.8 (6)
C4—C5—C6—C70.7 (11)N9—C28—C33—C32178.2 (5)
C5—C6—C7—C80.2 (10)C29—C28—C33—C321.8 (9)
C6—C7—C8—C30.3 (10)Zn1—O3—C34—O46.8 (9)
C6—C7—C8—C9178.4 (6)Zn1—O3—C34—C32170.7 (4)
C4—C3—C8—C70.5 (9)C33—C32—C34—O4156.4 (6)
C2—C3—C8—C7176.9 (6)C31—C32—C34—O416.6 (9)
C4—C3—C8—C9179.0 (5)C33—C32—C34—O321.3 (9)
C2—C3—C8—C91.5 (7)C31—C32—C34—O3165.7 (6)
C12—N5—C9—C100.6 (9)C44—S7'—C43—S765.2 (7)
C12—N5—C9—C8177.7 (6)O9—S7'—C43—S748.0 (5)
C7—C8—C9—N50.8 (11)O9—S7—C43—S7'58.0 (7)
C3—C8—C9—N5179.1 (6)C44—S7—C43—S7'52.2 (7)
C7—C8—C9—C10176.6 (6)O9—S7'—C44—S749.0 (5)
C3—C8—C9—C101.7 (7)C43—S7'—C44—S763.2 (6)
C11—N4—C10—C90.3 (8)O9—S7—C44—S7'57.3 (7)
Zn1—N4—C10—C9174.7 (4)C43—S7—C44—S7'55.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.102.922 (7)161
N1—H1B···O8i0.862.102.950 (7)168
N6—H6A···O2ii0.862.102.912 (7)157
N6—H6B···O9iii0.862.022.863 (8)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+2; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn2(C17H9N5O2S)2(C2H6OS)2]·3C2H6OS
Mr1216.08
Crystal system, space groupTriclinicP1
Temperature (K)293
a, b, c (Å)11.716 (3), 15.063 (4), 15.837 (4)
α, β, γ (°)76.490 (5), 80.577 (5), 79.533 (5)
V3)2650.6 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.14 × 0.13 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.856, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
14815, 9680, 5453
Rint0.046
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.188, 0.97
No. of reflections9680
No. of parameters666
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.38

Computer programs: APEX2 (Bruker, Year?), APEX 2, SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), Please provide missing details.

Selected geometric parameters (Å, º) top
Zn1—O31.941 (4)Zn2—O11.935 (4)
Zn1—N21.976 (5)Zn2—N71.980 (5)
Zn1—O52.045 (5)Zn2—O62.066 (5)
Zn1—N42.151 (5)Zn2—N92.157 (5)
Zn1—S12.736 (2)Zn2—S22.735 (2)
O3—Zn1—N2146.2 (2)O1—Zn2—N7146.2 (2)
O3—Zn1—O597.4 (2)O1—Zn2—O6100.3 (2)
N2—Zn1—O5112.9 (2)N7—Zn2—O6110.7 (2)
O3—Zn1—N4105.88 (19)O1—Zn2—N9103.75 (19)
N2—Zn1—N489.77 (19)N7—Zn2—N989.0 (2)
O5—Zn1—N489.41 (19)O6—Zn2—N991.7 (2)
O3—Zn1—S198.57 (14)O1—Zn2—S2101.09 (14)
N2—Zn1—S163.62 (15)N7—Zn2—S263.33 (15)
O5—Zn1—S198.18 (14)O6—Zn2—S295.92 (14)
N4—Zn1—S1153.25 (14)N9—Zn2—S2152.26 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.102.922 (7)160.9
N1—H1B···O8i0.862.102.950 (7)168.1
N6—H6A···O2ii0.862.102.912 (7)156.7
N6—H6B···O9iii0.862.022.863 (8)166.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+2; (iii) x, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds