Download citation
Download citation
link to html
Crystals of the title compounds were grown solvothermally in an ethanol-water solvent mixture using ruthenium triiodide, 2,2'-bipyridine and bismuth triiodide as starting materials. Tetra­kis[2-(2-pyridyl)pyridinium] tetra-[mu]3-iodo-hexa-[mu]2-iodo-dodeca­iodo­hexa­bismuthate, (C10H9N2)4[Bi6I22], crystallizes in the triclinic space group P\overline{1} and is the major reaction product. The asymmetric unit of this compound consists of half a centrosymmetric [Bi6I22]4- anion and two independent 2,2'-bipyridinium cations. The minor product of the reaction is bis­[tris­(2,2'-bipyridine)ruthenium(II)] di-[mu]4-iodo-octa-[mu]2-iodo-dodeca­iodo­hexa­bismuthate, [Ru(C10H8N2)3]2[Bi6I22], which also crystallizes in the triclinic space group P\overline{1}. For this compound, the asymmetric unit consists of one full [Ru(2,2'-bipyridine)3]2+ cation and half a centrosymmetric [Bi6I22]4- anion. Although both compounds contain a centrosymmetric [Bi6I22]4- anion, the polyhedral arrangement of the distorted BiI6 octa­hedra in the two compounds is quite different, and the anion of the latter compound has not previously been observed in iodo­bismuthate chemistry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106025972/sq3025sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106025972/sq3025Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106025972/sq3025IIsup3.hkl
Contains datablock II

CCDC references: 609281; 621300

Comment top

The chemistry of main group halometallate materials has been of interest to chemists and materials scientists for some time, due to their promising physical characteristics and their interesting structural diversity. With respect to the physical properties, behaviors such as semiconductivity, luminescence and second-order non-linear optical activity have been observed in this family of materials (Papavassiliou et al., 1995; Zhu et al., 2003; Mitzi & Brock, 2001; Mousdis et al., 1998). The main group halometallate materials display extensive structural diversity, as the anionic inorganic component ranges from discrete clusters (zero-dimensional) to polymeric structures (one-, two- or three-dimensional) depending on the main group metal and on the specific synthetic conditions employed. To date, main group halometallate materials based on CuI (Yu et al., 2003), SnII (Xu & Mitzi, 2003), SbIII (Mousdis et al., 1998), TeIV (Ryan & Xu, 2004), PbII (Zhu et al., 2003) and BiIII (Mousdis et al., 1998; Eickmeier et al., 1999; Lindsjo et al., 2005) have been synthesized and structurally characterized.

We have been interested in the synthesis of new main group halometallate materials containing BiIII and have been successful in the synthesis of many new iodobismuthate(III) materials having either organic or inorganic cations for charge balance (Goforth et al., 2004; Goforth, Gardinier et al., 2005; Goforth, Peterson et al., 2005). Many halobismuthate compounds have been synthesized by us and others, and most of these compounds contain either discrete anions (of varying sizes) or one-dimensional polymeric anions. In either case, the anion is generally composed of connected BiI6 polyhedra, which are corner-, edge- or face-sharing. The number of connected polyhedra, and the mode of connectivity and the spatial arrangement of these polyhedra, may vary within a given metal halide system, e.g. iodobismuthates, such that one can envision a large number of possible halometallate anion structures. In fact, certain synthetic conditions, such as cation size and geometry, solvent system and reagent stoichiometry, may be adjusted to affect the identity of the iodobismuthate anion (Eickmeier et al., 1999; Goforth, Peterson et al., 2005; Krautscheid, 1994).

While the vast majority of iodobismuthate materials known to date have contained an organic cation for charge balance, our group has recently demonstrated that a d-metal coordination cation is a viable charge-balancing species for iodobismuthate anions and that the use of such cations may lead to new iodobismuthate anions (Goforth, Gardinier et al., 2005; Goforth, 2005). Here, we report the synthesis and single-crystal X-ray structures of two co-crystallizing iodobismuthate compounds, one of which has a coordination cation for charge balance while the other has an organic counter-cation. Both compounds contain [Bi6I22]4- anions. However, the polyhedral arrangements of the six BiI6 octahedra in the two compounds differ.

The title compounds, [H(2,2'-bipy)]4[Bi6I22] {[H(2,2'-bipy)]+ is protonated 2,2'-bipyridine}, (I), and [Ru(2,2'-bipy)3]2[Bi6I22], (II), were synthesized solvothermally from RuI3, 2,2'-bipyridyl and BiI3 in aqueous ethanol (50% v/v) using a 1:3:3 molar ratio. Crystals of (I) were isolated as the major phase, and crystals of both (I) and (II) were characterized by single-crystal X-ray diffraction. The structure of (II) reveals that the compound contains a novel [Bi6I22]4- anion that has not previously been reported in iodobismuthate chemistry, and this anion is discussed in detail following the structure description of (I). Relevant bond distances and angles for the two compounds are presented in Tables 1 and 2. [Please clarify, as no values are flagged in the CIF for publication. Do you wish to add tables?]

Compund (I) crystallizes in the triclinic space group P1 and contains two crystallographically independent 2,2'-bipyridinium cations and a [Bi6I22]4- iodobismuthate anion in its asymmetric unit. For the structure solution, the 2,2'-bipyridinium cations were refined isotropically, due to disorder. Anisotropic refinement of the cations resulted in unreasonable ellipsoids for these atoms, most probably due to unresolved disorder in the form of the N atoms oriented in the opposite direction. N-atom positions were assigned based on the magnitude of the Uiso parameter, but are uncertain due to the disorder and probably represent only the major orientation. The position of the H atoms was not calculated or located. However, the H atom is necessary to maintain charge neutrality for the compound. The atoms of the [Bi6I22]4- anion were refined anisotropically. The centrosymmetric anion consists of six BiI6 octahedra, which are connected such that two sets of three trans edge-sharing octahedra share five cis edges (Fig. 1). The arrangement of the six BiI6 octahedra in (I) is a known arrangement of the [Bi6I22]4- anion. For example, the [Bi6I22]4- anions of [(THF)6Na]4[Bi6I22] (THF is tetrahydrofuran; Krautscheid, 1994), [EtMe2PhN]4[Bi6I22] (Eickmeier et al., 1999) and [H2TMDP]2[Bi6I22] {H2TMDP]2+ is 1,3-bis(4-piperidinium)propane; Goforth, Peterson et al., 2005} have the same polyhedral connectivity as the anion of (I), and the bond distances and angles of the anion of (I) are comparable with those determined for these compounds. The average terminal Bi—I distance in (I) is 2.8793 Å, the average Bi—µ2-I distance is 3.1491 Å and the average Bi—µ3-I distance is 3.3177 Å. The cis I—Bi—I angles in (I) range from 82.350 (13) to 100.270 (17)° and the trans I—Bi—I angles range from 163.460 (16) to 176.741 (16)°.

When the structure of compound (I) is viewed along [001] (Fig. 2), stacks of [H2,2'-bipy]+ cations and rows of [Bi6I22]4- anions are observed. Weak I···I bonding interactions between [Bi6I22]4- anions of neighboring rows are also observed [I3···I9i = 3.739 (1) Å and I8···I8ii = 3.732 (1) Å; symmetry codes: (i) x - 1, y + 1, z; (ii) -x, 1 - y, 1 - z; van der Waals radius of I = 1.98 Å, I···I = 3.96 Å; Bondi, 1964], and when these interactions are taken into account, the structure may be viewed as an array of weakly bonded inorganic chains, with organic cations situated above and below the chains.

Compound (II) crystallizes in the triclinic space group P1 and contains the well known tris-chelate cation [Ru(2,2'-bipy)3]2+ and a novel arrangement of the [Bi6I22]4- anion (Fig. 3). The bond distances and angles of the cation are normal [2.044 (6)–2.067 (6) Å; Biner et al., 1992]. Due to the crystallographic inversion symmetry in the crystal, both the Λ- and Δ- enantiomers of the cation are present in the structure.

The centrosymmetric [Bi6I22]4- anion of (II) consists of a central Bi4I16 core (containing atoms Bi1 and Bi2), with two BiI3 units (containing atom Bi3) connected to the core by three relatively long Bi—I bonds [3.3268 (6), 3.4311 (6) and 3.5484 (5) Å; Fig. 3). Alternatively, the BiI3 units can be considered as part of very distorted Bi(3)I6 octahedra, each of which shares two cis edges with the Bi4I16 cluster core. The bond lengths and angles of the Bi4I16 core are within the normal ranges and are comparable with those found in previously reported [Bi4I16]4- anions (Goforth, Gardinier et al., 2005). The average terminal Bi—I distance is 2.897 Å and the average Bi—µ2-I distance is 3.166 Å.

Considering the pendant BiI3 units of the anion, an unusual bonding feature of the anion of compound (II) is the presence of an essentially µ4-bridging iodide ligand. However, the average Bi—µ4-I distance of 3.397 Å is within the reported ranges for Bi—µ3-I distances in related compounds (Feldmann, 2003), further supporting the description of the anion as a Bi4I16 core with two pendant BiI3 groups. In fact, many of the larger known discrete iodobismuthate anions may be considered to be based on Bi4I16 cores, either joined with one or more pendant BiI3 units {as in [Bi5I19]4- (Krautscheid, 1994), or the typical arrangement of [Bi6I22]4- (Eickmeier et al., 1999; Pohl et al., 1994; Goforth, Peterson et al., 2005; Krautscheid et al., 1994)}, or connected to another such core through a single edge {as in [Bi8I30]6- (Feldmann, 2003)}. The cis I—Bi—I angles of the anion of (II) range from 78.39 (1) to 103.69 (2)° and the trans I—Bi—I angles from 159.65 (2) to 177.02 (2)°, where the largest deviations from the ideal octahedral angles are observed in the Bi3 polyhedron.

A [100] view of the crystal packing in compound (II) is shown in Fig. 4, where it can be seen that the discrete anions are arranged in layers which are interleaved by layers of the cations. As in compound (I), the discrete anions in (II) are close enough to one another in space that certain I atoms of neighboring anions are closer than the sum of their van der Waals radii (see above), thus leading to the formation of very weak I···I bonding interactions [I10···I3i = 3.834 (1) Å and I11···I7ii = 3.957 (1) Å; symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, 1 - y, z - 1]. When the I···I interactions are taken into consideration, the anionic component of the structure may be viewed as an array of weakly bonded two-dimensional sheets, which lie in the ac plane (Fig. 5). These pseudo-two-dimenional sheets may have an interesting consequence in terms of dimensionality-dependent optical properties, i.e. quantum confinement behavior, in that they serve to extend the dimensionality of the discrete anionic component (Ryan & Xu, 2004). Experiments aimed at isolating the phase-pure compound for optical measurements are in progress.

While it is reasonable to believe that compounds (I) and (II) contain anions of different polyhedral arrangements because they crystallize with different cations, it is also of interest to note that we have prepared another iodobismuthate compound, [Ru(2,2'-bipy)3]2[Bi4I16] (Goforth, Gardinier et al., 2005), which contains the same [Ru(2,2'-bipy)3]2+ cation as compound (II). However, [Ru(2,2'-bipy)3]2[Bi4I16] was synthesized from [Ru(2,2'-bipy)3]I2 tetrahydrate and BiI3, rather than from RuI3, BiI3, and 2,2'-bipyridine. Thus, it may be concluded that several reaction conditions, including choice of starting materials and nature of the counter-cation, simultaneously affect the identity of the iodobismuthate anion formed. The anion of [Ru(2,2'-bipy)3]2[Bi4I16] is the same as the Bi4I16 core in the [Bi6I22]4- anion of compound (II).

Experimental top

BiI3 (175 mg, 0.3 mmol; Alfa Aesar, 99.999%), 2,2'-bipyridine (54 mg, 0.3 mmol; Acros, 99+%) and RuI3 (48 mg, 0.1 mmol; Aldrich, reagent grade) were placed in a 15 ml glass pressure vessel (Ace glass) and covered with aqueous ethanol (10 ml, 50% v/v). The reaction vessel was subsequently sealed with a threaded Teflon plug (with a back seal FETFE O-ring; Ace glass) and heated at rate of 0.1 K min-1 to 433 K, where the temperature was held for 5 d. At the end of this period, the vessel was cooled at a rate of 0.1 K min-1 to 353 K and this temperature was maintained for 6 h, afer which the reaction vessel was cooled to room temperature at a rate of 0.1 K min-1. Red–orange blocks of (I), red–orange prisms of (II) and red–orange polycrystalline material were isolated from the reaction. Suitable red–orange crystals were selected for the structure determinations of (I) and (II).

Refinement top

For compound (I), all atoms of the anion were refined with anisotropic displacement parameters. H atoms bonded to C atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). No N-bound H atoms were located or calculated. The highest residual electron-density map peak is located 0.57 Å from C13 and the lowest hole is located 2.88 Å from I5.

For compound (II), all non-H atoms of the structure were refined with anisotropic displacement parameters. H atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron-density map peak is located 0.93 Å from Bi3 and the lowest hole is located 0.54 Å from I4.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A plot of the [Bi6I22]4- anion of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The cation was refined isotropically and is not shown.
[Figure 2] Fig. 2. An [001] view of the crystal packing in (I). I···I interactions less than or equal to the sum of the van der Waals radii are indicated as two-tone bonds. Bi atoms are shown as light-grey spheres, I atoms as large black spheres, C atoms as dark-grey spheres and N atoms as small black spheres. H atoms are not shown.
[Figure 3] Fig. 3. A plot of the components of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. In order to assist the distinction of the Bi4I16 cluster core from the pendant BiI3 units, two of the three long bonds are drawn as dashed lines. The third, Bi3—I1, is drawn as a solid line.
[Figure 4] Fig. 4. A [100] view of the crystal packing in (II). Bi polyhedra are shown in grey, I atoms as small black spheres and [Ru(2,2'-bipy)3]2+ cations as large black spheres.
[Figure 5] Fig. 5. An [010] view of a single pseudo-two-dimensional anionic layer in (II). I···I interactions less than or equal to the sum of the van der Waals radii are indicated as two-tone bonds. Bi atoms are shown as light-grey spheres and I atoms as black spheres.
(I) Tetrakis[2-(2-pyridyl)pyridinium] tetra-µ3-iodo-hexa-µ2-iodo-dodecaiodohexabismuthate top
Crystal data top
(C10H9N2)4[Bi6I22]Z = 1
Mr = 4674.45F(000) = 1996
TriclinicP1Dx = 3.748 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3334 (6) ÅCell parameters from 8486 reflections
b = 12.9913 (7) Åθ = 2.3–27.7°
c = 15.7999 (9) ŵ = 20.93 mm1
α = 78.778 (1)°T = 150 K
β = 79.520 (1)°Block, orange
γ = 66.023 (1)°0.12 × 0.11 × 0.08 mm
V = 2071.2 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
9709 independent reflections
Radiation source: fine-focus sealed tube8250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.501, Tmax = 1.000k = 1716
27864 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0369P)2 + 1.7243P]
where P = (Fo2 + 2Fc2)/3
9709 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 1.83 e Å3
0 restraintsΔρmin = 2.90 e Å3
Crystal data top
(C10H9N2)4[Bi6I22]γ = 66.023 (1)°
Mr = 4674.45V = 2071.2 (2) Å3
TriclinicP1Z = 1
a = 11.3334 (6) ÅMo Kα radiation
b = 12.9913 (7) ŵ = 20.93 mm1
c = 15.7999 (9) ÅT = 150 K
α = 78.778 (1)°0.12 × 0.11 × 0.08 mm
β = 79.520 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
9709 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
8250 reflections with I > 2σ(I)
Tmin = 0.501, Tmax = 1.000Rint = 0.039
27864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 1.83 e Å3
9709 reflectionsΔρmin = 2.90 e Å3
223 parameters
Special details top

Experimental. Crystal red at room temperature, orange at 150 K.

Geometry. I3 I9 3.7390 (7) 1_465 ? I8 I8 3.7317 (10) 2_566 ?

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Ellipsoids of 2,2'-bipy atoms strongly elongated, indicating disorder of these species. Disorder unresolved and these atoms refined isotropically. Due to the disorder the assignment of N atom positions also uncertain. No N-bound proton located or calculated. Owing to these difficulties, only the general location of the 2,2'-bipy groups is reliable.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.19109 (3)0.17040 (2)0.190490 (18)0.01939 (7)
Bi20.62188 (3)0.06638 (2)0.244952 (17)0.01877 (7)
Bi30.28086 (2)0.11827 (2)0.473134 (17)0.01844 (7)
I10.28566 (6)0.25786 (5)0.02151 (3)0.03366 (13)
I20.01213 (5)0.09132 (4)0.14214 (3)0.02739 (12)
I30.00622 (5)0.39492 (4)0.22357 (4)0.03144 (13)
I40.73211 (5)0.01627 (4)0.08179 (3)0.02918 (12)
I50.41292 (5)0.08997 (4)0.17011 (4)0.02722 (12)
I60.41409 (4)0.19590 (4)0.28983 (3)0.02060 (10)
I70.09823 (5)0.06735 (4)0.39344 (3)0.02522 (11)
I80.10872 (5)0.34867 (4)0.49082 (4)0.03088 (12)
I90.79429 (5)0.30062 (4)0.24246 (3)0.02700 (12)
I100.49434 (4)0.14591 (4)0.44488 (3)0.02090 (10)
I110.18747 (5)0.02127 (4)0.64927 (3)0.02305 (11)
C10.1220 (12)0.5950 (10)0.0593 (8)0.068 (3)*
H10.07800.55230.04640.082*
C20.0639 (11)0.7007 (9)0.0590 (7)0.057 (3)*
H20.02380.73560.04650.069*
C30.1188 (10)0.7637 (9)0.0750 (7)0.051 (3)*
H30.07120.84310.07480.061*
C40.2607 (10)0.7101 (9)0.0942 (7)0.051 (3)*
H40.30530.75370.10470.061*
C50.3173 (8)0.5967 (7)0.0952 (5)0.0280 (17)*
C60.4523 (8)0.5254 (7)0.1134 (5)0.0279 (17)*
C70.5290 (8)0.5714 (7)0.1336 (5)0.0287 (17)*
H70.49790.65100.13470.034*
C80.6522 (8)0.5024 (7)0.1526 (6)0.0335 (19)*
H80.70810.53310.16680.040*
C90.6937 (9)0.3858 (8)0.1508 (6)0.038 (2)*
H90.77810.33540.16470.045*
C100.6111 (9)0.3459 (8)0.1287 (6)0.039 (2)*
H100.64050.26670.12640.047*
C110.7215 (12)0.4664 (10)0.4173 (8)0.064 (3)*
H110.77820.49560.43230.076*
C120.7590 (14)0.3534 (12)0.4160 (9)0.083 (4)*
H120.84340.30350.43010.100*
C130.6861 (15)0.3128 (14)0.3969 (10)0.092 (5)*
H130.71670.23290.39740.110*
C140.5621 (10)0.3803 (8)0.3748 (7)0.046 (2)*
H140.50940.34710.35960.055*
C150.5180 (8)0.4915 (7)0.3753 (6)0.0349 (19)*
C160.3853 (8)0.5605 (7)0.3534 (6)0.035 (2)*
C170.3095 (8)0.5126 (7)0.3360 (5)0.0275 (17)*
H170.34160.43260.33710.033*
C180.1876 (10)0.5778 (9)0.3168 (7)0.047 (2)*
H180.13530.54210.30460.057*
C190.1387 (11)0.6885 (9)0.3144 (7)0.057 (3)*
H190.05220.73210.30130.068*
C200.2115 (12)0.7386 (11)0.3304 (8)0.065 (3)*
H200.17510.81900.32820.078*
N10.2474 (7)0.5410 (6)0.0781 (5)0.0417 (18)*
N20.4892 (7)0.4133 (6)0.1099 (5)0.0403 (18)*
N30.5952 (8)0.5402 (7)0.3956 (5)0.048 (2)*
N40.3409 (10)0.6788 (9)0.3508 (7)0.069 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01891 (14)0.01941 (14)0.01990 (14)0.00701 (11)0.00221 (11)0.00359 (11)
Bi20.01805 (14)0.01862 (14)0.01875 (14)0.00573 (11)0.00083 (10)0.00465 (10)
Bi30.01800 (14)0.01872 (14)0.01782 (14)0.00593 (11)0.00155 (10)0.00371 (10)
I10.0460 (3)0.0380 (3)0.0234 (3)0.0261 (3)0.0051 (2)0.0050 (2)
I20.0282 (3)0.0342 (3)0.0263 (3)0.0180 (2)0.0037 (2)0.0047 (2)
I30.0276 (3)0.0222 (3)0.0388 (3)0.0032 (2)0.0012 (2)0.0078 (2)
I40.0370 (3)0.0328 (3)0.0222 (3)0.0202 (2)0.0012 (2)0.0027 (2)
I50.0215 (2)0.0238 (2)0.0384 (3)0.0059 (2)0.0076 (2)0.0115 (2)
I60.0205 (2)0.0206 (2)0.0211 (2)0.00879 (19)0.00040 (18)0.00368 (18)
I70.0260 (3)0.0334 (3)0.0218 (2)0.0173 (2)0.0046 (2)0.0014 (2)
I80.0332 (3)0.0207 (2)0.0298 (3)0.0011 (2)0.0014 (2)0.0058 (2)
I90.0275 (3)0.0199 (2)0.0279 (3)0.0029 (2)0.0020 (2)0.0055 (2)
I100.0205 (2)0.0212 (2)0.0223 (2)0.00905 (19)0.00158 (18)0.00452 (19)
I110.0245 (2)0.0289 (3)0.0193 (2)0.0146 (2)0.00204 (19)0.00182 (19)
Geometric parameters (Å, º) top
Bi1—I22.8837 (5)C6—C71.347 (11)
Bi1—I12.8871 (6)C6—N21.351 (10)
Bi1—I32.8981 (6)C7—C81.369 (11)
Bi1—I53.3292 (6)C7—H70.9500
Bi1—I63.3596 (5)C8—C91.395 (12)
Bi1—I73.3806 (6)C8—H80.9500
Bi2—I42.8637 (6)C9—C101.362 (12)
Bi2—I92.8750 (5)C9—H90.9500
Bi2—I52.9750 (6)C10—N21.352 (11)
Bi2—I11i3.2449 (5)C10—H100.9500
Bi2—I103.3790 (6)C11—C121.356 (17)
Bi2—I63.3868 (5)C11—N31.422 (14)
Bi3—I82.8679 (6)C11—H110.9500
Bi3—I72.9484 (5)C12—C131.248 (18)
Bi3—I113.0166 (5)C12—H120.9500
Bi3—I63.1929 (5)C13—C141.386 (17)
Bi3—I10i3.2285 (5)C13—H130.9500
Bi3—I103.3595 (5)C14—C151.325 (13)
I10—Bi3i3.2285 (5)C14—H140.9500
I11—Bi2i3.2449 (5)C15—N31.377 (11)
C1—C21.258 (15)C15—C161.470 (13)
C1—N11.365 (13)C16—C171.337 (11)
C1—H10.9500C16—N41.404 (13)
C2—C31.293 (14)C17—C181.349 (12)
C2—H20.9500C17—H170.9500
C3—C41.533 (14)C18—C191.310 (14)
C3—H30.9500C18—H180.9500
C4—C51.346 (12)C19—C201.321 (15)
C4—H40.9500C19—H190.9500
C5—N11.357 (10)C20—N41.417 (14)
C5—C61.479 (11)C20—H200.9500
I2—Bi1—I1100.270 (17)C3—C2—H2118.7
I2—Bi1—I397.672 (17)C2—C3—C4119.9 (10)
I1—Bi1—I392.085 (18)C2—C3—H3120.0
I2—Bi1—I585.835 (15)C4—C3—H3120.0
I1—Bi1—I591.187 (17)C5—C4—C3114.8 (9)
I3—Bi1—I5174.704 (17)C5—C4—H4122.6
I2—Bi1—I6163.460 (16)C3—C4—H4122.6
I1—Bi1—I693.196 (16)C4—C5—N1118.9 (8)
I3—Bi1—I691.341 (15)C4—C5—C6125.1 (8)
I5—Bi1—I684.316 (13)N1—C5—C6116.0 (7)
I2—Bi1—I783.376 (15)C7—C6—N2124.1 (8)
I1—Bi1—I7176.143 (17)C7—C6—C5120.9 (7)
I3—Bi1—I788.652 (16)N2—C6—C5115.0 (7)
I5—Bi1—I787.811 (15)C6—C7—C8119.3 (8)
I6—Bi1—I783.000 (13)C6—C7—H7120.3
I4—Bi2—I995.744 (17)C8—C7—H7120.3
I4—Bi2—I594.576 (17)C7—C8—C9118.5 (8)
I9—Bi2—I594.454 (16)C7—C8—H8120.7
I4—Bi2—I11i91.960 (15)C9—C8—H8120.7
I9—Bi2—I11i91.532 (15)C10—C9—C8118.7 (9)
I5—Bi2—I11i170.651 (16)C10—C9—H9120.7
I4—Bi2—I10175.012 (16)C8—C9—H9120.7
I9—Bi2—I1087.448 (15)N2—C10—C9123.3 (9)
I5—Bi2—I1088.983 (15)N2—C10—H10118.4
I11i—Bi2—I1084.109 (14)C9—C10—H10118.4
I4—Bi2—I694.168 (15)C12—C11—N3118.4 (12)
I9—Bi2—I6168.984 (16)C12—C11—H11120.8
I5—Bi2—I689.528 (14)N3—C11—H11120.8
I11i—Bi2—I683.327 (14)C13—C12—C11122.1 (15)
I10—Bi2—I682.350 (13)C13—C12—H12118.9
I8—Bi3—I794.847 (17)C11—C12—H12118.9
I8—Bi3—I1194.685 (16)C12—C13—C14122.3 (15)
I7—Bi3—I1189.936 (15)C12—C13—H13118.9
I8—Bi3—I691.418 (16)C14—C13—H13118.9
I7—Bi3—I693.227 (15)C15—C14—C13119.2 (11)
I11—Bi3—I6172.868 (15)C15—C14—H14120.4
I8—Bi3—I10i91.706 (16)C13—C14—H14120.4
I7—Bi3—I10i173.374 (16)C14—C15—N3120.6 (9)
I11—Bi3—I10i90.508 (14)C14—C15—C16117.9 (9)
I6—Bi3—I10i85.618 (14)N3—C15—C16121.5 (8)
I8—Bi3—I10176.741 (16)C17—C16—N4121.1 (8)
I7—Bi3—I1086.680 (15)C17—C16—C15121.3 (8)
I11—Bi3—I1088.189 (14)N4—C16—C15117.6 (9)
I6—Bi3—I1085.617 (13)C16—C17—C18120.1 (8)
I10i—Bi3—I1086.726 (14)C16—C17—H17119.9
Bi2—I5—Bi196.952 (15)C18—C17—H17119.9
Bi3—I6—Bi189.655 (13)C19—C18—C17122.4 (10)
Bi3—I6—Bi297.402 (14)C19—C18—H18118.8
Bi1—I6—Bi288.927 (13)C17—C18—H18118.8
Bi3—I7—Bi193.539 (15)C18—C19—C20119.0 (12)
Bi3i—I10—Bi393.275 (14)C18—C19—H19120.5
Bi3i—I10—Bi289.164 (13)C20—C19—H19120.5
Bi3—I10—Bi294.416 (13)C19—C20—N4123.4 (12)
Bi3—I11—Bi2i95.550 (15)C19—C20—H20118.3
C2—C1—N1120.7 (12)N4—C20—H20118.3
C2—C1—H1119.7C5—N1—C1123.0 (8)
N1—C1—H1119.7C6—N2—C10116.1 (8)
C1—C2—C3122.6 (12)C15—N3—C11117.5 (8)
C1—C2—H2118.7C16—N4—C20114.0 (10)
I4—Bi2—I5—Bi190.026 (18)I6—Bi3—I10—Bi23.564 (12)
I9—Bi2—I5—Bi1173.835 (16)I10i—Bi3—I10—Bi289.414 (14)
I10—Bi2—I5—Bi186.475 (15)I9—Bi2—I10—Bi3i85.996 (15)
I6—Bi2—I5—Bi14.118 (15)I5—Bi2—I10—Bi3i179.500 (13)
I2—Bi1—I5—Bi2170.866 (18)I11i—Bi2—I10—Bi3i5.809 (13)
I1—Bi1—I5—Bi288.922 (18)I6—Bi2—I10—Bi3i89.840 (13)
I6—Bi1—I5—Bi24.172 (15)I9—Bi2—I10—Bi3179.216 (15)
I7—Bi1—I5—Bi287.351 (16)I5—Bi2—I10—Bi386.280 (14)
I8—Bi3—I6—Bi188.906 (15)I11i—Bi2—I10—Bi387.411 (14)
I7—Bi3—I6—Bi16.031 (14)I6—Bi2—I10—Bi33.380 (12)
I10i—Bi3—I6—Bi1179.492 (13)I8—Bi3—I11—Bi2i85.247 (17)
I10—Bi3—I6—Bi192.448 (13)I7—Bi3—I11—Bi2i179.894 (14)
I8—Bi3—I6—Bi2177.779 (15)I10i—Bi3—I11—Bi2i6.506 (14)
I7—Bi3—I6—Bi282.842 (16)I10—Bi3—I11—Bi2i93.214 (14)
I10i—Bi3—I6—Bi290.619 (14)C1—C2—C3—C40.7 (18)
I10—Bi3—I6—Bi23.575 (12)C2—C3—C4—C51.8 (15)
I2—Bi1—I6—Bi340.04 (6)C3—C4—C5—N11.2 (13)
I1—Bi1—I6—Bi3175.352 (15)C3—C4—C5—C6179.1 (8)
I3—Bi1—I6—Bi383.188 (16)C4—C5—C6—C72.2 (14)
I5—Bi1—I6—Bi393.772 (14)N1—C5—C6—C7178.1 (8)
I7—Bi1—I6—Bi35.289 (13)C4—C5—C6—N2179.2 (9)
I2—Bi1—I6—Bi257.37 (6)N1—C5—C6—N20.5 (11)
I1—Bi1—I6—Bi287.239 (16)N2—C6—C7—C80.4 (13)
I3—Bi1—I6—Bi2179.402 (15)C5—C6—C7—C8178.0 (8)
I5—Bi1—I6—Bi23.637 (13)C6—C7—C8—C90.4 (13)
I7—Bi1—I6—Bi292.121 (14)C7—C8—C9—C101.2 (13)
I4—Bi2—I6—Bi3179.985 (15)C8—C9—C10—N21.2 (14)
I9—Bi2—I6—Bi325.89 (9)C13—C14—C15—N31.4 (16)
I5—Bi2—I6—Bi385.461 (16)C13—C14—C15—C16178.8 (11)
I11i—Bi2—I6—Bi388.496 (15)C14—C15—C16—C172.0 (14)
I10—Bi2—I6—Bi33.576 (12)N3—C15—C16—C17178.2 (8)
I4—Bi2—I6—Bi190.503 (15)C14—C15—C16—N4177.6 (8)
I9—Bi2—I6—Bi1115.40 (8)N3—C15—C16—N42.2 (14)
I5—Bi2—I6—Bi14.051 (15)N4—C16—C17—C181.0 (14)
I11i—Bi2—I6—Bi1178.008 (13)C15—C16—C17—C18179.4 (9)
I10—Bi2—I6—Bi193.089 (13)C16—C17—C18—C190.0 (16)
I8—Bi3—I7—Bi185.695 (17)C17—C18—C19—C200.7 (18)
I11—Bi3—I7—Bi1179.609 (14)C18—C19—C20—N40.3 (19)
I6—Bi3—I7—Bi16.005 (14)C4—C5—N1—C10.3 (14)
I10—Bi3—I7—Bi191.419 (14)C6—C5—N1—C1179.4 (9)
I2—Bi1—I7—Bi3176.338 (16)C2—C1—N1—C51.5 (17)
I3—Bi1—I7—Bi385.778 (17)C7—C6—N2—C100.4 (13)
I5—Bi1—I7—Bi390.279 (15)C5—C6—N2—C10178.1 (7)
I6—Bi1—I7—Bi35.740 (14)C9—C10—N2—C60.5 (13)
I7—Bi3—I10—Bi3i179.346 (16)C14—C15—N3—C111.2 (14)
I11—Bi3—I10—Bi3i90.614 (14)C16—C15—N3—C11179.1 (9)
I6—Bi3—I10—Bi3i85.849 (14)C12—C11—N3—C150.6 (16)
I10i—Bi3—I10—Bi3i0.0C17—C16—N4—C201.3 (15)
I7—Bi3—I10—Bi289.932 (15)C15—C16—N4—C20179.1 (9)
I11—Bi3—I10—Bi2179.973 (14)C19—C20—N4—C160.6 (17)
Symmetry code: (i) x+1, y, z+1.
(II) Bis[tris(2,2'-bipyridine)ruthenium(II)] di-µ4-iodo-octa-µ2-iodo-dodecaiodohexabismuthate top
Crystal data top
[Ru(C10H8N2)3][Bi6I22]Z = 1
Mr = 5184.92F(000) = 2244
TriclinicP1Dx = 3.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.7346 (7) ÅCell parameters from 6398 reflections
b = 13.6135 (7) Åθ = 2.3–26.4°
c = 14.5978 (8) ŵ = 17.72 mm1
α = 91.380 (1)°T = 150 K
β = 100.077 (1)°Block, red
γ = 92.010 (1)°0.18 × 0.14 × 0.10 mm
V = 2489.0 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
10135 independent reflections
Radiation source: fine-focus sealed tube8993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 26.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.686, Tmax = 1.000k = 1716
23253 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0252P)2 + 2.3445P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
10135 reflectionsΔρmax = 1.41 e Å3
461 parametersΔρmin = 1.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000139 (15)
Crystal data top
[Ru(C10H8N2)3][Bi6I22]γ = 92.010 (1)°
Mr = 5184.92V = 2489.0 (2) Å3
TriclinicP1Z = 1
a = 12.7346 (7) ÅMo Kα radiation
b = 13.6135 (7) ŵ = 17.72 mm1
c = 14.5978 (8) ÅT = 150 K
α = 91.380 (1)°0.18 × 0.14 × 0.10 mm
β = 100.077 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
10135 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
8993 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 1.000Rint = 0.033
23253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.02Δρmax = 1.41 e Å3
10135 reflectionsΔρmin = 1.37 e Å3
461 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.41886 (2)0.30390 (2)0.291703 (19)0.01988 (7)
Bi20.30928 (2)0.50057 (2)0.529847 (18)0.01762 (7)
Bi30.20117 (2)0.58442 (2)0.200418 (19)0.02028 (7)
I10.21144 (4)0.34315 (4)0.16333 (4)0.02646 (12)
I20.38479 (4)0.08969 (4)0.27127 (4)0.02917 (12)
I30.54385 (4)0.34293 (4)0.14993 (4)0.03105 (13)
I40.28655 (4)0.28758 (4)0.47181 (3)0.02503 (12)
I50.63497 (4)0.27280 (4)0.43249 (4)0.02656 (12)
I60.44314 (4)0.53729 (3)0.35133 (3)0.01839 (10)
I70.20787 (4)0.47348 (4)0.68771 (3)0.02542 (12)
I80.11192 (4)0.53220 (4)0.40310 (3)0.02387 (11)
I90.23948 (4)0.79036 (4)0.26637 (3)0.02690 (12)
I100.26680 (4)0.61919 (4)0.02466 (4)0.03173 (13)
I110.02140 (4)0.58406 (4)0.12845 (4)0.03035 (13)
Ru10.20609 (4)0.05816 (4)0.79301 (4)0.01556 (12)
C10.3029 (6)0.0056 (6)0.6255 (5)0.0227 (16)
H10.25540.06160.62140.027*
C20.3613 (6)0.0065 (5)0.5566 (5)0.0218 (16)
H20.35120.03790.50430.026*
C30.4358 (6)0.0845 (6)0.5637 (5)0.0268 (18)
H30.47920.09350.51760.032*
C40.4447 (6)0.1482 (5)0.6392 (5)0.0225 (16)
H40.49630.20120.64660.027*
C50.3788 (6)0.1359 (5)0.7051 (5)0.0180 (15)
C60.3731 (5)0.2081 (5)0.7818 (5)0.0164 (15)
C70.4423 (6)0.2891 (6)0.8040 (5)0.0246 (17)
H70.50020.29940.77170.029*
C80.4269 (6)0.3540 (5)0.8722 (5)0.0255 (17)
H80.47440.40960.88840.031*
C90.3416 (6)0.3385 (6)0.9178 (5)0.0277 (18)
H90.32840.38420.96430.033*
C100.2757 (6)0.2554 (5)0.8945 (5)0.0226 (16)
H100.21780.24400.92660.027*
C110.0882 (6)0.1942 (5)0.6516 (5)0.0237 (17)
H110.14300.24170.67580.028*
C120.0097 (6)0.2200 (6)0.5803 (5)0.0269 (18)
H120.01090.28370.55520.032*
C130.0705 (7)0.1518 (6)0.5459 (6)0.033 (2)
H130.12710.16850.49800.039*
C140.0678 (6)0.0596 (6)0.5815 (5)0.0298 (19)
H140.12250.01170.55800.036*
C150.0147 (6)0.0363 (6)0.6519 (5)0.0223 (16)
C160.0316 (6)0.0632 (5)0.6874 (5)0.0205 (16)
C170.0355 (7)0.1456 (6)0.6585 (5)0.0295 (19)
H170.10150.13840.61780.035*
C180.0062 (7)0.2370 (6)0.6888 (6)0.034 (2)
H180.05150.29320.66900.041*
C190.0893 (7)0.2465 (6)0.7481 (6)0.0315 (19)
H190.11230.30920.76870.038*
C200.1500 (6)0.1628 (6)0.7763 (5)0.0270 (18)
H200.21520.16930.81830.032*
C210.3924 (6)0.0538 (5)0.8959 (6)0.0261 (18)
H210.42210.05000.84070.031*
C220.4429 (7)0.1084 (6)0.9676 (6)0.034 (2)
H220.50650.14090.96240.041*
C230.3990 (7)0.1146 (6)1.0468 (6)0.039 (2)
H230.43100.15351.09650.047*
C240.3096 (7)0.0651 (6)1.0543 (6)0.0315 (19)
H240.27950.06911.10930.038*
C250.2628 (6)0.0091 (5)0.9818 (5)0.0196 (16)
C260.1662 (6)0.0470 (5)0.9831 (5)0.0206 (16)
C270.1273 (6)0.0703 (6)1.0624 (5)0.0291 (19)
H270.16120.04801.12100.035*
C280.0384 (7)0.1263 (6)1.0562 (6)0.0308 (19)
H280.01210.14501.11090.037*
C290.0125 (6)0.1553 (5)0.9697 (6)0.0285 (18)
H290.07520.19210.96360.034*
C300.0307 (6)0.1291 (5)0.8933 (6)0.0240 (17)
H300.00390.14860.83390.029*
N10.3084 (5)0.0570 (4)0.6992 (4)0.0205 (13)
N20.2911 (5)0.1899 (4)0.8276 (4)0.0178 (13)
N30.0911 (5)0.1042 (4)0.6889 (4)0.0195 (13)
N40.1244 (5)0.0727 (4)0.7491 (4)0.0189 (13)
N50.3024 (5)0.0053 (4)0.9007 (4)0.0204 (13)
N60.1194 (5)0.0774 (4)0.8978 (4)0.0193 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.02196 (15)0.01732 (14)0.02009 (14)0.00007 (11)0.00342 (12)0.00202 (11)
Bi20.01565 (14)0.01760 (14)0.01942 (14)0.00009 (11)0.00257 (11)0.00111 (11)
Bi30.01814 (15)0.02053 (15)0.02202 (15)0.00111 (11)0.00282 (11)0.00236 (11)
I10.0247 (3)0.0225 (3)0.0294 (3)0.0004 (2)0.0025 (2)0.0003 (2)
I20.0346 (3)0.0179 (3)0.0320 (3)0.0009 (2)0.0016 (2)0.0039 (2)
I30.0359 (3)0.0328 (3)0.0262 (3)0.0044 (2)0.0124 (2)0.0049 (2)
I40.0271 (3)0.0193 (3)0.0286 (3)0.0006 (2)0.0045 (2)0.0004 (2)
I50.0265 (3)0.0175 (2)0.0325 (3)0.0019 (2)0.0036 (2)0.0004 (2)
I60.0168 (2)0.0180 (2)0.0203 (2)0.00018 (19)0.00311 (19)0.00111 (19)
I70.0242 (3)0.0304 (3)0.0227 (2)0.0009 (2)0.0072 (2)0.0024 (2)
I80.0193 (2)0.0277 (3)0.0242 (3)0.0050 (2)0.0013 (2)0.0047 (2)
I90.0310 (3)0.0226 (3)0.0266 (3)0.0001 (2)0.0040 (2)0.0002 (2)
I100.0333 (3)0.0358 (3)0.0286 (3)0.0047 (2)0.0140 (2)0.0010 (2)
I110.0184 (3)0.0398 (3)0.0321 (3)0.0002 (2)0.0019 (2)0.0051 (2)
Ru10.0153 (3)0.0144 (3)0.0171 (3)0.0004 (2)0.0035 (2)0.0001 (2)
C10.020 (4)0.025 (4)0.025 (4)0.002 (3)0.007 (3)0.001 (3)
C20.031 (4)0.014 (4)0.022 (4)0.007 (3)0.007 (3)0.000 (3)
C30.024 (4)0.027 (4)0.033 (4)0.011 (3)0.012 (4)0.008 (4)
C40.016 (4)0.020 (4)0.033 (4)0.004 (3)0.007 (3)0.004 (3)
C50.018 (4)0.013 (3)0.023 (4)0.002 (3)0.003 (3)0.003 (3)
C60.012 (3)0.019 (4)0.016 (3)0.004 (3)0.005 (3)0.008 (3)
C70.015 (4)0.031 (4)0.029 (4)0.002 (3)0.006 (3)0.008 (4)
C80.024 (4)0.019 (4)0.028 (4)0.004 (3)0.009 (3)0.002 (3)
C90.033 (5)0.019 (4)0.029 (4)0.001 (3)0.000 (4)0.011 (3)
C100.028 (4)0.023 (4)0.016 (4)0.000 (3)0.004 (3)0.000 (3)
C110.027 (4)0.019 (4)0.023 (4)0.003 (3)0.000 (3)0.001 (3)
C120.028 (4)0.031 (5)0.023 (4)0.004 (4)0.008 (3)0.000 (3)
C130.030 (5)0.041 (5)0.024 (4)0.013 (4)0.003 (4)0.000 (4)
C140.024 (4)0.037 (5)0.027 (4)0.002 (4)0.000 (3)0.006 (4)
C150.016 (4)0.037 (5)0.013 (3)0.001 (3)0.003 (3)0.004 (3)
C160.020 (4)0.028 (4)0.014 (3)0.006 (3)0.006 (3)0.007 (3)
C170.029 (4)0.032 (5)0.026 (4)0.006 (4)0.004 (4)0.009 (4)
C180.046 (6)0.028 (5)0.029 (4)0.020 (4)0.011 (4)0.005 (4)
C190.044 (5)0.017 (4)0.036 (5)0.003 (4)0.016 (4)0.002 (3)
C200.029 (4)0.024 (4)0.030 (4)0.001 (3)0.010 (4)0.002 (3)
C210.023 (4)0.019 (4)0.033 (4)0.002 (3)0.002 (3)0.010 (3)
C220.027 (5)0.019 (4)0.049 (5)0.007 (3)0.011 (4)0.007 (4)
C230.043 (6)0.027 (5)0.039 (5)0.005 (4)0.013 (4)0.010 (4)
C240.036 (5)0.028 (4)0.025 (4)0.009 (4)0.008 (4)0.001 (4)
C250.024 (4)0.019 (4)0.012 (3)0.009 (3)0.003 (3)0.001 (3)
C260.025 (4)0.014 (4)0.022 (4)0.006 (3)0.005 (3)0.001 (3)
C270.031 (5)0.028 (4)0.027 (4)0.013 (4)0.004 (4)0.001 (4)
C280.038 (5)0.023 (4)0.033 (5)0.013 (4)0.014 (4)0.006 (4)
C290.025 (4)0.019 (4)0.043 (5)0.003 (3)0.015 (4)0.008 (4)
C300.024 (4)0.015 (4)0.034 (4)0.002 (3)0.006 (3)0.000 (3)
N10.015 (3)0.025 (3)0.022 (3)0.002 (3)0.003 (3)0.006 (3)
N20.020 (3)0.013 (3)0.021 (3)0.005 (2)0.003 (3)0.003 (2)
N30.022 (3)0.019 (3)0.019 (3)0.004 (3)0.007 (3)0.003 (3)
N40.028 (3)0.017 (3)0.014 (3)0.001 (3)0.009 (3)0.002 (2)
N50.020 (3)0.013 (3)0.026 (3)0.004 (3)0.001 (3)0.001 (3)
N60.020 (3)0.012 (3)0.026 (3)0.004 (2)0.007 (3)0.005 (3)
Geometric parameters (Å, º) top
Bi1—I32.8715 (6)C10—N21.350 (9)
Bi1—I22.9335 (6)C10—H100.9500
Bi1—I13.0315 (6)C11—N31.352 (9)
Bi1—I53.1813 (6)C11—C121.372 (10)
Bi1—I63.2637 (5)C11—H110.9500
Bi1—I43.3695 (6)C12—C131.374 (11)
Bi2—I72.8571 (5)C12—H120.9500
Bi2—I82.9004 (6)C13—C141.369 (11)
Bi2—I42.9909 (6)C13—H130.9500
Bi2—I5i3.1548 (6)C14—C151.387 (10)
Bi2—I6i3.3850 (6)C14—H140.9500
Bi2—I63.3918 (5)C15—N31.349 (9)
Bi3—I112.8450 (6)C15—C161.471 (11)
Bi3—I102.8786 (6)C16—N41.367 (9)
Bi3—I92.9384 (6)C16—C171.396 (10)
Bi3—I13.3268 (6)C17—C181.374 (12)
Bi3—I83.4311 (6)C17—H170.9500
Bi3—I63.5484 (5)C18—C191.375 (12)
I5—Bi2i3.1548 (6)C18—H180.9500
I6—Bi2i3.3850 (5)C19—C201.369 (10)
Ru1—N32.044 (6)C19—H190.9500
Ru1—N52.047 (6)C20—N41.332 (9)
Ru1—N12.048 (6)C20—H200.9500
Ru1—N62.054 (6)C21—N51.354 (9)
Ru1—N42.061 (6)C21—C221.377 (11)
Ru1—N22.067 (6)C21—H210.9500
C1—N11.347 (9)C22—C231.373 (12)
C1—C21.362 (10)C22—H220.9500
C1—H10.9500C23—C241.362 (12)
C2—C31.389 (10)C23—H230.9500
C2—H20.9500C24—C251.381 (10)
C3—C41.373 (10)C24—H240.9500
C3—H30.9500C25—N51.367 (9)
C4—C51.391 (10)C25—C261.473 (10)
C4—H40.9500C26—N61.363 (9)
C5—N11.366 (9)C26—C271.372 (10)
C5—C61.485 (10)C27—C281.378 (11)
C6—N21.354 (9)C27—H270.9500
C6—C71.384 (10)C28—C291.388 (11)
C7—C81.359 (11)C28—H280.9500
C7—H70.9500C29—C301.373 (10)
C8—C91.383 (11)C29—H290.9500
C8—H80.9500C30—N61.344 (9)
C9—C101.385 (10)C30—H300.9500
C9—H90.9500
I3—Bi1—I2101.416 (17)C8—C7—H7120.2
I3—Bi1—I192.679 (17)C6—C7—H7120.2
I2—Bi1—I193.372 (16)C7—C8—C9119.5 (7)
I3—Bi1—I588.424 (17)C7—C8—H8120.3
I2—Bi1—I589.118 (15)C9—C8—H8120.3
I1—Bi1—I5177.022 (16)C8—C9—C10118.9 (7)
I3—Bi1—I688.703 (15)C8—C9—H9120.6
I2—Bi1—I6169.475 (16)C10—C9—H9120.6
I1—Bi1—I688.991 (14)N2—C10—C9122.0 (7)
I5—Bi1—I688.269 (14)N2—C10—H10119.0
I3—Bi1—I4172.149 (16)C9—C10—H10119.0
I2—Bi1—I485.859 (15)N3—C11—C12123.1 (7)
I1—Bi1—I489.804 (15)N3—C11—H11118.5
I5—Bi1—I488.746 (15)C12—C11—H11118.5
I6—Bi1—I483.892 (13)C11—C12—C13118.6 (8)
I7—Bi2—I894.395 (16)C11—C12—H12120.7
I7—Bi2—I493.795 (16)C13—C12—H12120.7
I8—Bi2—I488.622 (16)C14—C13—C12119.2 (7)
I7—Bi2—I5i96.159 (16)C14—C13—H13120.4
I8—Bi2—I5i93.814 (15)C12—C13—H13120.4
I4—Bi2—I5i169.536 (17)C13—C14—C15119.9 (8)
I7—Bi2—I6i94.164 (15)C13—C14—H14120.0
I8—Bi2—I6i171.336 (15)C15—C14—H14120.0
I4—Bi2—I6i89.471 (14)N3—C15—C14121.1 (7)
I5i—Bi2—I6i86.602 (14)N3—C15—C16114.6 (6)
I7—Bi2—I6176.570 (16)C14—C15—C16124.1 (7)
I8—Bi2—I688.683 (14)N4—C16—C17120.1 (7)
I4—Bi2—I687.784 (14)N4—C16—C15114.8 (6)
I5i—Bi2—I682.106 (14)C17—C16—C15125.0 (7)
I6i—Bi2—I682.798 (13)C18—C17—C16120.1 (8)
I11—Bi3—I1095.152 (18)C18—C17—H17120.0
I11—Bi3—I9100.273 (18)C16—C17—H17120.0
I10—Bi3—I993.966 (17)C17—C18—C19119.5 (7)
I11—Bi3—I192.663 (16)C17—C18—H18120.3
I10—Bi3—I190.128 (16)C19—C18—H18120.3
I9—Bi3—I1166.008 (17)C20—C19—C18117.7 (8)
I11—Bi3—I882.427 (15)C20—C19—H19121.1
I10—Bi3—I8176.493 (17)C18—C19—H19121.1
I9—Bi3—I888.974 (15)N4—C20—C19124.7 (8)
I1—Bi3—I887.457 (14)N4—C20—H20117.6
I11—Bi3—I6159.653 (16)C19—C20—H20117.6
I10—Bi3—I6103.687 (16)N5—C21—C22122.9 (8)
I9—Bi3—I686.192 (14)N5—C21—H21118.6
I1—Bi3—I679.838 (13)C22—C21—H21118.6
I8—Bi3—I678.392 (13)C23—C22—C21118.3 (8)
Bi1—I1—Bi399.941 (15)C23—C22—H22120.9
Bi2—I4—Bi196.877 (15)C21—C22—H22120.9
Bi2i—I5—Bi194.705 (15)C24—C23—C22120.1 (8)
Bi1—I6—Bi2i88.990 (13)C24—C23—H23119.9
Bi1—I6—Bi291.440 (13)C22—C23—H23119.9
Bi2i—I6—Bi297.202 (13)C23—C24—C25119.9 (8)
Bi1—I6—Bi391.229 (13)C23—C24—H24120.1
Bi2i—I6—Bi3172.104 (16)C25—C24—H24120.1
Bi2—I6—Bi390.684 (13)N5—C25—C24121.0 (7)
Bi2—I8—Bi3102.174 (16)N5—C25—C26114.9 (6)
N3—Ru1—N5170.4 (2)C24—C25—C26124.1 (7)
N3—Ru1—N188.0 (2)N6—C26—C27122.0 (7)
N5—Ru1—N198.1 (2)N6—C26—C25114.0 (6)
N3—Ru1—N695.8 (2)C27—C26—C25124.0 (7)
N5—Ru1—N679.3 (2)C26—C27—C28119.3 (8)
N1—Ru1—N6170.7 (2)C26—C27—H27120.4
N3—Ru1—N478.8 (2)C28—C27—H27120.4
N5—Ru1—N493.0 (2)C27—C28—C29119.6 (8)
N1—Ru1—N497.2 (2)C27—C28—H28120.2
N6—Ru1—N491.8 (2)C29—C28—H28120.2
N3—Ru1—N299.3 (2)C30—C29—C28117.9 (8)
N5—Ru1—N289.1 (2)C30—C29—H29121.1
N1—Ru1—N278.9 (2)C28—C29—H29121.1
N6—Ru1—N292.1 (2)N6—C30—C29123.6 (8)
N4—Ru1—N2175.9 (2)N6—C30—H30118.2
N1—C1—C2124.0 (7)C29—C30—H30118.2
N1—C1—H1118.0C1—N1—C5117.2 (6)
C2—C1—H1118.0C1—N1—Ru1126.3 (5)
C1—C2—C3119.2 (7)C5—N1—Ru1115.8 (5)
C1—C2—H2120.4C10—N2—C6118.1 (6)
C3—C2—H2120.4C10—N2—Ru1125.9 (5)
C4—C3—C2118.0 (7)C6—N2—Ru1115.8 (5)
C4—C3—H3121.0C15—N3—C11117.9 (6)
C2—C3—H3121.0C15—N3—Ru1116.2 (5)
C3—C4—C5120.7 (7)C11—N3—Ru1125.8 (5)
C3—C4—H4119.7C20—N4—C16117.8 (6)
C5—C4—H4119.7C20—N4—Ru1127.6 (5)
N1—C5—C4120.9 (7)C16—N4—Ru1114.6 (5)
N1—C5—C6114.8 (6)C21—N5—C25117.8 (6)
C4—C5—C6124.2 (6)C21—N5—Ru1126.6 (5)
N2—C6—C7121.9 (7)C25—N5—Ru1115.0 (5)
N2—C6—C5114.1 (6)C30—N6—C26117.5 (6)
C7—C6—C5124.0 (6)C30—N6—Ru1126.2 (5)
C8—C7—C6119.6 (7)C26—N6—Ru1115.5 (5)
I3—Bi1—I1—Bi388.346 (17)N5—C25—C26—N612.5 (9)
I2—Bi1—I1—Bi3170.044 (16)C24—C25—C26—N6165.1 (7)
I6—Bi1—I1—Bi30.308 (15)N5—C25—C26—C27165.5 (7)
I4—Bi1—I1—Bi384.203 (15)C25—C26—C27—C28177.6 (7)
I11—Bi3—I1—Bi1161.238 (17)C2—C1—N1—Ru1168.5 (6)
I10—Bi3—I1—Bi1103.598 (18)C6—C5—N1—C1173.7 (6)
I9—Bi3—I1—Bi13.56 (7)C4—C5—N1—Ru1173.4 (5)
I8—Bi3—I1—Bi178.946 (16)C6—C5—N1—Ru12.7 (8)
I6—Bi3—I1—Bi10.288 (14)N3—Ru1—N1—C169.0 (6)
I7—Bi2—I4—Bi1176.382 (15)N5—Ru1—N1—C1103.6 (6)
I8—Bi2—I4—Bi189.303 (16)N4—Ru1—N1—C19.4 (6)
I5i—Bi2—I4—Bi114.35 (10)N2—Ru1—N1—C1169.0 (6)
I6i—Bi2—I4—Bi182.245 (15)N3—Ru1—N1—C5101.0 (5)
I6—Bi2—I4—Bi10.568 (14)N5—Ru1—N1—C586.4 (5)
I2—Bi1—I4—Bi2177.005 (17)N4—Ru1—N1—C5179.5 (5)
I1—Bi1—I4—Bi289.600 (16)N2—Ru1—N1—C51.1 (5)
I5—Bi1—I4—Bi287.799 (16)C9—C10—N2—Ru1175.1 (5)
I6—Bi1—I4—Bi20.593 (14)C5—C6—N2—C10175.8 (6)
I3—Bi1—I5—Bi2i79.297 (17)C7—C6—N2—Ru1174.2 (5)
I2—Bi1—I5—Bi2i179.256 (16)C5—C6—N2—Ru17.9 (7)
I6—Bi1—I5—Bi2i9.453 (15)N3—Ru1—N2—C1092.9 (6)
I4—Bi1—I5—Bi2i93.379 (15)N5—Ru1—N2—C1082.6 (6)
I3—Bi1—I6—Bi2i79.686 (16)N1—Ru1—N2—C10178.9 (6)
I2—Bi1—I6—Bi2i84.47 (9)N6—Ru1—N2—C103.3 (6)
I1—Bi1—I6—Bi2i172.390 (14)N3—Ru1—N2—C691.1 (5)
I5—Bi1—I6—Bi2i8.776 (14)N5—Ru1—N2—C693.4 (5)
I4—Bi1—I6—Bi2i97.700 (14)N1—Ru1—N2—C65.1 (5)
I3—Bi1—I6—Bi2176.866 (16)N6—Ru1—N2—C6172.7 (5)
I2—Bi1—I6—Bi212.71 (9)C16—C15—N3—C11171.9 (6)
I1—Bi1—I6—Bi290.430 (15)C14—C15—N3—Ru1179.4 (5)
I5—Bi1—I6—Bi288.404 (14)C16—C15—N3—Ru14.9 (7)
I4—Bi1—I6—Bi20.520 (12)C12—C11—N3—Ru1178.6 (5)
I3—Bi1—I6—Bi392.419 (16)N1—Ru1—N3—C15105.4 (5)
I2—Bi1—I6—Bi3103.42 (9)N6—Ru1—N3—C1583.2 (5)
I1—Bi1—I6—Bi30.285 (14)N4—Ru1—N3—C157.6 (5)
I5—Bi1—I6—Bi3179.119 (14)N2—Ru1—N3—C15176.2 (5)
I4—Bi1—I6—Bi390.195 (13)N1—Ru1—N3—C1171.2 (6)
I8—Bi2—I6—Bi189.254 (15)N6—Ru1—N3—C11100.3 (6)
I4—Bi2—I6—Bi10.582 (14)N4—Ru1—N3—C11169.0 (6)
I5i—Bi2—I6—Bi1176.711 (14)N2—Ru1—N3—C117.2 (6)
I6i—Bi2—I6—Bi189.164 (13)C19—C20—N4—Ru1176.4 (6)
I8—Bi2—I6—Bi2i178.418 (16)C15—C16—N4—C20173.0 (6)
I4—Bi2—I6—Bi2i89.747 (15)C17—C16—N4—Ru1174.7 (5)
I5i—Bi2—I6—Bi2i87.547 (14)C15—C16—N4—Ru19.1 (7)
I6i—Bi2—I6—Bi2i0.0N3—Ru1—N4—C20173.4 (6)
I8—Bi2—I6—Bi31.992 (14)N5—Ru1—N4—C2011.7 (6)
I4—Bi2—I6—Bi390.664 (14)N1—Ru1—N4—C2086.9 (6)
I5i—Bi2—I6—Bi392.042 (13)N6—Ru1—N4—C2091.1 (6)
I6i—Bi2—I6—Bi3179.589 (17)N3—Ru1—N4—C169.0 (5)
I11—Bi3—I6—Bi169.93 (5)N5—Ru1—N4—C16165.9 (5)
I10—Bi3—I6—Bi187.369 (16)N1—Ru1—N4—C1695.5 (5)
I9—Bi3—I6—Bi1179.471 (14)N6—Ru1—N4—C1686.5 (5)
I1—Bi3—I6—Bi10.264 (13)C22—C21—N5—Ru1168.8 (6)
I8—Bi3—I6—Bi189.737 (13)C26—C25—N5—C21178.7 (6)
I11—Bi3—I6—Bi221.53 (5)C24—C25—N5—Ru1168.2 (5)
I10—Bi3—I6—Bi2178.824 (15)C26—C25—N5—Ru19.5 (7)
I9—Bi3—I6—Bi288.015 (14)N1—Ru1—N5—C2114.6 (6)
I1—Bi3—I6—Bi291.192 (13)N6—Ru1—N5—C21174.4 (6)
I7—Bi2—I8—Bi3176.376 (16)N4—Ru1—N5—C2183.2 (6)
I4—Bi2—I8—Bi389.923 (16)N2—Ru1—N5—C2193.3 (6)
I5i—Bi2—I8—Bi379.890 (16)N1—Ru1—N5—C25174.4 (5)
I6—Bi2—I8—Bi32.108 (15)N6—Ru1—N5—C253.5 (5)
I11—Bi3—I8—Bi2175.228 (19)N4—Ru1—N5—C2587.8 (5)
I9—Bi3—I8—Bi284.267 (17)N2—Ru1—N5—C2595.7 (5)
I1—Bi3—I8—Bi282.200 (16)C29—C30—N6—Ru1167.1 (6)
I6—Bi3—I8—Bi22.056 (14)C25—C26—N6—C30180.0 (6)
C3—C4—C5—C6171.7 (7)C27—C26—N6—Ru1168.5 (5)
N1—C5—C6—N26.9 (9)C25—C26—N6—Ru19.5 (7)
C4—C5—C6—N2169.0 (7)N3—Ru1—N6—C3015.2 (6)
N1—C5—C6—C7175.2 (7)N5—Ru1—N6—C30173.1 (6)
C5—C6—C7—C8176.3 (7)N4—Ru1—N6—C3094.1 (6)
C13—C14—C15—C16172.7 (7)N2—Ru1—N6—C3084.4 (6)
N3—C15—C16—N42.9 (9)N3—Ru1—N6—C26175.3 (5)
C14—C15—C16—N4172.7 (7)N5—Ru1—N6—C263.6 (5)
N3—C15—C16—C17178.8 (7)N4—Ru1—N6—C2696.3 (5)
C15—C16—C17—C18173.0 (7)N2—Ru1—N6—C2685.1 (5)
C23—C24—C25—C26180.0 (7)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula(C10H9N2)4[Bi6I22][Ru(C10H8N2)3][Bi6I22]
Mr4674.455184.92
Crystal system, space groupTriclinicP1TriclinicP1
Temperature (K)150150
a, b, c (Å)11.3334 (6), 12.9913 (7), 15.7999 (9)12.7346 (7), 13.6135 (7), 14.5978 (8)
α, β, γ (°)78.778 (1), 79.520 (1), 66.023 (1)91.380 (1), 100.077 (1), 92.010 (1)
V3)2071.2 (2)2489.0 (2)
Z11
Radiation typeMo KαMo Kα
µ (mm1)20.9317.72
Crystal size (mm)0.12 × 0.11 × 0.080.18 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Multi-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.501, 1.0000.686, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27864, 9709, 8250 23253, 10135, 8993
Rint0.0390.033
(sin θ/λ)max1)0.6540.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.03 0.032, 0.070, 1.02
No. of reflections970910135
No. of parameters223461
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.83, 2.901.41, 1.37

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds