Download citation
Download citation
link to html
The copper(II) environments for tetra­kis­(1-eth­yl-1,2,4-triaz­ole)­dinitratocopper(II), [Cu(NO3)2(C4H7N3)4], and tetrakis­(1-prop­yl-1,2,4-triazole)dinitratocopper(II), [Cu(NO3)2(C5H9N3)4], are distorted square bipyramidal. Both structures are centrosymmetric, with the copper(II) ions located at inversion centers coordinated by four N atoms of four triazole mol­ecules and by two O atoms of two nitrate ions in an elongated octa­hedral geometry. This elongation is a result of the Jahn-Teller effect. The largest distortion is that of the N-Cu-O angles, which differ from 90° by 5.68 (10)° in the eth­yl and 5.59 (8)° in the prop­yl derivative.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105003446/sq1194sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105003446/sq1194Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105003446/sq1194IIsup3.hkl
Contains datablock II

CCDC references: 268089; 268090

Comment top

The complexing behaviour of 1-alkyl-1,2,4-triazoles has been investigated in aqueous solution by means of pH-metric and spectrophotometric methods (Gabryszewski, 1992). It has been concluded that the bulk of the alkyl group does not influence significantly the stability of complexes of 1-alkyl-1,2,4-triazoles. The stability of such complexes is approximately equal to that of unsubstituted 1,2,4-triazole (Gabryszewski, 1992). This fact suggested coordination of ligands through the N atom in the 4-position, since it is the N atom furthest from the alkyl group and thus the least sterically affected.

The coordination complexes tetrakis(1-ethyl-1,2,4-triazole)bis(nitrato)copper(II), (I), and tetrakis(1-propyl-1,2,4-triazole)bis(nitrato)copper(II), (II), were prepared in the solid state and initially characterized using IR, far-IR and visible spectroscopy, and magnetic susceptibility data (Gabryszewski & Wieczorek, 2000). These methods indicated that the ligands are monodentate and form complexes with distorted octahedral environments. However, in order to determine the donor N atoms of the ligands, the X-ray single-crystal diffraction method was used.

The molecular structure of (I) is shown in Fig. 1, while (II) is presented in Fig. 2. Selected geometric parameters are listed in Tables 1 and 3. Both complexes possess a distorted octahedral geometry, with the copper(II) ions located on centers of inversion coordinated by four N atoms of the triazole rings and two O atoms from the nitrate ions. The N atoms form a rectangular plane containing the copper ion at the center. The two nitrate ligands are positioned trans to one another, above and below the CuN4 plane, thus completing the tetragonally distorted octahedral coordination of the copper ion. This elongation is a result of the Jahn–Teller effect for Cu2+. Similar elongated octahedral coordination of CuII atoms is found in other molecules with CuN4O2 environments, e.g. bis(2-aminomethylpyridine-N,N')bis(nitrato-O)copper(II) (Kooijman et al., 1997), bis(dibenzene-1,2-diamine)bis(nitrato)copper(II) (Suprija & Das, 2003) and bis(di-2-pyridilamine)dinitratocopper(II) (Munoz et al., 1993). The Cu—N bond lengths in those compounds are between 1.998 (1) and 2.019 (1) Å, very close to those found in (I) and (II). The Cu—O bond lengths range between 2.477 (2) Å (Munoz et al., 1993) and 2.543 (1) Å (Kooijman et al., 1997), and are significantly longer than those found in (I) and (II).

The N—Cu—N angles in (I) and (II) are all close to the ideal in a regular octahedron. The trans angles are equal to 180°, as required by symmetry, while the cis angles differ only slightly from 90°. For (II), the difference is 0.18 (7)°, whereas for (I), it is 1.21 (11)°. The largest angular distortions of the octahedron occur in the N—Cu—O angles. They differ from 90° by 3.74 (11) and 5.68 (10)° in (I), and 0.02 (8) and 5.59 (8)° in (II).

Examples of complexes containing four 1,2,4-triazoles, coordinating through atoms N4, are tetrakis[3,3-dimethyl-1-(1 H-1,2,4-triazolyl)-2-butanone]copper(II) diperchlorate (Jiansheng et al., 1997), which shows square-planar coordination of copper(II), and tetrakis[1-(3-chloropropyl)-1,2,4-triazole]bis(tetrafluoroborato) copper(II) (Mills et al., 2002), which has a distorted octahedral coordination. In those structures, the N—Cu bond lengths are similar to those found in (I) and (II). The cis N—Cu—N angles also do not differ from 90° by more than 1.5°, while the trans N—Cu—N angles differ from 180° by not more than 3.5°.

The N1/N2/C3/N4/C5 plane of the triazole ring is tilted by 47.06 (1)° for (I) and 68.64 (14)° for (II) with respected to the CuN4 coordination plane, whereas the N11/N12/C13/N14/C15 plane is tilted with respect to the CuN4 plane by 85.43 (8)° for (I) and 74.25 (14)° for (II).

The packing diagrams of structures (I) and (II) are presented in Figs. 2 and 4. The copper(II) centers of the complexes are well separated, the closest distance being 8.386 (1) Å in (I) and 8.027 (1) Å in (II).

In both structures there are only weak C—H···O hydrogen bonds, the closest C···O distances being between 3.010 (4) and 3.382 (5) Å in (I), and 3.139 (3) and 3.420 (3) Å in (II) (Tables 2 and 4). The NO3 group in (II) is disordered. Atom O3 atom has two positions occupied at 50%, denoted O31 and O32. We first measured the structures of both (I) and (II) at room temperature. Since the displacement ellipsoid of atom O3 for (II) was very large, we decided to measure both structures at 100 K. We have found that the distortion of atom O3 is also present at 100 K, therefore it was split into the O31 and O32 positions. The apparent reason for disorder comes from the fact that there is a possibility of forming hydrogen bonds at both positions, C5–H5A···O31i and C13–H13A···O32ii [symmetry codes: (i) x − 1, y, z; (ii) x − 1, 1 + y, z].

Experimental top

1-Ethyl-1,2,4-triazole (m.p. 451 K) and 1-propyl-1,2,4-triazole (m.p. 462–463 K) were synthesized in the Walocha–Nowak Chemical Laboratory in Cracow (Poland). Other chemicals were procured from POCh–Gliwice (Poland). Generally, the complexes were formed during the reaction of ethanol solutions of the ligands with Cu(NO3)2. A solution of Cu(NO3)2 (5 mmol) in anhydrous ethanol (30 ml) with ethyl orthoformate (2 ml) was added to a solution of the ligand (35 mmol) in anhydrous ethanol (60 ml) with stirring. Blue complexes of CuII were formed. The products were digested on a water-bath for 1 h, washed repeatedly with anhydrous ethanol and ethyl ether, and dried in vacuum desiccators.

Refinement top

H atoms were treated as riding atoms [C—H = 0.93 (CH), 0.96 (CH2) and 0.97 Å (CH3), and Uiso(H) = 1.5Ueq(C) (methyl) or 1.2Ueq(C) (other H atoms)].

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (') 1–x, 1–y, 1–z.]
[Figure 2] Fig. 2. The molecular structure of (II). Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (') 1–x, 1–y, 1–z.]
[Figure 3] Fig. 3. A packing diagram of (I). Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate C—H···O hydrogen bonds.
[Figure 4] Fig. 4. A packing diagram of (II). Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate C—H···O hydrogen bonds.
(I) ### top
Crystal data top
[Cu(NO3)2(C4H7N3)4]F(000) = 598
Mr = 576.06Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7990 reflections
a = 9.703 (2) Åθ = 3.3–26.0°
b = 15.288 (3) ŵ = 0.96 mm1
c = 8.386 (2) ÅT = 100 K
β = 99.97 (1)°Plate, blue
V = 1225.2 (5) Å30.2 × 0.2 × 0.1 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1339 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Graphite monochromatorθmax = 26.0°, θmin = 3.3°
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1h = 1111
ω scansk = 1818
7990 measured reflectionsl = 810
2384 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.023P)2]
where P = (Fo2 + 2Fc2)/3
2386 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cu(NO3)2(C4H7N3)4]V = 1225.2 (5) Å3
Mr = 576.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.703 (2) ŵ = 0.96 mm1
b = 15.288 (3) ÅT = 100 K
c = 8.386 (2) Å0.2 × 0.2 × 0.1 mm
β = 99.97 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1339 reflections with I > 2σ(I)
7990 measured reflectionsRint = 0.085
2384 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.83Δρmax = 0.47 e Å3
2386 reflectionsΔρmin = 0.62 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01769 (19)
N210.6212 (4)0.7040 (2)0.4341 (4)0.0215 (8)
O10.6394 (3)0.62915 (16)0.4990 (3)0.0246 (7)
O20.7199 (3)0.73969 (17)0.3834 (4)0.0382 (8)
O30.5052 (3)0.74097 (17)0.4226 (3)0.0313 (7)
N40.4129 (3)0.5061 (2)0.2633 (3)0.0151 (6)
C50.3603 (4)0.4406 (2)0.1653 (4)0.0177 (9)
H5A0.35720.38230.19630.021*
N10.3140 (3)0.47056 (19)0.0193 (3)0.0172 (8)
N20.3337 (4)0.5592 (2)0.0123 (4)0.0248 (9)
C30.3919 (4)0.5766 (3)0.1629 (4)0.0207 (9)
H3A0.41680.63310.19800.025*
C60.2467 (4)0.4229 (2)0.1258 (4)0.0238 (10)
H6A0.26390.36080.10940.029*
H6B0.28880.44100.21740.029*
C70.0929 (4)0.4384 (3)0.1641 (5)0.0320 (11)
H7A0.05370.40550.25850.048*
H7B0.07530.49960.18420.048*
H7C0.05050.42020.07420.048*
N140.6643 (3)0.43521 (18)0.4476 (3)0.0158 (7)
C150.6704 (4)0.3636 (2)0.3554 (4)0.0146 (8)
H15A0.59340.33410.29890.018*
N110.8016 (3)0.34183 (19)0.3574 (3)0.0179 (7)
N120.8900 (3)0.3977 (2)0.4543 (4)0.0246 (8)
C130.8018 (4)0.4521 (2)0.5038 (4)0.0207 (9)
H13A0.83110.49890.57230.025*
C160.8562 (4)0.2685 (2)0.2729 (5)0.0253 (10)
H16A0.78650.25130.18090.030*
H16B0.87320.21890.34570.030*
C170.9891 (5)0.2922 (3)0.2154 (5)0.0382 (12)
H17A1.02260.24260.16330.057*
H17B1.05820.30950.30620.057*
H17C0.97180.33980.13990.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0217 (4)0.0154 (3)0.0152 (3)0.0030 (4)0.0011 (3)0.0019 (3)
N210.030 (2)0.0136 (18)0.0209 (18)0.0007 (16)0.0033 (16)0.0028 (14)
O10.0312 (17)0.0107 (14)0.0300 (16)0.0014 (12)0.0004 (13)0.0039 (12)
O20.042 (2)0.0196 (16)0.063 (2)0.0033 (14)0.0348 (17)0.0083 (15)
O30.0252 (18)0.0205 (15)0.0469 (18)0.0058 (14)0.0022 (14)0.0072 (13)
N40.0187 (16)0.0120 (15)0.0140 (14)0.0002 (15)0.0017 (12)0.0019 (15)
C50.019 (2)0.016 (2)0.018 (2)0.0013 (17)0.0033 (17)0.0003 (17)
N10.025 (2)0.0157 (17)0.0091 (16)0.0026 (14)0.0020 (14)0.0022 (13)
N20.037 (2)0.0205 (19)0.0144 (18)0.0001 (17)0.0042 (16)0.0023 (15)
C30.026 (2)0.016 (2)0.018 (2)0.0024 (18)0.0011 (18)0.0013 (17)
C60.036 (3)0.020 (2)0.013 (2)0.0014 (19)0.0023 (18)0.0053 (17)
C70.032 (3)0.034 (3)0.027 (2)0.006 (2)0.004 (2)0.003 (2)
N140.0215 (19)0.0131 (17)0.0126 (16)0.0019 (14)0.0020 (13)0.0029 (13)
C150.017 (2)0.011 (2)0.016 (2)0.0024 (16)0.0034 (16)0.0000 (16)
N110.0171 (18)0.0143 (17)0.0212 (18)0.0022 (14)0.0006 (14)0.0033 (14)
N120.020 (2)0.027 (2)0.0260 (19)0.0019 (15)0.0009 (15)0.0084 (15)
C130.021 (2)0.019 (2)0.021 (2)0.0028 (18)0.0012 (17)0.0052 (17)
C160.030 (3)0.018 (2)0.029 (2)0.0060 (19)0.0085 (19)0.0070 (18)
C170.051 (3)0.022 (2)0.049 (3)0.006 (2)0.031 (2)0.007 (2)
Geometric parameters (Å, º) top
Cu1—N14i1.990 (3)C6—H6B0.9700
Cu1—N141.990 (3)C7—H7A0.9600
Cu1—N42.020 (3)C7—H7B0.9600
Cu1—N4i2.020 (3)C7—H7C0.9600
Cu1—O12.394 (3)N14—C151.347 (4)
Cu1—O1i2.394 (3)N14—C131.361 (4)
N21—O21.239 (4)C15—N111.312 (4)
N21—O31.248 (4)C15—H15A0.9300
N21—O11.266 (4)N11—N121.373 (4)
N4—C51.339 (4)N11—C161.473 (4)
N4—C31.362 (4)N12—C131.311 (4)
C5—N11.312 (4)C13—H13A0.9300
C5—H5A0.9300C16—C171.498 (5)
N1—N21.371 (4)C16—H16A0.9700
N1—C61.470 (4)C16—H16B0.9700
N2—C31.318 (4)C17—H17A0.9600
C3—H3A0.9300C17—H17B0.9600
C6—C71.491 (5)C17—H17C0.9600
C6—H6A0.9700
N14i—Cu1—N14180.00N1—C6—H6B109.1
N14i—Cu1—N488.79 (11)C7—C6—H6B109.1
N14—Cu1—N491.21 (11)H6A—C6—H6B107.8
N14i—Cu1—N4i91.21 (11)C6—C7—H7A109.5
N14—Cu1—N4i88.79 (11)C6—C7—H7B109.5
N4—Cu1—N4i180.00H7A—C7—H7B109.5
N14i—Cu1—O193.74 (11)C6—C7—H7C109.5
N14—Cu1—O186.26 (11)H7A—C7—H7C109.5
N4—Cu1—O195.68 (10)H7B—C7—H7C109.5
N4i—Cu1—O184.32 (10)C15—N14—C13102.4 (3)
N14i—Cu1—O1i86.26 (11)C15—N14—Cu1130.4 (3)
N14—Cu1—O1i93.74 (11)C13—N14—Cu1127.2 (2)
N4—Cu1—O1i84.32 (10)N11—C15—N14109.7 (3)
N4i—Cu1—O1i95.68 (10)N11—C15—H15A125.1
O1—Cu1—O1i180.00N14—C15—H15A125.1
O2—N21—O3120.9 (3)C15—N11—N12110.8 (3)
O2—N21—O1119.1 (3)C15—N11—C16128.0 (3)
O3—N21—O1120.0 (3)N12—N11—C16121.2 (3)
N21—O1—Cu1135.2 (2)C13—N12—N11102.0 (3)
C5—N4—C3102.3 (3)N12—C13—N14115.1 (3)
C5—N4—Cu1128.2 (3)N12—C13—H13A122.5
C3—N4—Cu1129.5 (2)N14—C13—H13A122.5
N1—C5—N4110.2 (3)N11—C16—C17111.9 (3)
N1—C5—H5A124.9N11—C16—H16A109.2
N4—C5—H5A124.9C17—C16—H16A109.2
C5—N1—N2110.9 (3)N11—C16—H16B109.2
C5—N1—C6129.1 (3)C17—C16—H16B109.2
N2—N1—C6120.0 (3)H16A—C16—H16B107.9
C3—N2—N1101.5 (3)C16—C17—H17A109.5
N2—C3—N4115.2 (3)C16—C17—H17B109.5
N2—C3—H3A122.4H17A—C17—H17B109.5
N4—C3—H3A122.4C16—C17—H17C109.5
N1—C6—C7112.6 (3)H17A—C17—H17C109.5
N1—C6—H6A109.1H17B—C17—H17C109.5
C7—C6—H6A109.1
O2—N21—O1—Cu1142.7 (3)C5—N1—C6—C7104.8 (4)
O3—N21—O1—Cu137.6 (5)N2—N1—C6—C774.3 (4)
N14i—Cu1—O1—N2149.2 (3)N4—Cu1—N14—C1550.2 (3)
N14—Cu1—O1—N21130.8 (3)N4i—Cu1—N14—C15129.8 (3)
N4—Cu1—O1—N2139.9 (3)O1—Cu1—N14—C15145.8 (3)
N4i—Cu1—O1—N21140.1 (3)O1i—Cu1—N14—C1534.2 (3)
N14i—Cu1—N4—C5111.4 (3)N4—Cu1—N14—C13132.4 (3)
N14—Cu1—N4—C568.6 (3)N4i—Cu1—N14—C1347.6 (3)
O1—Cu1—N4—C5155.0 (3)O1—Cu1—N14—C1336.8 (3)
O1i—Cu1—N4—C525.0 (3)O1i—Cu1—N14—C13143.2 (3)
N14i—Cu1—N4—C368.4 (3)C13—N14—C15—N110.6 (4)
O1—Cu1—N4—C325.2 (3)Cu1—N14—C15—N11178.5 (2)
O1i—Cu1—N4—C3154.8 (3)N14—C15—N11—N121.0 (4)
C3—N4—C5—N10.7 (4)N14—C15—N11—C16179.6 (3)
Cu1—N4—C5—N1179.5 (2)C15—N11—N12—C130.9 (4)
N4—C5—N1—N20.1 (4)C16—N11—N12—C13179.6 (3)
N4—C5—N1—C6179.2 (3)N11—N12—C13—N140.5 (4)
C5—N1—N2—C30.8 (4)C15—N14—C13—N120.0 (4)
C6—N1—N2—C3178.5 (3)Cu1—N14—C13—N12178.0 (2)
N1—N2—C3—N41.2 (5)C15—N11—C16—C17144.1 (4)
C5—N4—C3—N21.2 (4)N12—N11—C16—C1736.6 (5)
Cu1—N4—C3—N2179.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O30.932.543.382 (5)151
C5—H5A···O2ii0.932.363.178 (5)146
C5—H5A···O1i0.932.563.010 (4)111
C15—H15A···O3ii0.932.403.237 (4)149
C17—H17A···O2iii0.962.603.180 (5)120
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
(II) top
Crystal data top
[Cu(NO3)2(C5H9N3)4]Z = 1
Mr = 632.18F(000) = 331
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.027 (6) ÅCell parameters from 4840 reflections
b = 8.523 (5) Åθ = 3.1–26.0°
c = 11.672 (5) ŵ = 0.82 mm1
α = 89.67 (4)°T = 100 K
β = 73.50 (5)°Needle, blue
γ = 70.19 (6)°0.2 × 0.1 × 0.1 mm
V = 716.7 (8) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2358 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 26.0°, θmin = 3.1°
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1h = 69
ω scansk = 910
4840 measured reflectionsl = 1414
2766 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
2766 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cu(NO3)2(C5H9N3)4]γ = 70.19 (6)°
Mr = 632.18V = 716.7 (8) Å3
Triclinic, P1Z = 1
a = 8.027 (6) ÅMo Kα radiation
b = 8.523 (5) ŵ = 0.82 mm1
c = 11.672 (5) ÅT = 100 K
α = 89.67 (4)°0.2 × 0.1 × 0.1 mm
β = 73.50 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2358 reflections with I > 2σ(I)
4840 measured reflectionsRint = 0.019
2766 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 0.98Δρmax = 0.24 e Å3
2766 reflectionsΔρmin = 0.27 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.01388 (10)
O10.81736 (16)0.37618 (15)0.50323 (11)0.0236 (3)
N210.9696 (2)0.29666 (18)0.42608 (13)0.0207 (3)
O21.01924 (17)0.35387 (16)0.32793 (11)0.0291 (3)
N40.54576 (18)0.39492 (16)0.33527 (12)0.0140 (3)
C50.4347 (2)0.3318 (2)0.30218 (14)0.0155 (4)
H5A0.32690.32240.35330.019*
N10.50020 (18)0.28434 (16)0.18558 (12)0.0140 (3)
N20.66133 (19)0.31533 (18)0.13708 (12)0.0207 (3)
C30.6819 (2)0.3817 (2)0.23087 (15)0.0187 (4)
H3A0.78120.41670.22650.022*
C60.4183 (2)0.2159 (2)0.11068 (15)0.0175 (4)
H6A0.33770.16280.16020.021*
H6B0.51620.13090.05060.021*
C70.3079 (3)0.3498 (2)0.04882 (16)0.0245 (4)
H7A0.38790.40480.00100.029*
H7B0.20840.43340.10900.029*
C80.2261 (3)0.2797 (3)0.03136 (17)0.0317 (5)
H8A0.15670.36910.06840.047*
H8B0.14520.22660.01580.047*
H8C0.32420.19890.09240.047*
N140.55475 (18)0.69912 (16)0.42706 (11)0.0136 (3)
C150.7193 (2)0.7175 (2)0.38918 (14)0.0161 (4)
H150.83050.64000.39400.019*
N110.70046 (19)0.86345 (16)0.34345 (12)0.0149 (3)
N120.51968 (19)0.94714 (17)0.35110 (13)0.0191 (3)
C130.4368 (2)0.8436 (2)0.40219 (14)0.0167 (4)
H130.30990.86710.41960.020*
C160.8421 (2)0.9377 (2)0.29173 (16)0.0204 (4)
H16A0.84161.01480.35270.025*
H16B0.81091.00140.22690.025*
C171.0343 (2)0.8078 (2)0.24413 (16)0.0217 (4)
H17A1.03350.72500.18790.026*
H17B1.07130.75100.30990.026*
C181.17267 (18)0.88935 (16)0.18175 (11)0.0300 (5)
H18A1.29400.80510.15190.045*
H18B1.17480.97000.23790.045*
H18C1.13670.94450.11610.045*
O311.09477 (18)0.18000 (16)0.44575 (11)0.0263 (7)0.55
O321.04184 (18)0.14614 (16)0.45335 (11)0.0339 (10)0.45
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01790 (17)0.01193 (16)0.01352 (16)0.00748 (13)0.00460 (12)0.00282 (11)
O10.0125 (6)0.0279 (7)0.0244 (7)0.0022 (5)0.0022 (5)0.0066 (6)
N210.0201 (8)0.0176 (8)0.0253 (9)0.0016 (7)0.0138 (7)0.0036 (6)
O20.0219 (7)0.0352 (8)0.0255 (7)0.0102 (6)0.0001 (6)0.0018 (6)
N40.0164 (7)0.0116 (7)0.0146 (7)0.0058 (6)0.0048 (6)0.0025 (6)
C50.0160 (9)0.0145 (9)0.0151 (9)0.0069 (7)0.0011 (7)0.0014 (7)
N10.0158 (7)0.0135 (7)0.0146 (7)0.0073 (6)0.0048 (6)0.0030 (6)
N20.0220 (8)0.0269 (8)0.0166 (8)0.0152 (7)0.0027 (6)0.0034 (6)
C30.0198 (9)0.0225 (9)0.0177 (9)0.0126 (8)0.0054 (7)0.0041 (7)
C60.0224 (9)0.0177 (9)0.0151 (9)0.0104 (8)0.0055 (7)0.0008 (7)
C70.0308 (11)0.0210 (10)0.0251 (10)0.0090 (8)0.0136 (9)0.0039 (8)
C80.0400 (12)0.0328 (11)0.0298 (11)0.0146 (10)0.0198 (10)0.0063 (9)
N140.0157 (7)0.0118 (7)0.0124 (7)0.0045 (6)0.0031 (6)0.0006 (6)
C150.0173 (9)0.0128 (8)0.0185 (9)0.0057 (7)0.0054 (7)0.0033 (7)
N110.0175 (7)0.0118 (7)0.0155 (7)0.0064 (6)0.0032 (6)0.0025 (6)
N120.0174 (8)0.0149 (7)0.0231 (8)0.0043 (6)0.0048 (6)0.0052 (6)
C130.0172 (9)0.0144 (9)0.0176 (9)0.0052 (7)0.0045 (7)0.0026 (7)
C160.0232 (10)0.0153 (9)0.0233 (10)0.0106 (8)0.0030 (8)0.0043 (7)
C170.0221 (10)0.0218 (10)0.0228 (10)0.0103 (8)0.0062 (8)0.0022 (8)
C180.0265 (11)0.0392 (12)0.0247 (11)0.0180 (9)0.0006 (9)0.0028 (9)
O310.0233 (14)0.0186 (14)0.0312 (17)0.0009 (13)0.0095 (12)0.0066 (12)
O320.042 (2)0.0110 (17)0.034 (2)0.0087 (16)0.0118 (17)0.0002 (14)
Geometric parameters (Å, º) top
Cu1—N42.007 (2)C7—H7A0.9700
Cu1—N4i2.007 (2)C7—H7B0.9700
Cu1—N14i2.019 (2)C8—H8A0.9600
Cu1—N142.018 (2)C8—H8B0.9600
Cu1—O12.416 (2)C8—H8C0.9600
Cu1—O1i2.416 (2)N14—C151.331 (2)
O1—N211.259 (2)N14—C131.363 (2)
N21—O311.226 (2)C15—N111.329 (2)
N21—O21.255 (2)C15—H150.9300
N21—O321.296 (2)N11—N121.359 (2)
N4—C51.325 (2)N11—C161.467 (2)
N4—C31.361 (2)N12—C131.320 (2)
C5—N11.322 (2)C13—H130.9300
C5—H5A0.9300C16—C171.509 (3)
N1—N21.370 (2)C16—H16A0.9700
N1—C61.459 (2)C16—H16B0.9700
N2—C31.311 (2)C17—C181.518 (2)
C3—H3A0.9300C17—H17A0.9700
C6—C71.509 (3)C17—H17B0.9700
C6—H6A0.9700C18—H18A0.9600
C6—H6B0.9700C18—H18B0.9600
C7—C81.512 (3)C18—H18C0.9600
N4—Cu1—N4i180.00C8—C7—H7A109.1
N4—Cu1—N14i90.18 (7)C6—C7—H7B109.1
N4i—Cu1—N14i89.82 (7)C8—C7—H7B109.1
N4—Cu1—N1489.82 (7)H7A—C7—H7B107.9
N4i—Cu1—N1490.18 (7)C7—C8—H8A109.5
N14i—Cu1—N14180.00C7—C8—H8B109.5
N4—Cu1—O195.59 (8)H8A—C8—H8B109.5
N4i—Cu1—O184.41 (8)C7—C8—H8C109.5
N14i—Cu1—O189.98 (8)H8A—C8—H8C109.5
N14—Cu1—O190.02 (8)H8B—C8—H8C109.5
N4—Cu1—O1i84.41 (8)C15—N14—C13103.41 (15)
N4i—Cu1—O1i95.59 (8)C15—N14—Cu1127.24 (12)
N14i—Cu1—O1i90.02 (8)C13—N14—Cu1129.33 (12)
N14—Cu1—O1i89.98 (8)N11—C15—N14109.67 (16)
O1—Cu1—O1i180.00N11—C15—H15125.2
N21—O1—Cu1134.70 (11)N14—C15—H15125.2
O31—N21—O2113.35 (16)C15—N11—N12110.25 (14)
O31—N21—O1124.75 (16)C15—N11—C16129.21 (15)
O2—N21—O1120.47 (15)N12—N11—C16120.53 (14)
O2—N21—O32127.05 (15)C13—N12—N11102.91 (14)
O1—N21—O32111.38 (16)N12—C13—N14113.75 (16)
C5—N4—C3103.30 (14)N12—C13—H13123.1
C5—N4—Cu1125.78 (12)N14—C13—H13123.1
C3—N4—Cu1130.73 (12)N11—C16—C17112.60 (15)
N1—C5—N4109.81 (15)N11—C16—H16A109.1
N1—C5—H5A125.1C17—C16—H16A109.1
N4—C5—H5A125.1N11—C16—H16B109.1
C5—N1—N2110.27 (14)C17—C16—H16B109.1
C5—N1—C6128.36 (15)H16A—C16—H16B107.8
N2—N1—C6121.31 (14)C16—C17—C18110.53 (15)
C3—N2—N1102.27 (14)C16—C17—H17A109.5
N2—C3—N4114.36 (15)C18—C17—H17A109.5
N2—C3—H3A122.8C16—C17—H17B109.5
N4—C3—H3A122.8C18—C17—H17B109.5
N1—C6—C7111.89 (14)H17A—C17—H17B108.1
N1—C6—H6A109.2C17—C18—H18A109.5
C7—C6—H6A109.2C17—C18—H18B109.5
N1—C6—H6B109.2H18A—C18—H18B109.5
C7—C6—H6B109.2C17—C18—H18C109.5
H6A—C6—H6B107.9H18A—C18—H18C109.5
C6—C7—C8112.37 (16)H18B—C18—H18C109.5
C6—C7—H7A109.1
N4—Cu1—O1—N2110.75 (15)N1—C6—C7—C8178.67 (15)
N4i—Cu1—O1—N21169.25 (15)N4—Cu1—N14—C1588.88 (15)
N14i—Cu1—O1—N21100.93 (15)N4i—Cu1—N14—C1591.12 (15)
N14—Cu1—O1—N2179.07 (15)O1—Cu1—N14—C156.70 (14)
Cu1—O1—N21—O31143.37 (14)O1i—Cu1—N14—C15173.30 (14)
Cu1—O1—N21—O251.2 (2)N4—Cu1—N14—C1389.55 (15)
Cu1—O1—N21—O32117.58 (15)N4i—Cu1—N14—C1390.45 (15)
N14i—Cu1—N4—C549.57 (14)O1—Cu1—N14—C13174.87 (14)
N14—Cu1—N4—C5130.43 (14)O1i—Cu1—N14—C135.13 (14)
O1—Cu1—N4—C5139.57 (14)C13—N14—C15—N110.59 (18)
O1i—Cu1—N4—C540.43 (14)Cu1—N14—C15—N11178.16 (10)
N14i—Cu1—N4—C3136.25 (15)N14—C15—N11—N120.54 (19)
N14—Cu1—N4—C343.75 (15)N14—C15—N11—C16179.65 (15)
O1—Cu1—N4—C346.25 (15)C15—N11—N12—C130.23 (17)
O1i—Cu1—N4—C3133.75 (15)C16—N11—N12—C13179.43 (14)
C3—N4—C5—N10.12 (18)N11—N12—C13—N140.15 (18)
Cu1—N4—C5—N1175.35 (10)C15—N14—C13—N120.46 (19)
N4—C5—N1—N20.15 (18)Cu1—N14—C13—N12178.25 (11)
N4—C5—N1—C6176.86 (14)C15—N11—C16—C1724.6 (2)
C5—N1—N2—C30.11 (18)N12—N11—C16—C17156.41 (15)
C6—N1—N2—C3177.14 (14)N11—C16—C17—C18174.92 (13)
N1—N2—C3—N40.04 (19)O2—N21—O31—O32127.46 (13)
C5—N4—C3—N20.05 (19)O1—N21—O31—O3266.23 (15)
Cu1—N4—C3—N2175.10 (11)O2—N21—O32—O3165.95 (16)
C5—N1—C6—C795.8 (2)O1—N21—O32—O31126.15 (13)
N2—N1—C6—C780.9 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O20.932.433.158 (3)135
C15—H15···O10.932.603.139 (3)118
C15—H15···O20.932.393.147 (4)139
C5—H5A···O2ii0.932.493.202 (3)133
C5—H5A···O31ii0.932.553.420 (3)157
C13—H13···O32iii0.932.553.234 (4)131
Symmetry codes: (ii) x1, y, z; (iii) x1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(NO3)2(C4H7N3)4][Cu(NO3)2(C5H9N3)4]
Mr576.06632.18
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)100100
a, b, c (Å)9.703 (2), 15.288 (3), 8.386 (2)8.027 (6), 8.523 (5), 11.672 (5)
α, β, γ (°)90, 99.97 (1), 9089.67 (4), 73.50 (5), 70.19 (6)
V3)1225.2 (5)716.7 (8)
Z21
Radiation typeMo KαMo Kα
µ (mm1)0.960.82
Crystal size (mm)0.2 × 0.2 × 0.10.2 × 0.1 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Oxford Diffraction Xcalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7990, 2384, 1339 4840, 2766, 2358
Rint0.0850.019
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.089, 0.83 0.026, 0.061, 0.98
No. of reflections23862766
No. of parameters215190
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.620.24, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Cu1—N141.990 (3)N21—O21.239 (4)
Cu1—N42.020 (3)N21—O31.248 (4)
Cu1—O12.394 (3)N21—O11.266 (4)
N14—Cu1—N491.21 (11)O2—N21—O1119.1 (3)
N14—Cu1—O186.26 (11)O3—N21—O1120.0 (3)
N4—Cu1—O195.68 (10)N21—O1—Cu1135.2 (2)
O2—N21—O3120.9 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O30.932.543.382 (5)151
C5—H5A···O2i0.932.363.178 (5)146
C5—H5A···O1ii0.932.563.010 (4)111
C15—H15A···O3i0.932.403.237 (4)149
C17—H17A···O2iii0.962.603.180 (5)120
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+2, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Cu1—N42.007 (2)N21—O311.226 (2)
Cu1—N142.018 (2)N21—O21.255 (2)
Cu1—O12.416 (2)N21—O321.296 (2)
O1—N211.259 (2)
N4—Cu1—N14i90.18 (7)O31—N21—O2113.35 (16)
N4—Cu1—N1489.82 (7)O31—N21—O1124.75 (16)
N4—Cu1—O195.59 (8)O2—N21—O1120.47 (15)
N14—Cu1—O190.02 (8)O2—N21—O32127.05 (15)
N21—O1—Cu1134.70 (11)O1—N21—O32111.38 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O20.932.433.158 (3)135
C15—H15···O10.932.603.139 (3)118
C15—H15···O20.932.393.147 (4)139
C5—H5A···O2ii0.932.493.202 (3)133
C5—H5A···O31ii0.932.553.420 (3)157
C13—H13···O32iii0.932.553.234 (4)131
Symmetry codes: (ii) x1, y, z; (iii) x1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds