Download citation
Download citation
link to html
Syntheses and X-ray structural investigations have been carried out for the three title compounds, C19H16N2O2, (IIIa), C19H16N2O3, (IIIb), and C22H22N2O3, (IIIc), respectively. In mol­ecules (IIIa) and (IIIc), the heterocyclic ring is practically flat, while in (IIIb) it adopts a flattened-boat conformation. In (IIIb) and (IIIc), the carbonyl group and a double bond of the heterocyclic ring are anti, but in (IIIa) they are syn and the carbonyl group participates in an intra­molecular C-H...O hydrogen bond which forms a six-membered ring. In mol­ecules (IIIa) and (IIIc), the dihedral angles between the naphthalene substituent and the flat heterocyclic ring are 96.4 (3) and 102.6 (3)°, respectively. In (IIIb), the dihedral angle between the pseudo-axial naphthalene bicycle and the flat part of the pyran ring is 81.6 (3)°. In the crystal structure of (IIIa), intermolecular N-H...N and N-H...O hydrogen bonds link the mol­ecules into a three-dimensional framework. In (IIIb) and (IIIc), only one H atom of the NH2 group takes part in an N-H...O hydrogen bond and infinite chains are formed along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104013812/sq1162sup1.cif
Contains datablocks IIIa, IIIb, IIIc, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104013812/sq1162IIIasup2.hkl
Contains datablock IIIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104013812/sq1162IIIbsup3.hkl
Contains datablock IIIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104013812/sq1162IIIcsup4.hkl
Contains datablock IIIc

CCDC references: 248154; 248155; 248156

Comment top

The present investigation of the title compounds, (IIIa), (IIIb) and (IIIc), is a continuation of our work on the synthesis and structural study of heterocyclic compounds, such as 4H-pyran derivatives (Sharanina et al., 1986; Klokol et al., 1987; Nesterov & Viltchinskaia, 2001; Shestopalov et al., 2002, 2003; Nesterov et al., 2004), that can be obtained starting from different unsaturated nitriles (Nesterov et al., 2001a,b). Some 4H-pyran derivatives are potential bioactive compounds, such as calcium antagonists (Suarez et al., 2002). \sch

Syntheses and X-ray structural investigations have been carried out for compounds (IIIa), (IIIb) and (IIIc) (Figs. 1–3), which were synthezized by the reaction of (1-naphthylmethylene)malononitrile, (I) (Nesterov et al., 2001a), with a 1,3-diketone or β-ketoesters, (II). Most of the geometric parameters in the molecules are very similar to the standard values (Allen et al., 1987), and are very close to our data from analogous compounds (Nesterov & Viltchinskaia, 2001; Nesterov et al., 2004) and to the literature data cited in those previous works.

The X-ray analyses showed that all three title molecules have slightly different structures. The pyran ring in (IIIa) and (IIIc) is practically flat [planar to within 0.009 (3) and 0.013 (3) Å, respectively]. However, in (IIIb) it adopts a flattened boat conformation: atoms O1 and C4 are displaced out of the C2/C3/C5/C6 plane [planar to within 0.017 (3) Å] by −0.106 (3) and −0.208 (3) Å, respectively. The bending of the pyran ring of (IIIb) along the lines O1···C4, C2···C6 and C3···C5 is 14.7 (3), 8.8 (3) and 13.8 (3)°, respectively.

In molecules (IIIa) and (IIIc), the dihedral angles between the bulky naphthalene substituent and the pyran ring is 96.4 (3) and 102.6 (3)°, respectively. In (IIIb), the naphthalene substituent occupies a pseudo-axial position and the dihedral angle with the flat part of the pyran rings is 81.6 (3)°. The mutual orientation of these fragments and the flatness of the heterocyclic rings lead to H···H intramolecular steric interactions: H4A···H15A 2.06 in (IIIa), 2.06 in (IIIb) and 2.04 Å in (IIIc). These contacts are shorter than the sum of the van der Waals radii of H atoms (Rowland & Taylor, 1996). As mentioned previously by us for related compounds (Nesterov et al., 2004), such steric hindrance causes elongation of the C4—C7 bond lengths to 1.540 (2), 1.536 (3) and 1.530 (3) Å, respectively, in comparison with the neighbouring Csp3—Csp2 distances, which are only slightly longer than or equal to the standard value (Allen et al., 1987).

The CO group has interesting orientational preferences relative to the C5C6 double bond in the title molecules. In (IIIb) and (IIIc), the groups are anti [`transoid'; C6—C5—C18—O2 torsion angles 176.9 (2) and −154.6 (3)°, respectively]. However, in (IIIa) they are syn [`cisoid'; C6—C5—C18—O2 torsion angle is 34.9 (3)°]. In the latter case, a short intramolecular contact [O2···H17A 2.32 Å] is present which connects the atoms into a six-membered ring. According to literature data (Desiraju & Steiner 1999), this contact can be considered to be a weak hydrogen bond, with parameters C17···O2 2.894 (3) Å, C17—H17A 0.96 Å and C17—H17A···O2 118°. As seen in Figs. 2 and 3, in (IIIb) and (IIIc) the O3 atoms of the ester groups have favourable orientations for the formation of short intramolecular contacts with the CH3 groups of the heterocyclic ring. The O3···H17A distances are 2.15 and 2.26 Å, respectively. These contacts can also be considered to be weak hydrogen bonds, with parameters C17···O3 2.792 (3) Å, C17—H17A 0.96 Å and C17—H17A···O3 123° in (IIIb), and C17···O3 2.837 (3) Å, C17—H17A 0.96 Å and C17—H17A···O3 118° in (IIIc). In each case, the hydrogen bond connects the atoms into a six-membered ring.

Similar to what we observed in related compounds (Nesterov & Viltchinskaia, 2001; Nesterov et al., 2004), in all three title molecules there is conjugation between the donor NH2 and the acceptor CN groups via the C2C3 double bond.

In the crystal of (IIIa), the active H atoms of the NH2 group participate in intermolecular N—H···N and N—H···O hydrogen bonds, linking the molecules into a three-dimensional framework (Fig. 4). However, in the crystals of (IIIb) and (IIIc), only one H atom of the NH2 group is involved in an N—H···O hydrogen bond, forming infinite chains along the a axis (Figs. 5 and 6).

Analysis of the crystal packings of all three compounds shows that there are intermolecular steric C···C contacts between atoms of the naphthalene substituents of neighbouring molecules which are less than the sum of the van der Waals radii of C (Rowland & Taylor, 1996). Such contacts probably play a role in the orientation of bulky substituents in the molecule and can be considered as ππ-interactions. The remaining geometrical parameters in the title molecules have standard values (Allen et al., 1987).

Experimental top

The title compounds were obtained by the reaction of (1-naphthylmethylene)malononitrile, (I) (Nesterov et al., 2001a), with acetylacetone, (IIa), methyl acetylacetate, (IIb), and tert-butyl acetylacetate, (IIc), respectively, according to the literature procedure of Nesterov & Viltchinskaia (2001) and Nesterov et al. (2004). The precipitates were isolated and recrystallized from acetonitrile [m.p. 468 K and yield 75% for (IIIa); m.p. 453 K and yield 79% for (IIIb); m.p. 479 K and yield 85% for (IIIc)]. All three compounds were characterized by 1H and 13C NMR spectroscopy; these data are available in the archived CIF. The crystals of all three compounds were grown by slow isothermic evaporation of acetonitrile solutions.

Refinement top

For all three compounds, H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H distances of 0.93 Å for aromatic H, 0.96 Å for CH3, 0.98 Å for CH and 0.86 Å for NH2 groups. In the cases of (IIIb) and (IIIc), the quality of the crystals was not very good and this is probably a reason for the high Rint values. Another reason is likely to be the high thermal motion of the terminal C atoms, especially in (IIIc).

Computing details top

For all compounds, data collection: CAD-4 Software (Enraf-Nonuis, 1989); cell refinement: CAD-4 Software; data reduction: SHELXTL-Plus (Sheldrick, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (IIIa), showing the atom numbering used. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate a weak intramolecular C—H···O hydrogen bond and a short intramolecular steric H···H interaction.
[Figure 2] Fig. 2. A view of the molecule of (IIIb), showing the atom numbering used. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate a weak intramolecular C—H···O hydrogen bond and a short intramolecular steric H···H interaction.
[Figure 3] Fig. 3. A view of the molecule of (IIIc), showing the atom numbering used. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate a weak intramolecular C—H···O hydrogen bond and a short intramolecular steric H···H interaction.
[Figure 4] Fig. 4. A projection of the crystal packing of (IIIa) along the a axis. Dashed lines indicate intermolecular N—H···N and N—H···O hydrogen bonds.
[Figure 5] Fig. 5. A projection of the crystal packing of (IIIb) along the c axis. Dashed lines indicate intermolecular N—H···O hydrogen bonds.
[Figure 6] Fig. 6. A projection of the crystal packing of (IIIb) along the b axis. Dashed lines indicate intermolecular N—H···O hydrogen bonds.
(IIIa) 5-Acetyl-2-amino-6-methyl-4-(1-naphthyl)-4H-pyran-3-carbonitrile top
Crystal data top
C19H16N2O2F(000) = 640
Mr = 304.34Dx = 1.296 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.8630 (16) ÅCell parameters from 24 reflections
b = 8.5960 (17) Åθ = 11–12°
c = 23.227 (5) ŵ = 0.09 mm1
β = 96.64 (3)°T = 295 K
V = 1559.4 (6) Å3Prism, colourless
Z = 40.50 × 0.40 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.096
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.8°
Graphite monochromatorh = 09
θ/2θ scansk = 010
3267 measured reflectionsl = 2828
3035 independent reflections3 standard reflections every 97 reflections
2151 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.05P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
3035 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H16N2O2V = 1559.4 (6) Å3
Mr = 304.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8630 (16) ŵ = 0.09 mm1
b = 8.5960 (17) ÅT = 295 K
c = 23.227 (5) Å0.50 × 0.40 × 0.30 mm
β = 96.64 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.096
3267 measured reflections3 standard reflections every 97 reflections
3035 independent reflections intensity decay: 3%
2151 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
3035 reflectionsΔρmin = 0.23 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67265 (17)0.10516 (16)0.19568 (6)0.0537 (4)
O20.4328 (2)0.42061 (19)0.30028 (7)0.0736 (5)
N10.7083 (2)0.00200 (19)0.11063 (7)0.0544 (4)
H1A0.80510.02920.12770.065*
H1B0.67950.01970.07470.065*
N20.3274 (3)0.0902 (2)0.01547 (8)0.0754 (6)
C10.3809 (2)0.1142 (2)0.06253 (8)0.0479 (5)
C20.6015 (2)0.0850 (2)0.14023 (8)0.0416 (4)
C30.4460 (2)0.14247 (19)0.12063 (7)0.0395 (4)
C40.3402 (2)0.23956 (19)0.15811 (7)0.0389 (4)
H4A0.23220.18510.16130.047*
C50.4359 (2)0.2560 (2)0.21816 (7)0.0410 (4)
C60.5867 (2)0.1902 (2)0.23372 (8)0.0464 (4)
C70.2991 (2)0.3998 (2)0.13025 (7)0.0392 (4)
C80.4310 (3)0.5032 (2)0.12907 (9)0.0491 (5)
H8A0.54030.47420.14500.059*
C90.4062 (3)0.6517 (2)0.10453 (9)0.0570 (5)
H9A0.49840.71940.10410.068*
C100.2484 (3)0.6961 (2)0.08162 (9)0.0572 (5)
H10A0.23220.79560.06620.069*
C110.1072 (3)0.5943 (2)0.08066 (8)0.0471 (5)
C120.0561 (3)0.6381 (3)0.05452 (9)0.0592 (6)
H12A0.07270.73800.03960.071*
C130.1888 (3)0.5382 (3)0.05069 (10)0.0659 (6)
H13A0.29550.56870.03270.079*
C140.1657 (3)0.3884 (3)0.07384 (10)0.0645 (6)
H14A0.25770.31980.07110.077*
C150.0117 (2)0.3416 (3)0.10022 (9)0.0522 (5)
H15A0.00030.24190.11570.063*
C160.1333 (2)0.4422 (2)0.10475 (7)0.0410 (4)
C170.6903 (3)0.1839 (3)0.29159 (10)0.0711 (7)
H17A0.62090.21550.32090.107*
H17B0.78660.25260.29190.107*
H17C0.73020.07950.29920.107*
C180.3511 (3)0.3450 (2)0.26234 (8)0.0502 (5)
C190.1608 (3)0.3355 (3)0.25905 (10)0.0641 (6)
H19A0.12430.37590.29410.096*
H19B0.12540.22900.25420.096*
H19C0.11020.39560.22670.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0523 (8)0.0607 (9)0.0462 (8)0.0150 (7)0.0026 (6)0.0072 (6)
O20.0907 (12)0.0680 (10)0.0632 (10)0.0070 (9)0.0138 (8)0.0238 (8)
N10.0588 (10)0.0539 (10)0.0507 (10)0.0154 (8)0.0072 (8)0.0041 (8)
N20.0909 (14)0.0801 (14)0.0509 (11)0.0351 (11)0.0097 (10)0.0136 (10)
C10.0565 (11)0.0400 (10)0.0462 (11)0.0133 (9)0.0014 (9)0.0027 (8)
C20.0501 (10)0.0339 (9)0.0411 (10)0.0000 (8)0.0063 (8)0.0009 (7)
C30.0472 (10)0.0319 (8)0.0393 (9)0.0009 (7)0.0043 (7)0.0013 (7)
C40.0423 (9)0.0328 (8)0.0421 (9)0.0004 (7)0.0071 (7)0.0020 (7)
C50.0500 (11)0.0343 (9)0.0394 (9)0.0003 (8)0.0080 (8)0.0029 (7)
C60.0563 (11)0.0418 (10)0.0405 (10)0.0021 (9)0.0030 (8)0.0032 (8)
C70.0482 (10)0.0331 (8)0.0370 (9)0.0008 (8)0.0082 (7)0.0007 (7)
C80.0523 (11)0.0390 (10)0.0553 (12)0.0041 (8)0.0033 (9)0.0005 (9)
C90.0701 (14)0.0377 (10)0.0625 (13)0.0127 (10)0.0054 (10)0.0028 (9)
C100.0824 (15)0.0333 (9)0.0557 (12)0.0026 (10)0.0068 (11)0.0037 (9)
C110.0608 (12)0.0428 (10)0.0383 (10)0.0110 (9)0.0081 (8)0.0019 (8)
C120.0718 (14)0.0578 (13)0.0487 (12)0.0241 (11)0.0102 (10)0.0091 (10)
C130.0558 (13)0.0869 (17)0.0555 (13)0.0211 (13)0.0083 (10)0.0141 (12)
C140.0469 (12)0.0835 (16)0.0636 (14)0.0011 (11)0.0082 (10)0.0132 (12)
C150.0486 (11)0.0560 (12)0.0526 (11)0.0001 (9)0.0081 (9)0.0107 (9)
C160.0477 (10)0.0396 (9)0.0372 (9)0.0047 (8)0.0108 (7)0.0026 (7)
C170.0800 (16)0.0753 (15)0.0529 (13)0.0171 (13)0.0137 (11)0.0107 (12)
C180.0698 (13)0.0395 (10)0.0424 (10)0.0034 (9)0.0108 (9)0.0033 (8)
C190.0737 (15)0.0648 (14)0.0577 (13)0.0143 (12)0.0244 (11)0.0006 (11)
Geometric parameters (Å, º) top
O1—C21.355 (2)C9—H9A0.9300
O1—C61.382 (2)C10—C111.412 (3)
O2—C181.217 (2)C10—H10A0.9300
N1—C21.349 (2)C11—C121.406 (3)
N1—H1A0.8600C11—C161.428 (3)
N1—H1B0.8600C12—C131.347 (3)
N2—C11.143 (2)C12—H12A0.9300
C1—C31.408 (3)C13—C141.400 (3)
C2—C31.348 (3)C13—H13A0.9300
C3—C41.521 (2)C14—C151.353 (3)
C4—C51.513 (2)C14—H14A0.9300
C4—C71.540 (2)C15—C161.425 (3)
C4—H4A0.9800C15—H15A0.9300
C5—C61.325 (3)C17—H17A0.9600
C5—C181.497 (3)C17—H17B0.9600
C6—C171.490 (3)C17—H17C0.9600
C7—C81.368 (3)C18—C191.492 (3)
C7—C161.416 (3)C19—H19A0.9600
C8—C91.402 (3)C19—H19B0.9600
C8—H8A0.9300C19—H19C0.9600
C9—C101.348 (3)
C2—O1—C6119.78 (14)C11—C10—H10A119.4
C2—N1—H1A120.0C12—C11—C10121.18 (18)
C2—N1—H1B120.0C12—C11—C16119.79 (19)
H1A—N1—H1B120.0C10—C11—C16118.99 (17)
N2—C1—C3179.5 (2)C13—C12—C11121.3 (2)
N1—C2—O1109.82 (16)C13—C12—H12A119.3
N1—C2—C3127.98 (17)C11—C12—H12A119.3
O1—C2—C3122.20 (16)C12—C13—C14119.7 (2)
C2—C3—C1118.38 (17)C12—C13—H13A120.1
C2—C3—C4122.85 (16)C14—C13—H13A120.1
C1—C3—C4118.75 (15)C15—C14—C13121.1 (2)
C5—C4—C3109.40 (14)C15—C14—H14A119.4
C5—C4—C7111.19 (14)C13—C14—H14A119.4
C3—C4—C7110.62 (14)C14—C15—C16121.3 (2)
C5—C4—H4A108.5C14—C15—H15A119.4
C3—C4—H4A108.5C16—C15—H15A119.4
C7—C4—H4A108.5C7—C16—C11118.88 (17)
C6—C5—C18119.11 (17)C7—C16—C15124.39 (17)
C6—C5—C4123.05 (16)C11—C16—C15116.71 (17)
C18—C5—C4117.78 (16)C6—C17—H17A109.5
C5—C6—O1122.66 (17)C6—C17—H17B109.5
C5—C6—C17129.78 (19)H17A—C17—H17B109.5
O1—C6—C17107.50 (17)C6—C17—H17C109.5
C8—C7—C16119.19 (16)H17A—C17—H17C109.5
C8—C7—C4117.84 (16)H17B—C17—H17C109.5
C16—C7—C4122.95 (15)O2—C18—C19120.57 (19)
C7—C8—C9121.97 (19)O2—C18—C5121.97 (19)
C7—C8—H8A119.0C19—C18—C5117.45 (18)
C9—C8—H8A119.0C18—C19—H19A109.5
C10—C9—C8119.78 (19)C18—C19—H19B109.5
C10—C9—H9A120.1H19A—C19—H19B109.5
C8—C9—H9A120.1C18—C19—H19C109.5
C9—C10—C11121.14 (18)H19A—C19—H19C109.5
C9—C10—H10A119.4H19B—C19—H19C109.5
C6—O1—C2—N1178.62 (16)C4—C7—C8—C9179.87 (18)
C6—O1—C2—C31.6 (3)C7—C8—C9—C100.5 (3)
N1—C2—C3—C10.6 (3)C8—C9—C10—C111.4 (3)
O1—C2—C3—C1179.13 (16)C9—C10—C11—C12177.2 (2)
N1—C2—C3—C4177.86 (17)C9—C10—C11—C160.3 (3)
O1—C2—C3—C42.4 (3)C10—C11—C12—C13176.3 (2)
C2—C3—C4—C50.9 (2)C16—C11—C12—C131.2 (3)
C1—C3—C4—C5179.32 (15)C11—C12—C13—C141.0 (3)
C2—C3—C4—C7121.95 (18)C12—C13—C14—C150.1 (4)
C1—C3—C4—C756.5 (2)C13—C14—C15—C160.9 (3)
C3—C4—C5—C61.5 (2)C8—C7—C16—C112.6 (3)
C7—C4—C5—C6123.95 (19)C4—C7—C16—C11179.18 (15)
C3—C4—C5—C18178.58 (15)C8—C7—C16—C15176.14 (18)
C7—C4—C5—C1858.9 (2)C4—C7—C16—C152.1 (3)
C18—C5—C6—O1179.45 (16)C12—C11—C16—C7179.24 (17)
C4—C5—C6—O12.4 (3)C10—C11—C16—C71.7 (3)
C18—C5—C6—C172.7 (3)C12—C11—C16—C150.4 (3)
C4—C5—C6—C17174.4 (2)C10—C11—C16—C15177.12 (17)
C2—O1—C6—C50.8 (3)C14—C15—C16—C7178.1 (2)
C2—O1—C6—C17176.59 (18)C14—C15—C16—C110.6 (3)
C5—C4—C7—C851.9 (2)C6—C5—C18—O234.9 (3)
C3—C4—C7—C869.8 (2)C4—C5—C18—O2147.83 (19)
C5—C4—C7—C16129.80 (17)C6—C5—C18—C19143.94 (19)
C3—C4—C7—C16108.44 (19)C4—C5—C18—C1933.3 (2)
C16—C7—C8—C91.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.543.374 (2)165
N1—H1B···N2ii0.862.183.016 (2)166
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z.
(IIIb) methyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxylate top
Crystal data top
C19H16N2O3Z = 2
Mr = 320.34F(000) = 336
Triclinic, P1Dx = 1.319 Mg m3
a = 8.3150 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.283 (2) ÅCell parameters from 24 reflections
c = 10.793 (2) Åθ = 11–12°
α = 112.38 (3)°µ = 0.09 mm1
β = 96.66 (3)°T = 295 K
γ = 103.83 (3)°Prism, colourless
V = 806.3 (4) Å30.45 × 0.40 × 0.25 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.046
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.1°
Graphite monochromatorh = 010
θ/2θ scansk = 1313
4108 measured reflectionsl = 1414
3841 independent reflections3 standard reflections every 97 reflections
1923 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.08P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
3841 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H16N2O3γ = 103.83 (3)°
Mr = 320.34V = 806.3 (4) Å3
Triclinic, P1Z = 2
a = 8.3150 (17) ÅMo Kα radiation
b = 10.283 (2) ŵ = 0.09 mm1
c = 10.793 (2) ÅT = 295 K
α = 112.38 (3)°0.45 × 0.40 × 0.25 mm
β = 96.66 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.046
4108 measured reflections3 standard reflections every 97 reflections
3841 independent reflections intensity decay: 3%
1923 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
3841 reflectionsΔρmin = 0.18 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9099 (2)0.2278 (2)0.46612 (17)0.0539 (5)
O20.3788 (2)0.3042 (2)0.51011 (19)0.0635 (6)
O30.4910 (3)0.2187 (2)0.6480 (2)0.0704 (6)
N11.0744 (3)0.2997 (3)0.3417 (2)0.0624 (7)
H1A1.09950.33680.28460.075*
H1B1.14500.26580.37510.075*
N20.8599 (4)0.4766 (3)0.1825 (3)0.0884 (9)
C10.8332 (3)0.4164 (3)0.2508 (3)0.0526 (6)
C20.9254 (3)0.2946 (3)0.3787 (2)0.0437 (6)
C30.8017 (3)0.3424 (3)0.3365 (2)0.0402 (5)
C40.6288 (3)0.3089 (2)0.3695 (2)0.0369 (5)
H4A0.59650.39980.39980.044*
C50.6411 (3)0.2633 (2)0.4869 (2)0.0387 (5)
C60.7738 (3)0.2256 (3)0.5283 (2)0.0438 (6)
C70.4930 (3)0.1905 (2)0.2419 (2)0.0363 (5)
C80.4765 (3)0.0452 (3)0.2074 (2)0.0467 (6)
H8A0.54690.02060.26250.056*
C90.3565 (3)0.0688 (3)0.0910 (3)0.0563 (7)
H9A0.34910.16700.06910.068*
C100.2520 (3)0.0344 (3)0.0111 (3)0.0554 (7)
H10A0.17170.11000.06510.066*
C110.2624 (3)0.1132 (3)0.0410 (2)0.0466 (6)
C120.1510 (3)0.1502 (4)0.0400 (3)0.0608 (8)
H12A0.06930.07490.11540.073*
C130.1605 (4)0.2921 (4)0.0104 (3)0.0679 (8)
H13A0.08490.31370.06440.082*
C140.2846 (4)0.4066 (4)0.1019 (3)0.0625 (7)
H14A0.29270.50440.12080.075*
C150.3936 (3)0.3763 (3)0.1838 (3)0.0484 (6)
H15A0.47470.45400.25810.058*
C160.3861 (3)0.2294 (3)0.1584 (2)0.0392 (5)
C170.8077 (4)0.1729 (4)0.6371 (3)0.0663 (8)
H17A0.70230.13370.65730.100*
H17B0.88160.25400.71900.100*
H17C0.86120.09700.60490.100*
C180.4921 (3)0.2634 (3)0.5476 (2)0.0447 (6)
C190.3464 (5)0.2224 (4)0.7114 (4)0.0893 (12)
H19A0.36640.20240.79070.134*
H19B0.24570.14890.64640.134*
H19C0.33140.31840.73880.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0389 (9)0.0852 (13)0.0548 (11)0.0298 (9)0.0146 (8)0.0402 (10)
O20.0434 (10)0.0957 (15)0.0593 (11)0.0355 (10)0.0144 (8)0.0318 (11)
O30.0772 (14)0.0916 (15)0.0920 (15)0.0536 (12)0.0568 (12)0.0633 (13)
N10.0379 (12)0.0996 (19)0.0656 (15)0.0278 (12)0.0177 (11)0.0462 (14)
N20.080 (2)0.102 (2)0.129 (3)0.0355 (17)0.0434 (18)0.087 (2)
C10.0421 (14)0.0539 (15)0.0693 (17)0.0151 (12)0.0145 (12)0.0333 (14)
C20.0318 (12)0.0540 (15)0.0419 (13)0.0121 (11)0.0061 (10)0.0180 (12)
C30.0320 (11)0.0448 (13)0.0424 (13)0.0095 (10)0.0062 (10)0.0190 (11)
C40.0334 (11)0.0384 (12)0.0369 (12)0.0131 (9)0.0039 (9)0.0137 (10)
C50.0346 (11)0.0421 (13)0.0369 (12)0.0118 (10)0.0067 (9)0.0146 (10)
C60.0377 (13)0.0571 (15)0.0375 (12)0.0163 (11)0.0094 (10)0.0198 (11)
C70.0298 (11)0.0413 (13)0.0338 (11)0.0106 (9)0.0077 (9)0.0118 (10)
C80.0428 (13)0.0457 (14)0.0463 (14)0.0119 (11)0.0067 (11)0.0161 (12)
C90.0567 (16)0.0422 (15)0.0558 (16)0.0056 (12)0.0153 (13)0.0112 (13)
C100.0408 (14)0.0573 (17)0.0413 (14)0.0049 (12)0.0076 (11)0.0057 (12)
C110.0298 (11)0.0680 (17)0.0372 (13)0.0090 (11)0.0103 (10)0.0203 (12)
C120.0377 (14)0.094 (2)0.0429 (15)0.0084 (14)0.0025 (11)0.0303 (15)
C130.0511 (17)0.107 (3)0.0589 (18)0.0284 (17)0.0069 (13)0.0485 (19)
C140.0600 (17)0.076 (2)0.0634 (18)0.0278 (15)0.0097 (14)0.0396 (16)
C150.0447 (14)0.0554 (16)0.0461 (14)0.0178 (12)0.0069 (11)0.0221 (12)
C160.0297 (11)0.0527 (14)0.0343 (12)0.0112 (10)0.0094 (9)0.0178 (11)
C170.0547 (17)0.100 (2)0.0652 (18)0.0324 (16)0.0146 (14)0.0514 (18)
C180.0380 (13)0.0451 (14)0.0453 (13)0.0139 (11)0.0097 (10)0.0126 (11)
C190.097 (3)0.106 (3)0.128 (3)0.064 (2)0.084 (2)0.080 (3)
Geometric parameters (Å, º) top
O1—C21.363 (3)C8—H8A0.9300
O1—C61.381 (3)C9—C101.352 (4)
O2—C181.207 (3)C9—H9A0.9300
O3—C181.328 (3)C10—C111.405 (4)
O3—C191.452 (3)C10—H10A0.9300
N1—C21.341 (3)C11—C121.414 (3)
N1—H1A0.8600C11—C161.431 (3)
N1—H1B0.8600C12—C131.350 (4)
N2—C11.138 (3)C12—H12A0.9300
C1—C31.414 (3)C13—C141.401 (4)
C2—C31.345 (3)C13—H13A0.9300
C3—C41.512 (3)C14—C151.364 (3)
C4—C51.510 (3)C14—H14A0.9300
C4—C71.536 (3)C15—C161.413 (3)
C4—H4A0.9800C15—H15A0.9300
C5—C61.337 (3)C17—H17A0.9600
C5—C181.468 (3)C17—H17B0.9600
C6—C171.495 (3)C17—H17C0.9600
C7—C81.363 (3)C19—H19A0.9600
C7—C161.422 (3)C19—H19B0.9600
C8—C91.406 (4)C19—H19C0.9600
C2—O1—C6119.44 (18)C11—C10—H10A119.3
C18—O3—C19116.4 (2)C10—C11—C12121.8 (2)
C2—N1—H1A120.0C10—C11—C16119.3 (2)
C2—N1—H1B120.0C12—C11—C16119.0 (3)
H1A—N1—H1B120.0C13—C12—C11121.6 (3)
N2—C1—C3179.5 (3)C13—C12—H12A119.2
N1—C2—C3127.5 (2)C11—C12—H12A119.2
N1—C2—O1110.2 (2)C12—C13—C14119.8 (3)
C3—C2—O1122.2 (2)C12—C13—H13A120.1
C2—C3—C1117.9 (2)C14—C13—H13A120.1
C2—C3—C4121.8 (2)C15—C14—C13120.7 (3)
C1—C3—C4120.21 (19)C15—C14—H14A119.7
C5—C4—C3109.19 (17)C13—C14—H14A119.7
C5—C4—C7111.85 (18)C14—C15—C16121.5 (2)
C3—C4—C7111.26 (18)C14—C15—H15A119.3
C5—C4—H4A108.1C16—C15—H15A119.3
C3—C4—H4A108.1C15—C16—C7124.2 (2)
C7—C4—H4A108.1C15—C16—C11117.4 (2)
C6—C5—C18124.5 (2)C7—C16—C11118.4 (2)
C6—C5—C4122.8 (2)C6—C17—H17A109.5
C18—C5—C4112.69 (19)C6—C17—H17B109.5
C5—C6—O1121.4 (2)H17A—C17—H17B109.5
C5—C6—C17131.2 (2)C6—C17—H17C109.5
O1—C6—C17107.37 (19)H17A—C17—H17C109.5
C8—C7—C16119.5 (2)H17B—C17—H17C109.5
C8—C7—C4119.08 (19)O2—C18—O3122.1 (2)
C16—C7—C4121.45 (19)O2—C18—C5121.9 (2)
C7—C8—C9122.1 (2)O3—C18—C5116.0 (2)
C7—C8—H8A118.9O3—C19—H19A109.5
C9—C8—H8A118.9O3—C19—H19B109.5
C10—C9—C8119.4 (2)H19A—C19—H19B109.5
C10—C9—H9A120.3O3—C19—H19C109.5
C8—C9—H9A120.3H19A—C19—H19C109.5
C9—C10—C11121.3 (2)H19B—C19—H19C109.5
C9—C10—H10A119.3
C6—O1—C2—N1173.0 (2)C7—C8—C9—C100.9 (4)
C6—O1—C2—C38.7 (3)C8—C9—C10—C110.8 (4)
N1—C2—C3—C14.9 (4)C9—C10—C11—C12178.5 (2)
O1—C2—C3—C1177.1 (2)C9—C10—C11—C160.0 (4)
N1—C2—C3—C4170.5 (2)C10—C11—C12—C13179.5 (3)
O1—C2—C3—C47.5 (4)C16—C11—C12—C131.0 (4)
C2—C3—C4—C517.9 (3)C11—C12—C13—C140.9 (4)
C1—C3—C4—C5166.8 (2)C12—C13—C14—C151.5 (4)
C2—C3—C4—C7106.0 (2)C13—C14—C15—C160.3 (4)
C1—C3—C4—C769.2 (3)C14—C15—C16—C7178.3 (2)
C3—C4—C5—C614.6 (3)C14—C15—C16—C111.6 (3)
C7—C4—C5—C6108.9 (2)C8—C7—C16—C15179.3 (2)
C3—C4—C5—C18166.16 (19)C4—C7—C16—C150.1 (3)
C7—C4—C5—C1870.3 (2)C8—C7—C16—C110.8 (3)
C18—C5—C6—O1179.9 (2)C4—C7—C16—C11179.96 (19)
C4—C5—C6—O10.8 (4)C10—C11—C16—C15179.2 (2)
C18—C5—C6—C171.5 (4)C12—C11—C16—C152.2 (3)
C4—C5—C6—C17177.6 (3)C10—C11—C16—C70.8 (3)
C2—O1—C6—C512.1 (3)C12—C11—C16—C7177.7 (2)
C2—O1—C6—C17169.2 (2)C19—O3—C18—O20.4 (4)
C5—C4—C7—C839.6 (3)C19—O3—C18—C5178.3 (2)
C3—C4—C7—C882.8 (2)C6—C5—C18—O2176.9 (2)
C5—C4—C7—C16141.2 (2)C4—C5—C18—O23.9 (3)
C3—C4—C7—C1696.4 (2)C6—C5—C18—O31.8 (3)
C16—C7—C8—C90.0 (3)C4—C5—C18—O3177.4 (2)
C4—C7—C8—C9179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.142.919 (3)150
Symmetry code: (i) x+1, y, z.
(IIIc) tert-butyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxylate top
Crystal data top
C22H22N2O3Z = 2
Mr = 362.42F(000) = 384
Triclinic, P1Dx = 1.273 Mg m3
a = 8.4940 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.938 (2) ÅCell parameters from 24 reflections
c = 11.844 (2) Åθ = 11–12°
α = 104.69 (3)°µ = 0.09 mm1
β = 109.84 (3)°T = 295 K
γ = 102.30 (3)°Prism, colourless
V = 945.6 (5) Å30.50 × 0.40 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.135
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.0°
Graphite monochromatorh = 010
θ/2θ scansk = 1313
4336 measured reflectionsl = 1514
4054 independent reflections3 standard reflections every 97 reflections
2361 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
4054 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C22H22N2O3γ = 102.30 (3)°
Mr = 362.42V = 945.6 (5) Å3
Triclinic, P1Z = 2
a = 8.4940 (17) ÅMo Kα radiation
b = 10.938 (2) ŵ = 0.09 mm1
c = 11.844 (2) ÅT = 295 K
α = 104.69 (3)°0.50 × 0.40 × 0.30 mm
β = 109.84 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.135
4336 measured reflections3 standard reflections every 97 reflections
4054 independent reflections intensity decay: 3%
2361 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
4054 reflectionsΔρmin = 0.35 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3755 (2)0.33809 (17)0.31858 (19)0.0494 (5)
O20.9395 (2)0.33586 (18)0.33830 (18)0.0499 (5)
O30.7117 (2)0.14366 (16)0.22553 (18)0.0482 (5)
N10.2795 (3)0.5105 (2)0.3444 (2)0.0555 (6)
H1A0.28590.59260.35650.067*
H1B0.18550.45380.33650.067*
N20.6222 (4)0.7949 (2)0.3923 (3)0.0711 (8)
C10.6016 (3)0.6834 (3)0.3726 (3)0.0466 (6)
C20.4160 (3)0.4707 (2)0.3378 (2)0.0406 (5)
C30.5714 (3)0.5454 (2)0.3480 (2)0.0367 (5)
C40.7117 (3)0.4860 (2)0.3309 (2)0.0351 (5)
H4A0.82080.53000.41000.042*
C50.6513 (3)0.3389 (2)0.3088 (2)0.0372 (5)
C60.4980 (3)0.2746 (2)0.3063 (2)0.0420 (6)
C70.7514 (3)0.5095 (2)0.2200 (2)0.0366 (5)
C80.6415 (4)0.4247 (3)0.0971 (2)0.0504 (6)
H8A0.54440.35510.08340.060*
C90.6714 (5)0.4397 (4)0.0086 (3)0.0683 (9)
H9A0.59380.38150.09120.082*
C100.8134 (5)0.5393 (4)0.0097 (3)0.0724 (10)
H10A0.83300.54900.06060.087*
C110.9316 (4)0.6282 (3)0.1339 (3)0.0558 (7)
C121.0860 (6)0.7301 (4)0.1566 (5)0.0793 (11)
H12A1.10760.74010.08700.095*
C131.2017 (5)0.8124 (4)0.2759 (5)0.0868 (13)
H13A1.30440.87540.28810.104*
C141.1679 (4)0.8036 (3)0.3815 (4)0.0681 (9)
H14A1.24550.86350.46350.082*
C151.0214 (3)0.7074 (2)0.3649 (3)0.0497 (6)
H15A1.00080.70250.43620.060*
C160.9010 (3)0.6156 (2)0.2422 (2)0.0408 (6)
C170.4209 (4)0.1333 (3)0.2938 (3)0.0572 (7)
H17A0.51150.09210.30680.086*
H17B0.32740.08500.20960.086*
H17C0.37440.13200.35710.086*
C180.7834 (3)0.2730 (2)0.2945 (2)0.0390 (5)
C190.8191 (3)0.0591 (3)0.1970 (3)0.0515 (7)
C200.9511 (5)0.0604 (4)0.3198 (3)0.0808 (10)
H20A1.03620.14870.36720.121*
H20B1.01080.00200.30070.121*
H20C0.89080.03550.37010.121*
C210.9007 (5)0.1050 (4)0.1153 (4)0.0820 (10)
H21A0.98920.19160.16470.123*
H21B0.81090.11040.04290.123*
H21C0.95480.04250.08570.123*
C220.6785 (5)0.0781 (3)0.1219 (4)0.0848 (11)
H22A0.59100.07520.04670.127*
H22B0.62290.10330.17460.127*
H22C0.73270.14250.09680.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0376 (9)0.0433 (9)0.0790 (13)0.0165 (8)0.0343 (9)0.0236 (9)
O20.0326 (9)0.0520 (10)0.0668 (12)0.0155 (8)0.0231 (8)0.0188 (9)
O30.0383 (9)0.0400 (9)0.0665 (12)0.0186 (8)0.0234 (9)0.0123 (8)
N10.0457 (12)0.0503 (12)0.0904 (18)0.0236 (11)0.0427 (13)0.0301 (12)
N20.0706 (17)0.0460 (14)0.105 (2)0.0249 (12)0.0449 (16)0.0236 (14)
C10.0438 (14)0.0451 (15)0.0580 (16)0.0212 (12)0.0269 (12)0.0161 (12)
C20.0406 (13)0.0426 (13)0.0477 (13)0.0195 (11)0.0245 (11)0.0170 (11)
C30.0360 (12)0.0401 (12)0.0396 (12)0.0170 (10)0.0206 (10)0.0126 (10)
C40.0301 (11)0.0379 (12)0.0386 (12)0.0106 (9)0.0161 (10)0.0138 (10)
C50.0352 (12)0.0402 (12)0.0433 (13)0.0172 (10)0.0194 (10)0.0180 (10)
C60.0394 (13)0.0388 (12)0.0566 (15)0.0181 (10)0.0267 (12)0.0170 (11)
C70.0358 (12)0.0428 (12)0.0412 (12)0.0205 (10)0.0210 (10)0.0179 (10)
C80.0470 (14)0.0617 (16)0.0429 (14)0.0220 (13)0.0170 (12)0.0184 (12)
C90.079 (2)0.095 (2)0.0434 (16)0.047 (2)0.0276 (15)0.0248 (16)
C100.103 (3)0.103 (3)0.067 (2)0.068 (2)0.059 (2)0.055 (2)
C110.0702 (18)0.0641 (17)0.081 (2)0.0452 (15)0.0553 (17)0.0496 (16)
C120.096 (3)0.080 (2)0.140 (4)0.055 (2)0.093 (3)0.081 (3)
C130.072 (2)0.058 (2)0.181 (4)0.0338 (18)0.083 (3)0.070 (3)
C140.0491 (17)0.0450 (15)0.116 (3)0.0156 (13)0.0376 (18)0.0336 (17)
C150.0412 (14)0.0454 (14)0.0706 (18)0.0180 (12)0.0265 (13)0.0263 (13)
C160.0411 (13)0.0449 (13)0.0573 (15)0.0258 (11)0.0301 (12)0.0286 (12)
C170.0497 (15)0.0426 (14)0.094 (2)0.0175 (12)0.0426 (16)0.0282 (14)
C180.0345 (12)0.0447 (13)0.0443 (13)0.0161 (10)0.0199 (10)0.0186 (11)
C190.0476 (15)0.0492 (14)0.0634 (17)0.0282 (12)0.0268 (13)0.0137 (13)
C200.090 (2)0.085 (2)0.085 (2)0.063 (2)0.034 (2)0.0321 (19)
C210.089 (2)0.092 (3)0.079 (2)0.037 (2)0.054 (2)0.019 (2)
C220.070 (2)0.0506 (18)0.119 (3)0.0236 (17)0.038 (2)0.0054 (19)
Geometric parameters (Å, º) top
O1—C21.357 (3)C11—C121.422 (5)
O1—C61.395 (3)C11—C161.425 (3)
O2—C181.210 (3)C12—C131.345 (6)
O3—C181.323 (3)C12—H12A0.9300
O3—C191.487 (3)C13—C141.396 (5)
N1—C21.342 (3)C13—H13A0.9300
N1—H1A0.8600C14—C151.366 (4)
N1—H1B0.8600C14—H14A0.9300
N2—C11.144 (3)C15—C161.407 (4)
C1—C31.410 (3)C15—H15A0.9300
C2—C31.344 (3)C17—H17A0.9600
C3—C41.521 (3)C17—H17B0.9600
C4—C51.505 (3)C17—H17C0.9600
C4—C71.530 (3)C19—C211.492 (4)
C4—H4A0.9800C19—C201.499 (4)
C5—C61.329 (3)C19—C221.519 (4)
C5—C181.489 (3)C20—H20A0.9600
C6—C171.491 (3)C20—H20B0.9600
C7—C81.369 (3)C20—H20C0.9600
C7—C161.422 (3)C21—H21A0.9600
C8—C91.401 (4)C21—H21B0.9600
C8—H8A0.9300C21—H21C0.9600
C9—C101.353 (5)C22—H22A0.9600
C9—H9A0.9300C22—H22B0.9600
C10—C111.405 (5)C22—H22C0.9600
C10—H10A0.9300
C2—O1—C6119.19 (18)C14—C13—H13A119.9
C18—O3—C19122.45 (19)C15—C14—C13120.3 (3)
C2—N1—H1A120.0C15—C14—H14A119.9
C2—N1—H1B120.0C13—C14—H14A119.9
H1A—N1—H1B120.0C14—C15—C16121.3 (3)
N2—C1—C3178.4 (3)C14—C15—H15A119.3
N1—C2—C3127.7 (2)C16—C15—H15A119.3
N1—C2—O1109.3 (2)C15—C16—C7123.7 (2)
C3—C2—O1123.0 (2)C15—C16—C11118.4 (2)
C2—C3—C1118.1 (2)C7—C16—C11117.9 (2)
C2—C3—C4122.4 (2)C6—C17—H17A109.5
C1—C3—C4119.5 (2)C6—C17—H17B109.5
C5—C4—C3109.68 (18)H17A—C17—H17B109.5
C5—C4—C7110.79 (18)C6—C17—H17C109.5
C3—C4—C7111.01 (18)H17A—C17—H17C109.5
C5—C4—H4A108.4H17B—C17—H17C109.5
C3—C4—H4A108.4O2—C18—O3124.7 (2)
C7—C4—H4A108.4O2—C18—C5121.7 (2)
C6—C5—C18123.1 (2)O3—C18—C5113.5 (2)
C6—C5—C4123.5 (2)O3—C19—C21109.2 (2)
C18—C5—C4113.32 (19)O3—C19—C20109.9 (2)
C5—C6—O1122.0 (2)C21—C19—C20113.7 (3)
C5—C6—C17131.3 (2)O3—C19—C22101.7 (2)
O1—C6—C17106.7 (2)C21—C19—C22110.9 (3)
C8—C7—C16119.6 (2)C20—C19—C22110.8 (3)
C8—C7—C4118.9 (2)C19—C20—H20A109.5
C16—C7—C4121.5 (2)C19—C20—H20B109.5
C7—C8—C9121.8 (3)H20A—C20—H20B109.5
C7—C8—H8A119.1C19—C20—H20C109.5
C9—C8—H8A119.1H20A—C20—H20C109.5
C10—C9—C8119.8 (3)H20B—C20—H20C109.5
C10—C9—H9A120.1C19—C21—H21A109.5
C8—C9—H9A120.1C19—C21—H21B109.5
C9—C10—C11120.7 (3)H21A—C21—H21B109.5
C9—C10—H10A119.6C19—C21—H21C109.5
C11—C10—H10A119.6H21A—C21—H21C109.5
C10—C11—C12122.0 (3)H21B—C21—H21C109.5
C10—C11—C16120.1 (3)C19—C22—H22A109.5
C12—C11—C16118.0 (3)C19—C22—H22B109.5
C13—C12—C11121.8 (3)H22A—C22—H22B109.5
C13—C12—H12A119.1C19—C22—H22C109.5
C11—C12—H12A119.1H22A—C22—H22C109.5
C12—C13—C14120.2 (3)H22B—C22—H22C109.5
C12—C13—H13A119.9
C6—O1—C2—N1178.9 (2)C8—C9—C10—C110.1 (5)
C6—O1—C2—C31.2 (4)C9—C10—C11—C12177.3 (3)
N1—C2—C3—C12.2 (4)C9—C10—C11—C161.1 (4)
O1—C2—C3—C1177.7 (2)C10—C11—C12—C13177.9 (3)
N1—C2—C3—C4176.3 (2)C16—C11—C12—C130.5 (4)
O1—C2—C3—C43.8 (4)C11—C12—C13—C143.1 (5)
C2—C3—C4—C52.8 (3)C12—C13—C14—C153.0 (5)
C1—C3—C4—C5178.7 (2)C13—C14—C15—C160.2 (4)
C2—C3—C4—C7120.0 (2)C14—C15—C16—C7176.8 (2)
C1—C3—C4—C758.5 (3)C14—C15—C16—C112.3 (4)
C3—C4—C5—C60.5 (3)C8—C7—C16—C15179.8 (2)
C7—C4—C5—C6123.4 (2)C4—C7—C16—C151.0 (3)
C3—C4—C5—C18178.45 (18)C8—C7—C16—C110.7 (3)
C7—C4—C5—C1858.7 (3)C4—C7—C16—C11178.1 (2)
C18—C5—C6—O1179.3 (2)C10—C11—C16—C15179.3 (2)
C4—C5—C6—O12.9 (4)C12—C11—C16—C152.2 (3)
C18—C5—C6—C171.9 (4)C10—C11—C16—C71.5 (3)
C4—C5—C6—C17175.9 (3)C12—C11—C16—C7177.0 (2)
C2—O1—C6—C52.2 (4)C19—O3—C18—O21.7 (4)
C2—O1—C6—C17176.9 (2)C19—O3—C18—C5178.7 (2)
C5—C4—C7—C839.9 (3)C6—C5—C18—O2154.6 (3)
C3—C4—C7—C882.2 (3)C4—C5—C18—O223.4 (3)
C5—C4—C7—C16138.9 (2)C6—C5—C18—O328.3 (3)
C3—C4—C7—C1699.0 (2)C4—C5—C18—O3153.7 (2)
C16—C7—C8—C90.5 (4)C18—O3—C19—C2164.9 (3)
C4—C7—C8—C9179.3 (2)C18—O3—C19—C2060.5 (3)
C7—C8—C9—C100.9 (4)C18—O3—C19—C22177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.223.071 (3)171
Symmetry code: (i) x1, y, z.

Experimental details

(IIIa)(IIIb)(IIIc)
Crystal data
Chemical formulaC19H16N2O2C19H16N2O3C22H22N2O3
Mr304.34320.34362.42
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Triclinic, P1
Temperature (K)295295295
a, b, c (Å)7.8630 (16), 8.5960 (17), 23.227 (5)8.3150 (17), 10.283 (2), 10.793 (2)8.4940 (17), 10.938 (2), 11.844 (2)
α, β, γ (°)90, 96.64 (3), 90112.38 (3), 96.66 (3), 103.83 (3)104.69 (3), 109.84 (3), 102.30 (3)
V3)1559.4 (6)806.3 (4)945.6 (5)
Z422
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.090.09
Crystal size (mm)0.50 × 0.40 × 0.300.45 × 0.40 × 0.250.50 × 0.40 × 0.30
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3267, 3035, 2151 4108, 3841, 1923 4336, 4054, 2361
Rint0.0960.0460.135
(sin θ/λ)max1)0.6160.6600.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.07 0.055, 0.172, 1.02 0.059, 0.187, 1.02
No. of reflections303538414054
No. of parameters210219248
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.230.20, 0.180.25, 0.35

Computer programs: CAD-4 Software (Enraf-Nonuis, 1989), CAD-4 Software, SHELXTL-Plus (Sheldrick, 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus, SHELXL97.

Selected geometric parameters (Å, º) for (IIIa) top
O2—C181.217 (2)C3—C41.521 (2)
N1—C21.349 (2)C4—C51.513 (2)
N2—C11.143 (2)C4—C71.540 (2)
C1—C31.408 (3)C5—C61.325 (3)
C2—C31.348 (3)C5—C181.497 (3)
N1—C2—C3127.98 (17)C5—C4—C7111.19 (14)
O1—C2—C3122.20 (16)C3—C4—C7110.62 (14)
C2—C3—C1118.38 (17)C6—C5—C4123.05 (16)
C2—C3—C4122.85 (16)C5—C6—C17129.78 (19)
C5—C4—C3109.40 (14)
C2—C3—C4—C7121.95 (18)C6—C5—C18—C19143.94 (19)
C3—C4—C7—C869.8 (2)C4—C5—C18—C1933.3 (2)
C6—C5—C18—O234.9 (3)
Hydrogen-bond geometry (Å, º) for (IIIa) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.543.374 (2)165
N1—H1B···N2ii0.862.183.016 (2)166
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z.
Selected geometric parameters (Å, º) for (IIIb) top
O2—C181.207 (3)C3—C41.512 (3)
N1—C21.341 (3)C4—C51.510 (3)
N2—C11.138 (3)C4—C71.536 (3)
C1—C31.414 (3)C5—C61.337 (3)
C2—C31.345 (3)C5—C181.468 (3)
N1—C2—C3127.5 (2)C5—C4—C3109.19 (17)
C3—C2—O1122.2 (2)C5—C4—C7111.85 (18)
C2—C3—C1117.9 (2)C3—C4—C7111.26 (18)
C2—C3—C4121.8 (2)C6—C5—C4122.8 (2)
C1—C3—C4120.21 (19)C5—C6—C17131.2 (2)
C2—C3—C4—C7106.0 (2)C6—C5—C18—O2176.9 (2)
C3—C4—C7—C882.8 (2)C6—C5—C18—O31.8 (3)
C19—O3—C18—C5178.3 (2)
Hydrogen-bond geometry (Å, º) for (IIIb) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.142.919 (3)150
Symmetry code: (i) x+1, y, z.
Selected geometric parameters (Å, º) for (IIIc) top
O2—C181.210 (3)C3—C41.521 (3)
N1—C21.342 (3)C4—C51.505 (3)
N2—C11.144 (3)C4—C71.530 (3)
C1—C31.410 (3)C5—C61.329 (3)
C2—C31.344 (3)C5—C181.489 (3)
N1—C2—C3127.7 (2)C5—C4—C3109.68 (18)
C3—C2—O1123.0 (2)C5—C4—C7110.79 (18)
C2—C3—C1118.1 (2)C3—C4—C7111.01 (18)
C2—C3—C4122.4 (2)C6—C5—C4123.5 (2)
C1—C3—C4119.5 (2)C5—C6—C17131.3 (2)
C2—C3—C4—C7120.0 (2)C6—C5—C18—O2154.6 (3)
C3—C4—C7—C882.2 (3)C6—C5—C18—O328.3 (3)
Hydrogen-bond geometry (Å, º) for (IIIc) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.223.071 (3)171
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds