Download citation
Download citation
link to html
The title one-dimensional chain nickel(II)-di­sulfide complex, [Ni(C14H8O4S2)(C5H5N)2(H2O)]n, has each NiII cation coordinated by two N atoms from two pyridine ligands, three carboxyl­ate O atoms from two different di­thio­dibenzoate ligands and one O atom from a coordinated water mol­ecule, in a distorted octahedral coordination geometry. Each di­thio­dibenzoate ion links two NiII cations through its carboxyl­ate O atoms, making the structure polymeric. Hydro­gen-bond interactions between two shoulder-to-shoulder chains lead to the formation of a ladder-like structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104017469/sq1161sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104017469/sq1161Isup2.hkl
Contains datablock I

CCDC reference: 251292

Comment top

The rational design of coordination polymers has attracted much attention, due to the potential applications of these materials, which range from gas storage and ion exchange to heterogeneous catalysis (Moulton & Zaworotko, 2001; Janiak, 2003). The construction of metal-organic frameworks can be achieved via two kinds of interaction, i.e. coordinate covalent bonds and weaker intermolecular forces. Weaker noncovalent interactions, such as hydrogen bonds or ππ interactions, are important for the packing of one-dimensional chains, two-dimensional nets and three-dimensional open frameworks. Furthermore, the selection or design of suitable ligands containing certain features, such as flexibility and versatile binding modes, is crucial for the construction of specific supramolecular architectures. This concept has been demonstrated by a great variety of structural topologies of discrete supramolecular complexes or infinite supramolecular arrays (Leininger et al., 2000; Janiak, 2003).

Against this background, we chose 2,2'-dithiodibenzoic acid (2,2'-H2dtdb) as an organic ligand for study, based on the following considerations. Firstly, the twisted binding site passing through the centre of the S—S bond makes the ligand flexible. Secondly, the carboxylate binding groups, coupled with the different coordination modes of 2,2'-dtdb, should allow the fabrication of different coordination polymer topologies. Finally, the ligand has a strong capability of forming hydrogen bonds, which play an important role in the assembly of supramolecular compounds. Thus we prepared the title compound, (I), by the hydrothermal reaction of an NiII salt with the ligand and pyridine in the molar ratio 1:1:4 at 383 K for 2 d. \sch

The present crystallographic analysis reveals that (I) is a one-dimensional ladder-like coordination polymer. As shown in Fig. 1, each NiII cation is coordinated by two N atoms from two pyridine ligands, three carboxylate O atoms from two different dithiodibenzoate ligands and one O atom from a coordinated water molecule. One N atom (N2) and three O atoms (O1, O2 and O3A) form the equatorial plane, while the axial positions are occupied by one N atom (N1) and one O atom (O5), with an N1—Ni1—O5 bond angle of 177.25 (5)°. Thus, the coordination environment around the NiII centre can be best described as having a distorted octahedral geometry. The NiII cation is approximately coplanar with the coordination atoms in the equatorial plane, with a slight deviation of 0.001 Å. The Ni—N and Ni—O distances are in the ranges 2.0594 (14)–2.1279 (14) and 2.0216 (13)–2.1588 (11) Å, respectively (Table 1), which are typical values for Ni—N and Ni—O coordination distances (Kongshaug & Fgellvag, 2003).

The two carboxylate groups of each dtdb ligand adopt different coordination modes, namley monodentate and chelating-bidentate. As a result, the O1—C1—O2 angle [120.07 (13)°] is about 5° smaller than that of O3—C14—O4 [125.22 (14)°]. The dihedral angle between the two phenyl rings is 96.7 (5)°, which is close to that in the analogous Co-dtdb complex (Ganesh et al., 1990).

Each dithiodibenzoate anion links two NiII cations through its carboxylate O atoms, making the structure polymeric. The Ni···Ni distance bridged by dtdb is 12.581 (8) Å. Furthermore, hydrogen-bond interactions between two shoulder-to-shoulder chains lead to the formation of a ladder-like structure (Fig. 2). The hydrogen-bond distances of O5—H5A···O4(x, y, z − 1) and O5—H5C···O1(1 − x, 1 − y, 1 − z) are 2.664 (19) and 2.837 (2) Å, respectively. A bimetallic six-membered hydrogen-bonded ring is thus formed, with an Ni···Ni distance of 5.374 (8) Å.

The bimetallic unit can be viewed as the basic building block of the structure, and these are joined together through sharing the NiII apices with dtdb ligands to give the final one-dimensional polymer, which consists of rectangular grids with dimensions of 12.6 × 5.4 Å, based on the metal-to-metal distances. Therefore, the presence of hydrogen bonds in (I) plays an important role in the formation of the final ladder-like coordination polymer, which is notably different from other ladder-like structures based on coordinate covalent bonds (Liu et al., 2004).

Experimental top

A mixture of Ni(NO3)2·6H2O (0.2 mmol) with 2,2'-H2dtdb (0.2 mmol) and pyridine (0.4 mmol) in the molar ratio 1:1:4 dissolved in water(10 ml) was sealed in a stainless-steel reactor with a Teflon liner and heated at 383 K for 2 d. A quantity of green block crystals of (I) was obtained after cooling the solution to room temperature. The yield of (I) is ca 65%, based on dtdb.

Refinement top

H atoms on C atoms were generated geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å Please check added text and with Uiso = 1.2Ueq(C). Water H atoms were located in difference maps and refined freely.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SHELXTL (Sheldrick, 1997a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A perspective view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The atom labelled with the suffix A is at the symmetry position (x, y, z − 1).
[Figure 2] Fig. 2. A view of the one-dimensional ladder-like structure in (I), which propagates along the c axis. Hydrogen-bond interactions are indicated by dashed lines.
catena-poly[[aquadipyridinenickel(II)]-µ-2,2'-dithiodibenzoato- κ3O,O':O''] top
Crystal data top
[Ni(C14H8O4S2)(C5H5N)2(H2O)]F(000) = 1112
Mr = 539.25Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.925 (3) ÅCell parameters from 5535 reflections
b = 15.099 (3) Åθ = 1.6–27.5°
c = 12.581 (3) ŵ = 1.01 mm1
β = 114.00 (3)°T = 293 K
V = 2416.5 (11) Å3Prism, green
Z = 40.26 × 0.20 × 0.18 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5535 independent reflections
Radiation source: fine-focus sealed tube4673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scansh = 1816
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 190
Tmin = 0.784, Tmax = 0.833l = 016
5535 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0509P)2]
where P = (Fo2 + 2Fc2)/3
5535 reflections(Δ/σ)max = 0.001
315 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C14H8O4S2)(C5H5N)2(H2O)]V = 2416.5 (11) Å3
Mr = 539.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.925 (3) ŵ = 1.01 mm1
b = 15.099 (3) ÅT = 293 K
c = 12.581 (3) Å0.26 × 0.20 × 0.18 mm
β = 114.00 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5535 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4673 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.833Rint = 0.000
5535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.43 e Å3
5535 reflectionsΔρmin = 0.43 e Å3
315 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.310763 (15)0.545321 (13)0.337064 (15)0.02778 (7)
S10.34865 (4)0.48680 (3)0.72865 (3)0.03882 (11)
S20.34706 (3)0.48577 (3)0.89089 (3)0.03878 (11)
O10.35858 (8)0.49645 (7)0.51243 (9)0.0317 (2)
O20.24018 (8)0.42843 (8)0.36270 (9)0.0329 (2)
O30.23655 (9)0.55062 (8)1.16170 (9)0.0383 (3)
O40.35868 (9)0.50460 (10)1.10235 (9)0.0446 (3)
O50.43190 (10)0.46810 (9)0.32881 (12)0.0358 (3)
N10.18751 (11)0.62022 (10)0.35226 (13)0.0396 (3)
N20.39798 (11)0.65947 (9)0.36060 (11)0.0365 (3)
C10.29389 (12)0.43317 (10)0.47049 (12)0.0280 (3)
C20.27896 (12)0.36492 (11)0.54828 (13)0.0312 (3)
C30.23973 (15)0.28299 (11)0.49957 (15)0.0412 (4)
H3A0.22190.27350.41910.049*
C40.22617 (17)0.21507 (12)0.56592 (18)0.0504 (5)
H4A0.20050.15910.53180.060*
C50.25042 (17)0.22956 (13)0.68237 (18)0.0518 (5)
H5B0.24250.18300.72900.062*
C60.28601 (15)0.31125 (13)0.73124 (16)0.0452 (4)
H6A0.29990.32090.81080.054*
C70.30197 (12)0.37981 (11)0.66640 (13)0.0331 (3)
C80.21369 (13)0.51239 (11)0.86541 (13)0.0325 (3)
C90.13389 (14)0.51484 (13)0.75260 (14)0.0440 (4)
H9A0.15040.50310.68770.053*
C100.03184 (15)0.53414 (14)0.73507 (16)0.0508 (5)
H10A0.02090.53630.65800.061*
C110.00473 (15)0.55043 (14)0.82722 (17)0.0498 (5)
H11A0.06620.56210.81430.060*
C120.08334 (14)0.54948 (12)0.93924 (15)0.0414 (4)
H12A0.06570.56211.00310.050*
C130.18730 (12)0.53040 (10)0.96011 (13)0.0309 (3)
C140.26771 (12)0.52800 (10)1.08404 (13)0.0298 (3)
C150.12065 (18)0.66475 (16)0.2611 (2)0.0635 (6)
H15A0.12980.66310.19030.076*
C160.0383 (2)0.7134 (2)0.2656 (3)0.0941 (10)
H16A0.00780.74470.19890.113*
C170.0236 (2)0.7162 (2)0.3660 (3)0.0952 (10)
H17A0.03300.74890.37030.114*
C180.0916 (3)0.6713 (2)0.4600 (3)0.0893 (9)
H18A0.08340.67190.53140.107*
C190.17262 (19)0.62487 (16)0.4499 (2)0.0614 (6)
H19A0.22050.59450.51640.074*
C200.42270 (18)0.70668 (15)0.45765 (16)0.0582 (6)
H20A0.40430.68390.51720.070*
C210.4736 (2)0.78675 (16)0.47544 (19)0.0668 (6)
H21A0.48960.81840.54580.080*
C220.50099 (16)0.82030 (13)0.39099 (17)0.0504 (5)
H22A0.53470.87630.40060.061*
C230.47898 (16)0.77182 (13)0.29287 (17)0.0529 (5)
H23A0.49870.79270.23340.063*
C240.42769 (16)0.69209 (13)0.28075 (16)0.0490 (5)
H24B0.41280.65880.21180.059*
H5A0.4258 (17)0.4740 (14)0.268 (2)0.046 (6)*
H5C0.489 (2)0.4813 (16)0.368 (2)0.068 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02987 (12)0.03325 (12)0.02115 (11)0.00044 (8)0.01132 (8)0.00012 (7)
S10.0449 (2)0.0507 (3)0.0254 (2)0.00992 (19)0.01903 (18)0.00540 (17)
S20.0344 (2)0.0608 (3)0.02169 (19)0.00148 (19)0.01190 (16)0.00187 (18)
O10.0329 (6)0.0385 (6)0.0223 (5)0.0053 (5)0.0100 (4)0.0007 (4)
O20.0353 (6)0.0391 (6)0.0219 (5)0.0030 (5)0.0093 (4)0.0009 (4)
O30.0374 (6)0.0561 (8)0.0220 (5)0.0075 (5)0.0126 (5)0.0007 (5)
O40.0356 (6)0.0733 (9)0.0227 (6)0.0125 (6)0.0098 (5)0.0030 (6)
O50.0321 (7)0.0494 (7)0.0260 (6)0.0034 (5)0.0119 (5)0.0013 (5)
N10.0394 (8)0.0389 (8)0.0429 (8)0.0047 (6)0.0192 (6)0.0018 (6)
N20.0406 (8)0.0370 (7)0.0326 (7)0.0045 (6)0.0156 (6)0.0009 (6)
C10.0287 (7)0.0342 (8)0.0237 (7)0.0028 (6)0.0132 (6)0.0005 (6)
C20.0328 (8)0.0349 (8)0.0286 (8)0.0019 (6)0.0152 (6)0.0028 (6)
C30.0530 (10)0.0379 (9)0.0377 (9)0.0011 (8)0.0235 (8)0.0027 (7)
C40.0653 (12)0.0330 (9)0.0588 (12)0.0035 (9)0.0314 (10)0.0001 (8)
C50.0640 (12)0.0445 (11)0.0554 (12)0.0020 (9)0.0329 (10)0.0155 (9)
C60.0534 (10)0.0527 (11)0.0344 (9)0.0000 (9)0.0231 (8)0.0082 (8)
C70.0329 (8)0.0400 (9)0.0286 (8)0.0005 (7)0.0146 (6)0.0026 (6)
C80.0332 (8)0.0385 (8)0.0241 (7)0.0011 (7)0.0099 (6)0.0012 (6)
C90.0423 (10)0.0626 (12)0.0223 (8)0.0009 (9)0.0081 (7)0.0027 (8)
C100.0386 (10)0.0701 (14)0.0296 (9)0.0010 (9)0.0005 (7)0.0016 (8)
C110.0300 (8)0.0691 (13)0.0424 (10)0.0034 (8)0.0065 (7)0.0026 (9)
C120.0358 (9)0.0537 (11)0.0345 (9)0.0007 (8)0.0141 (7)0.0010 (8)
C130.0331 (8)0.0347 (8)0.0231 (7)0.0020 (6)0.0097 (6)0.0007 (6)
C140.0341 (8)0.0324 (8)0.0226 (7)0.0000 (6)0.0113 (6)0.0011 (6)
C150.0632 (13)0.0653 (14)0.0574 (13)0.0243 (11)0.0198 (10)0.0035 (10)
C160.0775 (17)0.093 (2)0.098 (2)0.0485 (16)0.0215 (15)0.0041 (17)
C170.0818 (19)0.086 (2)0.138 (3)0.0324 (17)0.065 (2)0.006 (2)
C180.109 (2)0.086 (2)0.110 (2)0.0305 (18)0.083 (2)0.0031 (17)
C190.0733 (14)0.0649 (14)0.0590 (13)0.0201 (12)0.0402 (11)0.0035 (11)
C200.0787 (14)0.0620 (13)0.0363 (10)0.0272 (11)0.0257 (10)0.0065 (9)
C210.0899 (17)0.0658 (14)0.0480 (12)0.0344 (13)0.0313 (11)0.0204 (11)
C220.0555 (12)0.0400 (10)0.0538 (12)0.0129 (9)0.0201 (9)0.0026 (8)
C230.0636 (12)0.0508 (11)0.0498 (11)0.0128 (10)0.0290 (10)0.0033 (9)
C240.0626 (12)0.0495 (11)0.0423 (10)0.0152 (9)0.0289 (9)0.0091 (8)
Geometric parameters (Å, º) top
Ni1—O3i2.0216 (13)C6—C71.391 (2)
Ni1—N22.0594 (14)C6—H6A0.9500
Ni1—O52.0877 (13)C8—C91.403 (2)
Ni1—O22.1079 (12)C8—C131.409 (2)
Ni1—N12.1279 (14)C9—C101.378 (3)
Ni1—O12.1588 (11)C9—H9A0.9500
Ni1—C12.4620 (15)C10—C111.380 (3)
S1—C71.7976 (18)C10—H10A0.9500
S1—S22.0502 (7)C11—C121.389 (3)
S2—C81.7970 (17)C11—H11A0.9500
O1—C11.2713 (19)C12—C131.392 (2)
O2—C11.2564 (18)C12—H12A0.9500
O3—C141.2668 (19)C13—C141.505 (2)
O3—Ni1ii2.0216 (13)C15—C161.382 (3)
O4—C141.243 (2)C15—H15A0.9500
O5—O4i2.6642 (19)C16—C171.360 (4)
O5—O1iii2.837 (2)C16—H16A0.9500
O5—H5A0.74 (2)C17—C181.359 (4)
O5—H5C0.78 (3)C17—H17A0.9500
N1—C191.328 (2)C18—C191.378 (3)
N1—C151.329 (3)C18—H18A0.9500
N2—C241.327 (2)C19—H19A0.9500
N2—C201.332 (2)C20—C211.373 (3)
C1—C21.493 (2)C20—H20A0.9500
C2—C31.390 (2)C21—C221.364 (3)
C2—C71.405 (2)C21—H21A0.9500
C3—C41.383 (2)C22—C231.359 (3)
C3—H3A0.9500C22—H22A0.9500
C4—C51.380 (3)C23—C241.376 (3)
C4—H4A0.9500C23—H23A0.9500
C5—C61.377 (3)C24—H24B0.9500
C5—H5B0.9500
O3i—Ni1—N297.68 (6)C4—C5—H5B119.9
O3i—Ni1—O591.87 (6)C5—C6—C7121.27 (17)
N2—Ni1—O591.92 (6)C5—C6—H6A119.4
O3i—Ni1—O297.87 (5)C7—C6—H6A119.4
N2—Ni1—O2164.42 (5)C6—C7—C2118.62 (16)
O5—Ni1—O288.65 (5)C6—C7—S1121.95 (13)
O3i—Ni1—N190.23 (6)C2—C7—S1119.42 (12)
N2—Ni1—N189.56 (6)C9—C8—C13118.61 (15)
O5—Ni1—N1177.25 (5)C9—C8—S2121.48 (13)
O2—Ni1—N189.31 (5)C13—C8—S2119.90 (12)
O3i—Ni1—O1159.57 (5)C10—C9—C8120.57 (17)
N2—Ni1—O1102.73 (5)C10—C9—H9A119.7
O5—Ni1—O186.58 (5)C8—C9—H9A119.7
O2—Ni1—O161.75 (4)C9—C10—C11121.35 (17)
N1—Ni1—O190.84 (5)C9—C10—H10A119.3
O3i—Ni1—C1128.54 (5)C11—C10—H10A119.3
N2—Ni1—C1133.78 (5)C10—C11—C12118.60 (18)
O5—Ni1—C187.30 (5)C10—C11—H11A120.7
O2—Ni1—C130.69 (5)C12—C11—H11A120.7
N1—Ni1—C190.01 (6)C11—C12—C13121.56 (17)
O1—Ni1—C131.06 (5)C11—C12—H12A119.2
C7—S1—S2106.17 (6)C13—C12—H12A119.2
C8—S2—S1104.46 (6)C12—C13—C8119.29 (14)
C1—O1—Ni187.75 (9)C12—C13—C14118.61 (14)
C1—O2—Ni190.43 (9)C8—C13—C14122.09 (14)
C14—O3—Ni1ii130.36 (11)O4—C14—O3125.22 (14)
Ni1—O5—O4i88.40 (6)O4—C14—C13118.13 (14)
Ni1—O5—O1iii118.69 (6)O3—C14—C13116.65 (14)
O4i—O5—O1iii123.40 (6)N1—C15—C16122.4 (2)
Ni1—O5—H5A103.2 (17)N1—C15—H15A118.8
O4i—O5—H5A15.5 (17)C16—C15—H15A118.8
O1iii—O5—H5A111.0 (17)C17—C16—C15119.7 (3)
Ni1—O5—H5C117.8 (19)C17—C16—H16A120.1
O4i—O5—H5C118.6 (19)C15—C16—H16A120.1
O1iii—O5—H5C5.4 (18)C18—C17—C16118.5 (2)
H5A—O5—H5C107 (2)C18—C17—H17A120.7
C19—N1—C15116.94 (18)C16—C17—H17A120.7
C19—N1—Ni1123.11 (13)C17—C18—C19118.7 (3)
C15—N1—Ni1119.95 (13)C17—C18—H18A120.6
C24—N2—C20116.82 (16)C19—C18—H18A120.6
C24—N2—Ni1123.30 (12)N1—C19—C18123.7 (2)
C20—N2—Ni1119.80 (12)N1—C19—H19A118.2
O2—C1—O1120.07 (14)C18—C19—H19A118.2
O2—C1—C2119.19 (14)N2—C20—C21122.98 (19)
O1—C1—C2120.72 (13)N2—C20—H20A118.5
O2—C1—Ni158.89 (8)C21—C20—H20A118.5
O1—C1—Ni161.18 (8)C22—C21—C20119.30 (19)
C2—C1—Ni1177.65 (11)C22—C21—H21A120.4
C3—C2—C7119.24 (15)C20—C21—H21A120.4
C3—C2—C1117.38 (14)C23—C22—C21118.45 (18)
C7—C2—C1123.37 (14)C23—C22—H22A120.8
C4—C3—C2121.30 (16)C21—C22—H22A120.8
C4—C3—H3A119.4C22—C23—C24119.15 (18)
C2—C3—H3A119.4C22—C23—H23A120.4
C5—C4—C3119.24 (18)C24—C23—H23A120.4
C5—C4—H4A120.4N2—C24—C23123.26 (18)
C3—C4—H4A120.4N2—C24—H24B118.4
C6—C5—C4120.26 (17)C23—C24—H24B118.4
C6—C5—H5B119.9
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.74 (2)1.96 (2)2.6642 (19)159 (2)
O5—H5C···O1iii0.78 (3)2.06 (3)2.837 (2)173 (3)
Symmetry codes: (i) x, y, z1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C14H8O4S2)(C5H5N)2(H2O)]
Mr539.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.925 (3), 15.099 (3), 12.581 (3)
β (°) 114.00 (3)
V3)2416.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.784, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
5535, 5535, 4673
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.082, 1.07
No. of reflections5535
No. of parameters315
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.43

Computer programs: SMART (Siemens, 1994), SMART and SAINT (Siemens, 1994), SHELXTL (Sheldrick, 1997a), SHELXS97 (Sheldrick, 1997b), SHELXL97 (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O3i2.0216 (13)Ni1—O12.1588 (11)
Ni1—N22.0594 (14)S1—C71.7976 (18)
Ni1—O52.0877 (13)S1—S22.0502 (7)
Ni1—O22.1079 (12)S2—C81.7970 (17)
Ni1—N12.1279 (14)
O3i—Ni1—N297.68 (6)O2—Ni1—N189.31 (5)
O3i—Ni1—O591.87 (6)O3i—Ni1—O1159.57 (5)
N2—Ni1—O591.92 (6)N2—Ni1—O1102.73 (5)
O3i—Ni1—O297.87 (5)O5—Ni1—O186.58 (5)
N2—Ni1—O2164.42 (5)O2—Ni1—O161.75 (4)
O5—Ni1—O288.65 (5)N1—Ni1—O190.84 (5)
O3i—Ni1—N190.23 (6)C7—S1—S2106.17 (6)
N2—Ni1—N189.56 (6)C8—S2—S1104.46 (6)
O5—Ni1—N1177.25 (5)
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.74 (2)1.96 (2)2.6642 (19)159 (2)
O5—H5C···O1ii0.78 (3)2.06 (3)2.837 (2)173 (3)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds