Download citation
Download citation
link to html
The crystal structure of the title compound, C6H16N+·C24H20B-·CH2Cl2, displays an N-H...[pi] interaction between the triethyl­ammonium cation and a phenyl ring of the tetra­phenyl­borate anion. The distance between the ammo­n­ium H atom and the edge of this phenyl ring is 2.40 (3) Å. The ammonium group and the aryl moiety are nearly perpendicular, forming an intramolecular dihedral angle of 90.4°. A C-H...[pi] interaction between the disordered di­chloro­methane solvate mol­ecule and a phenyl ring of the tetra­phenyl­borate anion is also present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104000356/sq1147sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104000356/sq1147Isup2.hkl
Contains datablock I

CCDC reference: 235344

Comment top

Structures with strong hydrogen-bonding donors lacking traditional acceptor groups can exhibit intermolecular interactions with π systems of aromatic rings as hydrogen-bond acceptors (Hanton et al., 1992). Two unsolvated structures of the salt triethylammonium tetraphenylborate have been determined previously (King & Bryant, 1991; Bakshi et al., 1994). Both of these structures reveal N—H···π interactions with phenyl rings. In each case the closest N—H···π system contact is not with the center of the aromatic ring, but rather a clear interaction with one C atom of a phenyl ring. Malone et al.(1997) have investigated X—H···π interactions with phenyl rings in a variety of structures and established six possible categories of these interactions on the basis of geometry and distance considerations. We report here the structure of the title compound, (I), a dichloromethane solvate of triethylammonium tetraphenylborate (Fig. 1).

Molecules of (I) show intermolecular N—H···π interactions between ammonium atom H1A and the edge of one phenyl ring of the tetraphenylborate anion (Table 1). Fig. 2 shows a view of this interaction. Atom H1A is directed at the center of the bond between atoms C10 and C11. The distance between atom H1A and the centroid (π1) calculated from the atomic positions of atoms C10 and C11 is 2.40 Å. The angle formed by atom N1, atom H1A, and π1 is 172°, and the angle formed by atom H1A, π1 and the centroid of the entire phenyl ring (calculated from the positions of atoms C7–C12) is 90.4°. The approach geometry of the N/H group to the π system of the phenyl ring is characterized as a type II interaction in the scheme of Malone et al. (1997).

The dichloromethane molecule is disordered, and this molecule was refined anisotropically over two similar positions. The site occupancy of atoms C31, Cl1 and Cl2 is 0.80, with sites C31', Cl1' and Cl2' being occupied for the remainder. Atoms H31A and H31D of the dichloromethane molecule also show intermolecular C—H···π interactions with the center of a phenyl ring of the tetraphenylborate anion. Atoms H31A and H31D are directed at the centroid (π2) of the C13–C18 phenyl ring. The angles of the dichloromethane C—H···π interactions deviate significantly from 180° (Table 1). The angles formed by atoms H31A and H31D with π2 and the phenyl ring plane are both 90°.

Experimental top

The title compound was isolated from a reaction mixture containing NEt3, Na[BPh4], [Ru(p-cymene)Cl2]2 (p-cymene is 4–i–CH(CH3)2-1– CH3–C6H6) and 2-phenylpyridine in CH2Cl2. Crystals were grown by slow diffusion of hexane into a CH2Cl2 solution of the crude reaction mixture.

Refinement top

The coordinates of atom H1A were refined, but the displacement parameters were constrained [Uiso(H1A) = 1.2Ueq(N1)]. All other H atoms were placed in ideal positions and constrained to ride on their parent atoms, with C—H distances in the range 0.95–0.99 Å and Uiso(H) values of 1.2Ueq(C). Attempts to refine the coordinates of the H atoms on the disordered CH2Cl2 molecule were unsuccessful.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the structure of (I), showing N—H···π1 and C—H···π2 intermolecular interactions. H atoms bonded to C atoms have been omitted for clarity, except for those in the CH2Cl2 molecule. The atoms of the CH2Cl2 molecule shown are at the symmetry-related position (1 − x, 1 − y, 1 − z) relative to the cation and anion moieties shown.
(I) top
Crystal data top
C6H16N+·C24H20B·CH2Cl2F(000) = 1080
Mr = 506.33Dx = 1.199 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 998 reflections
a = 9.9331 (17) Åθ = 2.6–25.0°
b = 18.258 (3) ŵ = 0.25 mm1
c = 15.958 (3) ÅT = 173 K
β = 104.168 (3)°Block, light yellow
V = 2806.1 (9) Å30.21 × 0.08 × 0.05 mm
Z = 4
Data collection top
Siemens SMART platfrom CCD
diffractometer
4946 independent reflections
Radiation source: normal-focus sealed tube3943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
area detector, ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1111
Tmin = 0.936, Tmax = 0.99k = 1521
13804 measured reflectionsl = 1119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0387P)2 + 4P]
where P = (Fo2 + 2Fc2)/3
4946 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.47 e Å3
9 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H16N+·C24H20B·CH2Cl2V = 2806.1 (9) Å3
Mr = 506.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9331 (17) ŵ = 0.25 mm1
b = 18.258 (3) ÅT = 173 K
c = 15.958 (3) Å0.21 × 0.08 × 0.05 mm
β = 104.168 (3)°
Data collection top
Siemens SMART platfrom CCD
diffractometer
4946 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
3943 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.99Rint = 0.032
13804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0699 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.47 e Å3
4946 reflectionsΔρmin = 0.23 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
B10.6549 (3)0.21465 (17)0.43490 (19)0.0239 (7)
N10.3190 (3)0.14622 (14)0.64405 (16)0.0352 (6)
H1A0.312 (3)0.1762 (17)0.595 (2)0.042*
C10.7232 (3)0.16764 (15)0.52360 (17)0.0249 (6)
C20.7086 (3)0.09146 (16)0.52384 (19)0.0335 (7)
H2A0.66720.06750.47100.040*
C30.7520 (3)0.04940 (18)0.5980 (2)0.0400 (8)
H3A0.74000.00220.59520.048*
C40.8123 (3)0.0825 (2)0.6756 (2)0.0442 (9)
H4A0.84360.05390.72640.053*
C50.8265 (3)0.1576 (2)0.67857 (19)0.0423 (8)
H5A0.86620.18110.73200.051*
C60.7830 (3)0.19924 (17)0.60343 (18)0.0327 (7)
H6A0.79450.25090.60690.039*
C70.4898 (3)0.21982 (15)0.43521 (16)0.0248 (6)
C80.3910 (3)0.16846 (15)0.39498 (18)0.0294 (6)
H8A0.41900.13010.36280.035*
C90.2526 (3)0.17095 (17)0.39998 (19)0.0350 (7)
H9A0.18870.13490.37150.042*
C100.2091 (3)0.22611 (17)0.44648 (19)0.0358 (7)
H10A0.11480.22890.44910.043*
C110.3040 (3)0.27712 (17)0.48908 (19)0.0361 (7)
H11A0.27550.31480.52210.043*
C120.4416 (3)0.27332 (16)0.48360 (18)0.0301 (6)
H12A0.50560.30860.51400.036*
C130.7238 (3)0.29619 (15)0.43230 (16)0.0238 (6)
C140.6482 (3)0.35597 (15)0.38951 (17)0.0285 (6)
H14A0.55130.35010.36590.034*
C150.7080 (3)0.42311 (16)0.37996 (18)0.0322 (7)
H15A0.65190.46200.35090.039*
C160.8491 (3)0.43361 (16)0.41265 (18)0.0339 (7)
H16A0.89090.47940.40610.041*
C170.9281 (3)0.37620 (16)0.45503 (17)0.0319 (7)
H17A1.02510.38240.47780.038*
C180.8660 (3)0.30952 (15)0.46438 (17)0.0276 (6)
H18A0.92280.27110.49400.033*
C190.6822 (3)0.17348 (14)0.34858 (17)0.0246 (6)
C200.5921 (3)0.18034 (15)0.26664 (18)0.0309 (7)
H20A0.50740.20610.26120.037*
C210.6215 (3)0.15102 (17)0.19274 (19)0.0378 (7)
H21A0.55690.15670.13840.045*
C230.8361 (3)0.10581 (16)0.27720 (19)0.0349 (7)
H23A0.92080.08020.28180.042*
C240.8053 (3)0.13538 (15)0.35100 (18)0.0295 (6)
H24A0.87060.12940.40510.035*
C220.7443 (3)0.11366 (16)0.19789 (19)0.0369 (7)
H22A0.76490.09370.14750.044*
C250.4204 (3)0.08928 (17)0.63049 (19)0.0369 (7)
H25A0.50710.11380.62570.044*
H25B0.38120.06350.57530.044*
C260.4549 (4)0.03314 (18)0.7035 (2)0.0481 (9)
H26A0.52140.00250.69150.072*
H26B0.36980.00780.70760.072*
H26C0.49540.05810.75820.072*
C270.3708 (3)0.19340 (17)0.7229 (2)0.0405 (8)
H27A0.30240.23280.72310.049*
H27B0.37710.16320.77520.049*
C280.5097 (4)0.2274 (2)0.7274 (2)0.0513 (9)
H28A0.53730.25730.77980.077*
H28B0.50400.25840.67650.077*
H28C0.57880.18880.72890.077*
C290.1767 (3)0.11822 (19)0.6440 (2)0.0436 (8)
H29A0.18260.09040.69800.052*
H29B0.11480.16070.64430.052*
C300.1122 (3)0.0701 (2)0.5686 (2)0.0469 (9)
H30A0.01990.05450.57320.070*
H30B0.17080.02680.56880.070*
H30C0.10390.09730.51470.070*
Cl10.2843 (4)0.45763 (13)0.41332 (17)0.0627 (7)0.799 (10)
C310.2569 (7)0.5516 (2)0.3951 (4)0.0527 (15)0.799 (10)
H31A0.27980.57750.45140.063*0.799 (10)
H31B0.15740.56020.36790.063*0.799 (10)
Cl20.3574 (6)0.58884 (19)0.3283 (3)0.0834 (12)0.799 (10)
Cl1'0.3336 (13)0.4666 (6)0.4225 (8)0.0627 (7)0.201 (10)
C31'0.338 (3)0.5572 (8)0.4220 (11)0.0527 (15)0.201 (10)
H31C0.43190.57410.45230.063*0.201 (10)
H31D0.27140.57640.45380.063*0.201 (10)
Cl2'0.2954 (11)0.5929 (7)0.3158 (7)0.055 (2)0.201 (10)
π20.78720.36580.42230.040*0.00
π10.25660.25160.46780.040*0.00
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0250 (16)0.0244 (17)0.0212 (16)0.0025 (13)0.0033 (12)0.0001 (13)
N10.0384 (14)0.0381 (15)0.0313 (14)0.0006 (12)0.0127 (12)0.0019 (12)
C10.0201 (13)0.0290 (16)0.0279 (15)0.0038 (12)0.0104 (11)0.0029 (12)
C20.0367 (16)0.0343 (18)0.0324 (16)0.0069 (14)0.0138 (13)0.0038 (14)
C30.0428 (18)0.0335 (18)0.049 (2)0.0103 (15)0.0225 (16)0.0136 (16)
C40.0366 (17)0.057 (2)0.041 (2)0.0122 (16)0.0146 (15)0.0269 (17)
C50.0353 (17)0.063 (2)0.0263 (16)0.0040 (16)0.0040 (13)0.0066 (16)
C60.0309 (15)0.0372 (17)0.0303 (16)0.0034 (13)0.0078 (13)0.0052 (13)
C70.0288 (14)0.0255 (15)0.0191 (13)0.0035 (12)0.0043 (11)0.0049 (12)
C80.0329 (15)0.0254 (16)0.0311 (16)0.0035 (12)0.0099 (12)0.0010 (13)
C90.0279 (15)0.0366 (18)0.0379 (17)0.0015 (13)0.0030 (13)0.0045 (14)
C100.0248 (15)0.0429 (19)0.0419 (18)0.0078 (14)0.0124 (13)0.0086 (15)
C110.0398 (17)0.0381 (18)0.0334 (17)0.0104 (15)0.0148 (14)0.0017 (14)
C120.0329 (15)0.0292 (16)0.0279 (15)0.0032 (13)0.0069 (12)0.0019 (13)
C130.0282 (14)0.0280 (15)0.0172 (13)0.0029 (12)0.0098 (11)0.0026 (11)
C140.0302 (15)0.0312 (16)0.0234 (14)0.0015 (13)0.0053 (12)0.0014 (12)
C150.0390 (17)0.0294 (17)0.0287 (15)0.0060 (13)0.0089 (13)0.0043 (13)
C160.0462 (18)0.0295 (16)0.0303 (16)0.0063 (14)0.0176 (14)0.0005 (13)
C170.0297 (15)0.0400 (18)0.0266 (15)0.0034 (13)0.0080 (12)0.0003 (13)
C180.0296 (15)0.0309 (16)0.0232 (14)0.0046 (12)0.0082 (12)0.0035 (12)
C190.0311 (14)0.0186 (14)0.0245 (14)0.0012 (12)0.0075 (11)0.0019 (11)
C200.0347 (16)0.0295 (16)0.0294 (16)0.0027 (13)0.0097 (12)0.0006 (13)
C210.0524 (19)0.0361 (18)0.0236 (15)0.0024 (15)0.0067 (14)0.0015 (13)
C230.0400 (17)0.0304 (17)0.0413 (18)0.0046 (14)0.0235 (14)0.0013 (14)
C240.0333 (15)0.0289 (16)0.0274 (15)0.0002 (13)0.0093 (12)0.0010 (13)
C220.058 (2)0.0275 (17)0.0325 (17)0.0058 (15)0.0244 (15)0.0060 (13)
C250.0345 (16)0.0384 (18)0.0400 (18)0.0002 (14)0.0134 (14)0.0093 (15)
C260.052 (2)0.040 (2)0.054 (2)0.0051 (16)0.0152 (17)0.0035 (17)
C270.051 (2)0.0341 (18)0.0375 (18)0.0031 (15)0.0140 (15)0.0061 (14)
C280.056 (2)0.054 (2)0.044 (2)0.0154 (18)0.0120 (17)0.0139 (17)
C290.0326 (17)0.056 (2)0.0461 (19)0.0011 (15)0.0167 (15)0.0001 (17)
C300.0371 (18)0.057 (2)0.046 (2)0.0101 (16)0.0089 (15)0.0020 (17)
Cl10.090 (2)0.0404 (8)0.0649 (9)0.0110 (10)0.0323 (12)0.0002 (6)
C310.069 (4)0.043 (2)0.056 (3)0.009 (3)0.033 (3)0.006 (2)
Cl20.145 (3)0.0566 (14)0.0719 (18)0.0354 (18)0.072 (2)0.0162 (12)
Cl1'0.090 (2)0.0404 (8)0.0649 (9)0.0110 (10)0.0323 (12)0.0002 (6)
C31'0.069 (4)0.043 (2)0.056 (3)0.009 (3)0.033 (3)0.006 (2)
Cl2'0.066 (5)0.058 (4)0.042 (3)0.009 (4)0.015 (4)0.015 (3)
Geometric parameters (Å, º) top
B1—C131.643 (4)C17—H17A0.9500
B1—C71.644 (4)C18—H18A0.9500
B1—C191.649 (4)C19—C201.398 (4)
B1—C11.652 (4)C19—C241.399 (4)
N1—C251.500 (4)C20—C211.389 (4)
N1—C291.503 (4)C20—H20A0.9500
N1—C271.508 (4)C21—C221.382 (4)
N1—H1A0.94 (3)C21—H21A0.9500
C1—C61.392 (4)C23—C221.374 (4)
C1—C21.399 (4)C23—C241.396 (4)
C2—C31.388 (4)C23—H23A0.9500
C2—H2A0.9500C24—H24A0.9500
C3—C41.376 (5)C22—H22A0.9500
C3—H3A0.9500C25—C261.526 (4)
C4—C51.378 (5)C25—H25A0.9900
C4—H4A0.9500C25—H25B0.9900
C5—C61.396 (4)C26—H26A0.9800
C5—H5A0.9500C26—H26B0.9800
C6—H6A0.9500C26—H26C0.9800
C7—C81.395 (4)C27—C281.499 (4)
C7—C121.400 (4)C27—H27A0.9900
C8—C91.396 (4)C27—H27B0.9900
C8—H8A0.9500C28—H28A0.9800
C9—C101.382 (4)C28—H28B0.9800
C9—H9A0.9500C28—H28C0.9800
C10—C111.380 (4)C29—C301.500 (4)
C10—H10A0.9500C29—H29A0.9900
C11—C121.392 (4)C29—H29B0.9900
C11—H11A0.9500C30—H30A0.9800
C12—H12A0.9500C30—H30B0.9800
C13—C181.401 (4)C30—H30C0.9800
C13—C141.403 (4)Cl1—C311.750 (5)
C14—C151.387 (4)C31—Cl21.766 (5)
C14—H14A0.9500C31—H31A0.9900
C15—C161.384 (4)C31—H31B0.9900
C15—H15A0.9500Cl1'—C31'1.656 (15)
C16—C171.383 (4)C31'—Cl2'1.767 (15)
C16—H16A0.9500C31'—H31C0.9900
C17—C181.389 (4)C31'—H31D0.9900
C13—B1—C7111.7 (2)C20—C19—C24115.2 (2)
C13—B1—C19103.7 (2)C20—C19—B1122.8 (2)
C7—B1—C19113.4 (2)C24—C19—B1121.7 (2)
C13—B1—C1113.9 (2)C21—C20—C19122.7 (3)
C7—B1—C1103.2 (2)C21—C20—H20A118.6
C19—B1—C1111.2 (2)C19—C20—H20A118.6
C25—N1—C29115.4 (2)C22—C21—C20120.3 (3)
C25—N1—C27114.4 (2)C22—C21—H21A119.8
C29—N1—C27108.9 (2)C20—C21—H21A119.8
C25—N1—H1A101.5 (19)C22—C23—C24120.2 (3)
C29—N1—H1A108.4 (19)C22—C23—H23A119.9
C27—N1—H1A107.7 (19)C24—C23—H23A119.9
C6—C1—C2115.5 (3)C23—C24—C19122.7 (3)
C6—C1—B1124.2 (2)C23—C24—H24A118.7
C2—C1—B1119.9 (2)C19—C24—H24A118.7
C3—C2—C1122.8 (3)C23—C22—C21118.9 (3)
C3—C2—H2A118.6C23—C22—H22A120.6
C1—C2—H2A118.6C21—C22—H22A120.6
C4—C3—C2120.0 (3)N1—C25—C26112.9 (2)
C4—C3—H3A120.0N1—C25—H25A109.0
C2—C3—H3A120.0C26—C25—H25A109.0
C3—C4—C5119.1 (3)N1—C25—H25B109.0
C3—C4—H4A120.5C26—C25—H25B109.0
C5—C4—H4A120.5H25A—C25—H25B107.8
C4—C5—C6120.3 (3)C25—C26—H26A109.5
C4—C5—H5A119.8C25—C26—H26B109.5
C6—C5—H5A119.8H26A—C26—H26B109.5
C1—C6—C5122.2 (3)C25—C26—H26C109.5
C1—C6—H6A118.9H26A—C26—H26C109.5
C5—C6—H6A118.9H26B—C26—H26C109.5
C8—C7—C12115.2 (2)C28—C27—N1113.5 (3)
C8—C7—B1123.4 (2)C28—C27—H27A108.9
C12—C7—B1121.2 (2)N1—C27—H27A108.9
C7—C8—C9122.9 (3)C28—C27—H27B108.9
C7—C8—H8A118.6N1—C27—H27B108.9
C9—C8—H8A118.6H27A—C27—H27B107.7
C10—C9—C8119.7 (3)C27—C28—H28A109.5
C10—C9—H9A120.1C27—C28—H28B109.5
C8—C9—H9A120.1H28A—C28—H28B109.5
C11—C10—C9119.4 (3)C27—C28—H28C109.5
C11—C10—H10A120.3H28A—C28—H28C109.5
C9—C10—H10A120.3H28B—C28—H28C109.5
C10—C11—C12119.9 (3)C30—C29—N1114.6 (3)
C10—C11—H11A120.1C30—C29—H29A108.6
C12—C11—H11A120.1N1—C29—H29A108.6
C11—C12—C7122.9 (3)C30—C29—H29B108.6
C11—C12—H12A118.6N1—C29—H29B108.6
C7—C12—H12A118.6H29A—C29—H29B107.6
C18—C13—C14114.4 (2)C29—C30—H30A109.5
C18—C13—B1122.5 (2)C29—C30—H30B109.5
C14—C13—B1122.7 (2)H30A—C30—H30B109.5
C15—C14—C13123.3 (3)C29—C30—H30C109.5
C15—C14—H14A118.4H30A—C30—H30C109.5
C13—C14—H14A118.4H30B—C30—H30C109.5
C16—C15—C14120.1 (3)Cl1—C31—Cl2112.9 (3)
C16—C15—H15A119.9Cl1—C31—H31A109.0
C14—C15—H15A119.9Cl2—C31—H31A109.0
C17—C16—C15118.7 (3)Cl1—C31—H31B109.0
C17—C16—H16A120.6Cl2—C31—H31B109.0
C15—C16—H16A120.6H31A—C31—H31B107.8
C16—C17—C18120.2 (3)Cl1'—C31'—Cl2'111.9 (11)
C16—C17—H17A119.9Cl1'—C31'—H31C109.2
C18—C17—H17A119.9Cl2'—C31'—H31C109.2
C17—C18—C13123.2 (3)Cl1'—C31'—H31D109.2
C17—C18—H18A118.4Cl2'—C31'—H31D109.2
C13—C18—H18A118.4H31C—C31'—H31D107.9
C13—B1—C1—C627.9 (4)C7—B1—C13—C1432.7 (3)
C7—B1—C1—C693.4 (3)C19—B1—C13—C1489.8 (3)
C19—B1—C1—C6144.7 (3)C1—B1—C13—C14149.1 (2)
C13—B1—C1—C2159.7 (2)C18—C13—C14—C150.5 (4)
C7—B1—C1—C279.0 (3)B1—C13—C14—C15173.8 (2)
C19—B1—C1—C242.9 (3)C13—C14—C15—C160.7 (4)
C6—C1—C2—C30.8 (4)C14—C15—C16—C170.3 (4)
B1—C1—C2—C3173.9 (3)C15—C16—C17—C180.1 (4)
C1—C2—C3—C40.0 (4)C16—C17—C18—C130.2 (4)
C2—C3—C4—C51.1 (4)C14—C13—C18—C170.1 (4)
C3—C4—C5—C61.3 (5)B1—C13—C18—C17173.4 (2)
C2—C1—C6—C50.5 (4)C13—B1—C19—C2085.9 (3)
B1—C1—C6—C5173.2 (3)C7—B1—C19—C2035.5 (4)
C4—C5—C6—C10.5 (4)C1—B1—C19—C20151.2 (2)
C13—B1—C7—C8146.1 (2)C13—B1—C19—C2487.2 (3)
C19—B1—C7—C829.4 (4)C7—B1—C19—C24151.4 (2)
C1—B1—C7—C891.0 (3)C1—B1—C19—C2435.6 (3)
C13—B1—C7—C1240.0 (3)C24—C19—C20—C210.5 (4)
C19—B1—C7—C12156.8 (2)B1—C19—C20—C21174.1 (3)
C1—B1—C7—C1282.8 (3)C19—C20—C21—C220.5 (5)
C12—C7—C8—C91.9 (4)C22—C23—C24—C190.2 (4)
B1—C7—C8—C9176.1 (3)C20—C19—C24—C230.4 (4)
C7—C8—C9—C100.1 (4)B1—C19—C24—C23174.0 (3)
C8—C9—C10—C111.5 (4)C24—C23—C22—C210.1 (4)
C9—C10—C11—C121.1 (4)C20—C21—C22—C230.3 (4)
C10—C11—C12—C70.8 (4)C29—N1—C25—C2664.4 (3)
C8—C7—C12—C112.2 (4)C27—N1—C25—C2663.0 (3)
B1—C7—C12—C11176.6 (3)C25—N1—C27—C2852.1 (4)
C7—B1—C13—C18154.6 (2)C29—N1—C27—C28177.2 (3)
C19—B1—C13—C1883.0 (3)C25—N1—C29—C3049.7 (4)
C1—B1—C13—C1838.1 (3)C27—N1—C29—C30179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···π10.94 (3)2.40 (3)3.338 (3)172 (3)
C31—H31A···π2i0.992.503.403 (5)152
C31—H31D···π2i0.992.433.347 (19)153
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H16N+·C24H20B·CH2Cl2
Mr506.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.9331 (17), 18.258 (3), 15.958 (3)
β (°) 104.168 (3)
V3)2806.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.21 × 0.08 × 0.05
Data collection
DiffractometerSiemens SMART platfrom CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.936, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
13804, 4946, 3943
Rint0.032
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.140, 1.03
No. of reflections4946
No. of parameters335
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···π10.94 (3)2.40 (3)3.338 (3)172 (3)
C31—H31A···π2i0.992.503.403 (5)152
C31'—H31D···π2i0.992.433.347 (19)153
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds