Download citation
Download citation
link to html
The crystal structure of the title compound, [MnCl(C28H22N2O2)(C2H6O)], has been determined at 173 (2) K in the non-centrosymmetric space group P212121. The asymmetric unit contains two molecular units. An intermolecular O-H...Cl hydrogen bond is formed between the OH group of an ethanol mol­ecule coordinated to the Mn atom and the coordinated Cl- anion, and so polymeric chains of Mn-containing fragments are formed [O-H...Cl = 3.1281 (16) and 3.1282 (15) Å]. The Mn atoms have a pseudo-octahedral coordination sphere, with the four donor atoms of the Schiff base forming an equatorial plane [Mn-O distances are 1.8740 (13), 1.8717 (13), 1.8749 (13) and 1.8823 (13) Å, and Mn-N distances are 1.9868 (15), 1.9910 (14), 1.9828 (15) and 1.9979 (14) Å]. The axial positions are occupied by an ethanol mol­ecule [Mn-O distances of 2.3069 (15) and 2.3130 (15) Å] and a Cl- ligand [Mn-Cl distances of 2.5732 (6) and 2.5509 (6) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104000204/sq1142sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104000204/sq1142Isup2.hkl
Contains datablock I

CCDC reference: 233115

Comment top

Manganese-Schiff base complexes are actively used as catalysts, due to their ability to epoxidize unfunctionalized alkenes highly stereoselectively (Lane & Burgess, 2003). The Katsuki-Jacobsen reaction is, to date, one of the most convenient methods of enantiomeric epoxidation of alkenes (Jacobsen, 1993, 1995; Katsuki, 1995). Interest in the structural characterization of various species in the reaction stems from the need to improve enantioselectivity and from an ongoing controversy over the reaction mechanism (Linker, 1997).

It has been shown that subtle changes in the nature of the axial ligands in Mn-Schiff base compounds and the solvent used for crystallization have a significant impact on the crystal structure of a complex (Horwits et al., 2001; Martinez et al., 2002). Moreover, axial coordination of various ligands to the oxomanganese(V) catalytically active species in the epoxidation reaction has been shown to have a significant impact on rate enhancement and enantioselectivity (El-Bahraoui et al., 2001). Here, we report the crystal structure of the title MnIII complex with N,N'-bis(salicylidene)stilbenediamine (stien), [MnIII(stien)(Cl)EtOH)], (I), which has a Cl anion and an ethanol molecule coordinated in the axial positions. The closely related compound [Mn(stien)(Me2CO)2](PF6) has previously only been characterized in cationic form (Zhang et al., 1990). Here we discuss the differences caused by the change of coordination number and counterion. \sch

Compound (I) crystallizes in the non-centrosymmetric space group P212121. Two molecules having very similar geometry constitute the asymmetric unit. One of the molecules is shown in Fig. 1 and a superposition of the two molecules is presented in Fig. 2. The Mn atoms have pseudo-octahedral coordination spheres, with four donor atoms of the Schiff base forming an equatorial plane. The axial positions are occupied by an ethanol molecule and Cl ligand.

Equatorial bond lengths and angles in the Mn coordination sphere of (I) are typical for the salen complexes [salen is N,N'-ethylenebis(salicylideneamine)]. The axial sites in Mn-salen complexes are readily available for coordination, and only six-coordinate species are formed in the presence of coordinating solvents. As may be expected for a pseudo-octahedral complex, the displacements of the Mn atoms of (I) from the least-squares planes determined by the donor atoms of the Schiff base ligand are relatively small [0.0449 (7) for Mn1 and 0.0746 (7) Å for Mn2] compared with the values for related five-coordinate complexes [0.387 (1) and 0.451 (1) Å; Hirotsu et al., 1995].

Jahn-Teller distortion, expected for a d4 ion, leads to a significant elongation of the axial Mn—O bond [2.3069 (15) and 2.3130 (15) Å] compared with the in-plane Mn—O distances. The disorder observed in the coordinated ethanol molecule is similar to that observed by Oki & Hodgson (1990) in related Mn-Schiff base complexes.

The Mn—Cl bond distances observed in (I) [2.5732 (6) and 2.5509 (6) Å] are somewhat longer than the value of 2.4680 (16) Å observed for a simple octahedral Mn(salen) complex (Martinez et al., 2002) and the value of 2.391 (3) Å observed in [Mn(7-Phsal-(SS)-stien)Cl] (7-Phsal is?; Hirotsu et al., 1995), and are comparable with the Mn—Cl distance of 2.572 (1) Å in [(5,5'-Cl-salen)Mn(H2O)Cl] (Horwitz, 1995). Based on analysis of structural data for various five-coordinate manganese(III) and iron(III) Schiff base complexes, Pecoraro & Butler showed that the distance from the Cl atom to the centre of the basal plane of the coordinating atoms is constant regardless of the metal ion and equals 2.7 Å (Pecoraro & Butler, 1986). The displacements of the Cl atoms from an N2O2 least-squares plane in (I) are slightly smaller, at 2.6055 (9) and 2.6162 (9) Å.

Comparison of the geometry of stien in the free ligand (Korendovych & Rybak-Akimova, 2003) and in its MnIII complex, (I), shows that coordination of Mn causes slight elongation of the CN bond [mean bond length of 1.288 (2) Å in (I) versus 1.270 Å in the free ligand] and shortening of the Cphenol—O bond [mean bond length of 1.317 (2) Å in (I) versus 1.348 Å in the free ligand]. These values are close to those observed for the cationic MnIII(stien) complex (C—Ophenol 1.319 Å and CN 1.275 Å; Zhang et al., 1990).

The central chelate rings of (I) adopt δ gauche conformations, with the phenyl rings occupying equatorial positions. The corresponding N—C—C—N torsion angles are 43.86 (17) and 43.80 (16)°. Comparison of these values with that observed for an unsubstituted octahedral Mn-salen complex (46.70°; Martinez et al., 2002) suggests that the phenyl substituents do not introduce substantial steric strain to the five-membered chelate ring. Interestingly, the corresponding dihedral angle in the cationic form of the complex, [Mn(stien)(Me2CO)2](PF6), is smaller, at 37.22°.

An interesting feature of (I) is the formation of polymeric chains of Mn-containing fragments via hydrogen bonds formed between the OH group of the coordinated ethanol molecule and the coordinated Cl ligand (Fig. 3 and Table 2). The polymeric chains are formed along the crystallographic c axis. Both the Mn-Schiff base complexes that constitute the asymmetric unit participate in this chain formation. The angle between the planes, determined by the N2O2 donor set of the ligand in the chain, is 40.09 (4)°. The formation of polymeric chains in (I), in contrast with the `intricate arrays' observed for an MnIII-salen complex with a water molecule in the axial position, where each coordinated water molecule forms two hydrogen bonds with the phenolic O atoms of a neighbouring complex (Martinez et al., 2002), is probably caused by the presence of bulky phenyl substituents and by only one H atom of the coordinated solvent being available for bonding.

Experimental top

The title compound was prepared according to the general procedure of Jacobsen (Zhang & Jacobsen, 1991). (1S,2S)-(-)-1,2-Diphenyl-1,2-ethanediamine (99% purity, 99% e.e.), salicylaldehyde, LiCl and Mn(CH3CO2)2·4H2O were purchased from Acros. All reagents were used as received without further purification. Salicylaldehyde (576 mg, 2.76 mmol) was added to a solution of (1S,2S)-(-)-1,2-diphenyl-1,2-ethanediamine (500 mg, 2.36 mmol) in absolute ethanol (12 ml) and the reaction mixture was refluxed for 1 h. The resulting Schiff base [H2(1S,2S)-stien] was crystallized by cooling followed by the addition of few drops of water. Solid Mn(OAc)2·4H2O (1.15 g, 4.72 mmol) was added to the ligand redissolved in hot absolute ethanol (25 ml) and the reaction mixture was refluxed for 1 h. Solid LiCl (250 mg) was then added to the reaction mixture, which was heated to reflux for an additional 30 min. The crude product, obtained by removal of the solvent in vacuo, was redissolved in dichloromethane and filtered to remove excess reagents. Concentration of the solution to ca 20 ml followed by cooling to 273 K produced dark-brown needles of the MnIII(stien) complex in 83% yield. Slow evaporation of a solution in ethanol yielded crystals of (I).

Refinement top

Carbon-bound H atoms were placed in idealized positions, with C—H distances in the range 0.95–1.00 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms bound to the coordinated ethanol O atoms were found in a difference Fourier map and refined isotropically. Both coordinated ethanol molecules exhibit orientational disorder. The disorder was modelled with a set of two positions for each molecule. The disordered C atoms were presumed to have the same anisotropic displacement parameters. Furthermore, C—O and C—C distances within the same molecule were restrained to be the same for both orientations. The occupancies of sites 1 and 2 converged at 0.507 (12) and 0.493 (12), respectively, for the molecule containing Mn1, and at 0.695 (10) and 0.305 (10), respectively, for the molecule containing Mn2.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: XCIF in SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of a molecule of (I), showing the atom-labelling scheme for selected atoms. Only one of the two crystallographically independent molecules is shown for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A superposition of the two crystallographically independent molecules of (I) (fit based on the N2O2 equatorial plane). The fragment containing Mn1 is shown in light grey and that containing Mn2 is shown in dark grey.
[Figure 3] Fig. 3. A view of (I) showing the polymeric hydrogen-bonded array, with displacement ellipsoids drawn at the 30% probability level. Atoms labelled with a hash (#) are at the symmetry position (x + 1, y, z).
Chloro{2,2'-[(1S,2S)-1,2-diphenyl-1,2- ethanediylbis(nitrilomethylidyne]diphenolato-κ4O,N,N',O'}(ethanol- κO)manganese(III) top
Crystal data top
[MnCl(C28H22N2O2)(C2H6O)]F(000) = 2304
Mr = 554.93Dx = 1.359 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7828 reflections
a = 13.3857 (19) Åθ = 2.2–28.2°
b = 19.467 (3) ŵ = 0.62 mm1
c = 20.823 (3) ÅT = 173 K
V = 5425.9 (14) Å3Block, brown
Z = 80.25 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
13026 independent reflections
Radiation source: sealed tube11709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.861, Tmax = 0.941k = 2523
41965 measured reflectionsl = 2627
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.5484P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
13026 reflectionsΔρmax = 0.26 e Å3
709 parametersΔρmin = 0.22 e Å3
46 restraintsAbsolute structure: Flack (1983), with x Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (9)
Crystal data top
[MnCl(C28H22N2O2)(C2H6O)]V = 5425.9 (14) Å3
Mr = 554.93Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 13.3857 (19) ŵ = 0.62 mm1
b = 19.467 (3) ÅT = 173 K
c = 20.823 (3) Å0.25 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
13026 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
11709 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.941Rint = 0.030
41965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.26 e Å3
S = 1.04Δρmin = 0.22 e Å3
13026 reflectionsAbsolute structure: Flack (1983), with x Friedel pairs
709 parametersAbsolute structure parameter: 0.017 (9)
46 restraints
Special details top

Experimental. Data were collected using a Bruker SMART CCD– (charge-coupled device) based diffractometer equipped with an LT-2 low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a glass fiber using Paratone-N oil. Data were measured using ϕ and ω scans of 0.3° per frame for 30 s, such that a hemisphere was collected. A total of 1650 frames were collected with a final resolution of 0.75 Å. The first 50 frames were recollected at the end of data collection to monitor for decay. Cell parameters were retrieved using SMART software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software which corrects for Lp and decay. The structures are solved by the direct method using the SHELX90 program and refined by the least-squares method on F2 SHELXL93, incorporated in SHELXTL V5.1. The C-bound H atoms were placed in idealized positions and refined as a riding model. The H atoms bound to the ethanol O atoms were found by difference Fourier and refined.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.044575 (18)0.506291 (14)0.935299 (12)0.02402 (6)
Cl10.12070 (3)0.46632 (3)0.98617 (2)0.03433 (11)
N10.07112 (10)0.55396 (8)1.01792 (7)0.0251 (3)
O10.00842 (10)0.58579 (7)0.89767 (6)0.0334 (3)
C10.03810 (13)0.64293 (9)0.92584 (9)0.0272 (4)
O1S0.20540 (11)0.53406 (10)0.90512 (8)0.0457 (4)
H1S0.2442 (19)0.5311 (14)0.9298 (13)0.055*
Mn20.530645 (17)0.496358 (14)0.949169 (13)0.02569 (6)
Cl20.37913 (3)0.54930 (2)1.00458 (3)0.03448 (11)
O20.02823 (9)0.45595 (7)0.85945 (6)0.0300 (3)
N20.11062 (10)0.42819 (8)0.98012 (7)0.0243 (3)
O2S0.67848 (10)0.45059 (9)0.91075 (8)0.0456 (4)
H2S0.7266 (19)0.4556 (14)0.9274 (13)0.055*
C20.09061 (14)0.69205 (10)0.88908 (10)0.0328 (4)
H20.10460.68290.84520.039*
O30.51165 (9)0.54473 (7)0.87227 (6)0.0323 (3)
N30.61790 (10)0.56962 (7)0.98617 (7)0.0241 (3)
C30.12190 (15)0.75303 (10)0.91596 (11)0.0374 (5)
H30.15620.78550.89000.045*
O40.46553 (10)0.41786 (7)0.91701 (7)0.0335 (3)
N40.55988 (10)0.45047 (8)1.03208 (7)0.0256 (3)
C40.10425 (15)0.76796 (10)0.98032 (12)0.0396 (5)
H40.12730.80980.99860.047*
C50.05307 (15)0.72123 (10)1.01688 (10)0.0353 (4)
H50.04040.73121.06080.042*
C60.01861 (13)0.65848 (9)0.99089 (9)0.0280 (4)
C70.03831 (13)0.61406 (9)1.03261 (9)0.0279 (4)
H70.05280.63061.07450.034*
C80.13404 (12)0.51373 (9)1.06390 (9)0.0267 (4)
H80.20570.52231.05290.032*
C90.11189 (13)0.43755 (9)1.05118 (9)0.0272 (4)
H90.04210.42911.06650.033*
C100.14100 (12)0.37280 (9)0.95273 (9)0.0271 (4)
H100.17750.34110.97830.033*
C110.12424 (13)0.35485 (10)0.88659 (9)0.0279 (4)
C1S10.2344 (3)0.5888 (3)0.8643 (2)0.0573 (16)0.695 (10)
H1S10.30730.59650.86760.069*0.695 (10)
H1S20.19980.63160.87720.069*0.695 (10)
C120.15988 (14)0.29068 (11)0.86503 (11)0.0358 (4)
H120.19980.26370.89310.043*
C1S20.2484 (7)0.5409 (10)0.8466 (3)0.068 (4)0.305 (10)
H1S30.25990.49460.82840.082*0.305 (10)
H1S40.31440.56310.85190.082*0.305 (10)
C130.13861 (17)0.26605 (12)0.80471 (12)0.0459 (5)
H130.16410.22300.79090.055*
C140.07883 (18)0.30552 (12)0.76413 (11)0.0475 (6)
H140.06260.28860.72260.057*
C150.04293 (16)0.36849 (11)0.78322 (10)0.0397 (5)
H150.00230.39420.75460.048*
C160.06524 (13)0.39562 (10)0.84439 (9)0.0290 (4)
C170.17882 (13)0.38917 (10)1.08879 (9)0.0275 (4)
C180.13553 (15)0.33234 (11)1.11755 (11)0.0406 (5)
H180.06600.32451.11240.049*
C190.19205 (18)0.28644 (12)1.15397 (12)0.0476 (6)
H190.16170.24691.17230.057*
C200.29226 (16)0.29903 (11)1.16307 (10)0.0406 (5)
H200.33160.26841.18800.049*
C210.33498 (15)0.35602 (12)1.13597 (11)0.0408 (5)
H210.40370.36521.14330.049*
C2S10.207 (2)0.5701 (17)0.7963 (9)0.0667 (19)0.305 (10)
H2S10.19360.52070.79370.100*0.305 (10)
H2S20.26220.58190.76760.100*0.305 (10)
H2S30.14700.59560.78350.100*0.305 (10)
C220.27989 (14)0.40052 (11)1.09812 (10)0.0358 (4)
H220.31140.43891.07850.043*
C2S20.1880 (8)0.5820 (7)0.7997 (4)0.0667 (19)0.695 (10)
H2S40.11690.57180.80560.100*0.695 (10)
H2S50.20800.57000.75580.100*0.695 (10)
H2S60.19970.63110.80700.100*0.695 (10)
C230.11915 (13)0.53308 (9)1.13345 (9)0.0271 (4)
C240.02854 (16)0.51951 (11)1.16414 (10)0.0399 (5)
H240.02450.49911.14060.048*
C250.0151 (2)0.53521 (13)1.22745 (11)0.0524 (6)
H250.04720.52621.24770.063*
C260.0929 (2)0.56444 (13)1.26226 (12)0.0565 (7)
H260.08420.57401.30670.068*
C270.1815 (2)0.57960 (12)1.23331 (12)0.0526 (6)
H270.23360.60071.25720.063*
C280.19559 (16)0.56384 (11)1.16770 (11)0.0403 (5)
H280.25720.57431.14720.048*
C290.53758 (13)0.60832 (9)0.85774 (9)0.0269 (4)
C300.50193 (14)0.63668 (11)0.80007 (10)0.0333 (4)
H300.45820.61060.77370.040*
C310.52953 (15)0.70184 (11)0.78125 (10)0.0376 (4)
H310.50450.71990.74200.045*
C3S10.6929 (4)0.3937 (3)0.8732 (4)0.0441 (17)0.507 (12)
H3S10.62790.37880.85540.053*0.507 (12)
H3S20.71900.35590.90030.053*0.507 (12)
C320.59338 (16)0.74161 (11)0.81869 (11)0.0400 (5)
H320.61270.78620.80500.048*
C3S20.6904 (4)0.4279 (6)0.8464 (3)0.057 (2)0.493 (12)
H3S30.68310.46820.81770.069*0.493 (12)
H3S40.63520.39580.83630.069*0.493 (12)
C330.62789 (14)0.71554 (10)0.87544 (10)0.0344 (4)
H330.67110.74280.90120.041*
C340.60102 (12)0.64908 (10)0.89684 (9)0.0270 (4)
C350.64012 (12)0.62649 (9)0.95769 (9)0.0268 (4)
H350.68630.65600.97870.032*
C360.66671 (12)0.55019 (9)1.04790 (9)0.0249 (3)
H360.72940.52471.03730.030*
C370.59579 (11)0.49970 (10)1.08213 (8)0.0259 (3)
H370.53650.52671.09690.031*
C380.54391 (13)0.38673 (9)1.04535 (9)0.0289 (4)
H380.56520.37061.08620.035*
C390.49632 (13)0.33790 (10)1.00318 (10)0.0303 (4)
C400.48002 (15)0.27123 (10)1.02731 (11)0.0372 (5)
H400.50390.26001.06900.045*
C410.43082 (15)0.22206 (10)0.99248 (12)0.0402 (5)
H410.42030.17741.00950.048*
C4S10.7637 (9)0.4063 (8)0.8193 (6)0.052 (3)0.507 (12)
H4S10.73920.44440.79300.078*0.507 (12)
H4S20.76890.36480.79290.078*0.507 (12)
H4S30.82970.41790.83670.078*0.507 (12)
C420.39649 (14)0.23930 (10)0.93127 (12)0.0396 (5)
H420.36290.20560.90630.048*
C4S20.7870 (7)0.3931 (7)0.8306 (7)0.043 (2)0.493 (12)
H4S40.84270.42400.84050.064*0.493 (12)
H4S50.78820.38140.78490.064*0.493 (12)
H4S60.79330.35110.85630.064*0.493 (12)
C430.41035 (14)0.30408 (10)0.90650 (11)0.0388 (5)
H430.38680.31410.86450.047*
C440.45872 (12)0.35601 (9)0.94193 (10)0.0299 (4)
C450.69487 (13)0.60998 (10)1.09078 (9)0.0273 (4)
C460.62646 (14)0.66074 (11)1.10803 (10)0.0354 (4)
H460.55980.65851.09250.042*
C470.65490 (17)0.71436 (12)1.14766 (11)0.0441 (5)
H470.60800.74901.15890.053*
C480.75175 (17)0.71760 (13)1.17102 (11)0.0452 (5)
H480.77140.75471.19780.054*
C490.81941 (16)0.66702 (12)1.15533 (11)0.0437 (5)
H490.88530.66871.17220.052*
C500.79171 (13)0.61349 (11)1.11488 (10)0.0346 (4)
H500.83910.57921.10370.042*
C510.64189 (12)0.46694 (9)1.14107 (9)0.0263 (4)
C520.73620 (13)0.43654 (10)1.13898 (10)0.0326 (4)
H520.77170.43451.09950.039*
C530.77824 (15)0.40933 (11)1.19418 (11)0.0373 (5)
H530.84280.38911.19250.045*
C540.72686 (17)0.41139 (11)1.25179 (11)0.0398 (5)
H540.75620.39301.28960.048*
C550.63278 (17)0.44030 (11)1.25402 (10)0.0409 (5)
H550.59700.44141.29340.049*
C560.59037 (14)0.46770 (10)1.19886 (10)0.0325 (4)
H560.52540.48721.20070.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02798 (12)0.02443 (13)0.01964 (12)0.00331 (10)0.00322 (10)0.00111 (10)
Cl10.02244 (17)0.0434 (3)0.0372 (3)0.00197 (17)0.00210 (18)0.0041 (2)
N10.0280 (7)0.0256 (8)0.0218 (8)0.0009 (6)0.0026 (6)0.0017 (6)
O10.0475 (7)0.0281 (7)0.0246 (7)0.0085 (6)0.0081 (6)0.0004 (5)
C10.0278 (8)0.0248 (9)0.0291 (10)0.0010 (7)0.0011 (7)0.0018 (7)
O1S0.0339 (7)0.0680 (11)0.0352 (9)0.0097 (7)0.0035 (6)0.0155 (8)
Mn20.02520 (11)0.02552 (14)0.02634 (13)0.00361 (11)0.00501 (10)0.00274 (11)
Cl20.02306 (18)0.0332 (2)0.0472 (3)0.00011 (16)0.00097 (19)0.0046 (2)
O20.0351 (6)0.0311 (7)0.0239 (6)0.0077 (5)0.0061 (5)0.0055 (5)
N20.0227 (6)0.0291 (8)0.0210 (7)0.0012 (6)0.0020 (6)0.0003 (6)
O2S0.0281 (6)0.0634 (11)0.0454 (9)0.0036 (7)0.0062 (6)0.0197 (8)
C20.0345 (9)0.0298 (10)0.0341 (11)0.0006 (7)0.0035 (8)0.0047 (8)
O30.0374 (7)0.0300 (7)0.0294 (7)0.0071 (5)0.0094 (5)0.0049 (6)
N30.0205 (6)0.0269 (8)0.0250 (8)0.0000 (5)0.0004 (6)0.0001 (6)
C30.0336 (10)0.0290 (10)0.0496 (13)0.0019 (8)0.0016 (9)0.0111 (9)
O40.0352 (6)0.0295 (7)0.0357 (7)0.0074 (6)0.0109 (6)0.0042 (6)
N40.0233 (6)0.0279 (8)0.0255 (8)0.0013 (6)0.0014 (6)0.0004 (6)
C40.0424 (11)0.0239 (10)0.0524 (14)0.0022 (8)0.0040 (10)0.0010 (9)
C50.0411 (10)0.0291 (10)0.0358 (11)0.0004 (8)0.0003 (9)0.0037 (8)
C60.0306 (8)0.0235 (9)0.0300 (10)0.0012 (7)0.0014 (7)0.0019 (7)
C70.0327 (8)0.0265 (9)0.0247 (9)0.0034 (7)0.0029 (8)0.0022 (7)
C80.0261 (7)0.0292 (9)0.0247 (9)0.0010 (6)0.0025 (7)0.0008 (7)
C90.0286 (8)0.0305 (9)0.0226 (9)0.0010 (7)0.0016 (7)0.0001 (7)
C100.0233 (7)0.0293 (10)0.0288 (10)0.0034 (6)0.0000 (7)0.0003 (8)
C110.0257 (8)0.0304 (10)0.0277 (10)0.0007 (7)0.0032 (7)0.0038 (7)
C1S10.052 (2)0.068 (3)0.052 (3)0.018 (2)0.0045 (19)0.026 (3)
C120.0342 (9)0.0333 (11)0.0397 (12)0.0067 (8)0.0003 (8)0.0052 (9)
C1S20.052 (5)0.117 (12)0.034 (5)0.014 (6)0.010 (4)0.013 (6)
C130.0542 (13)0.0395 (12)0.0441 (13)0.0119 (10)0.0002 (11)0.0174 (10)
C140.0579 (13)0.0507 (14)0.0338 (12)0.0097 (11)0.0038 (10)0.0185 (10)
C150.0455 (11)0.0423 (12)0.0312 (11)0.0094 (9)0.0056 (9)0.0098 (9)
C160.0272 (8)0.0329 (10)0.0269 (10)0.0010 (7)0.0010 (7)0.0036 (8)
C170.0337 (9)0.0302 (10)0.0187 (9)0.0052 (7)0.0027 (7)0.0020 (7)
C180.0362 (10)0.0419 (12)0.0437 (13)0.0058 (9)0.0091 (9)0.0057 (10)
C190.0574 (13)0.0354 (12)0.0501 (14)0.0038 (10)0.0050 (11)0.0162 (11)
C200.0478 (11)0.0415 (12)0.0325 (11)0.0134 (9)0.0041 (9)0.0076 (10)
C210.0307 (9)0.0508 (13)0.0411 (12)0.0100 (9)0.0022 (9)0.0061 (10)
C2S10.087 (5)0.071 (5)0.0421 (19)0.019 (3)0.017 (2)0.019 (2)
C220.0328 (9)0.0372 (11)0.0375 (12)0.0060 (8)0.0053 (8)0.0107 (9)
C2S20.087 (5)0.071 (5)0.0421 (19)0.019 (3)0.017 (2)0.019 (2)
C230.0353 (8)0.0252 (9)0.0207 (9)0.0035 (7)0.0038 (7)0.0016 (7)
C240.0433 (10)0.0417 (11)0.0346 (11)0.0056 (9)0.0069 (9)0.0010 (9)
C250.0725 (16)0.0475 (14)0.0371 (13)0.0087 (12)0.0176 (11)0.0011 (11)
C260.102 (2)0.0414 (14)0.0259 (12)0.0039 (13)0.0055 (13)0.0012 (10)
C270.0831 (18)0.0396 (13)0.0350 (13)0.0022 (12)0.0188 (12)0.0047 (10)
C280.0467 (11)0.0351 (12)0.0391 (12)0.0003 (9)0.0105 (9)0.0025 (9)
C290.0243 (7)0.0289 (9)0.0276 (9)0.0029 (7)0.0033 (7)0.0013 (7)
C300.0340 (9)0.0370 (11)0.0290 (10)0.0016 (7)0.0004 (8)0.0018 (8)
C310.0411 (10)0.0414 (12)0.0304 (10)0.0059 (9)0.0002 (9)0.0101 (9)
C3S10.048 (3)0.039 (3)0.046 (4)0.004 (2)0.003 (2)0.009 (3)
C320.0489 (12)0.0304 (11)0.0407 (13)0.0035 (9)0.0057 (10)0.0100 (9)
C3S20.043 (3)0.089 (6)0.039 (3)0.012 (3)0.003 (2)0.008 (4)
C330.0365 (9)0.0315 (10)0.0352 (11)0.0034 (8)0.0003 (8)0.0004 (8)
C340.0259 (8)0.0291 (9)0.0261 (10)0.0007 (7)0.0043 (7)0.0015 (7)
C350.0240 (8)0.0297 (10)0.0267 (9)0.0024 (6)0.0014 (7)0.0039 (8)
C360.0215 (7)0.0279 (9)0.0253 (9)0.0020 (6)0.0014 (7)0.0004 (7)
C370.0226 (7)0.0287 (9)0.0263 (8)0.0011 (7)0.0001 (6)0.0011 (8)
C380.0282 (8)0.0297 (9)0.0288 (9)0.0015 (7)0.0001 (8)0.0031 (7)
C390.0272 (8)0.0269 (9)0.0370 (11)0.0019 (7)0.0007 (8)0.0002 (8)
C400.0399 (10)0.0288 (10)0.0430 (12)0.0033 (8)0.0006 (9)0.0043 (9)
C410.0387 (10)0.0239 (10)0.0580 (15)0.0019 (8)0.0016 (10)0.0012 (10)
C4S10.059 (6)0.046 (5)0.051 (5)0.008 (4)0.006 (4)0.006 (3)
C420.0327 (9)0.0266 (10)0.0595 (15)0.0025 (7)0.0060 (10)0.0044 (10)
C4S20.040 (4)0.039 (5)0.049 (5)0.004 (3)0.006 (3)0.018 (4)
C430.0354 (9)0.0348 (11)0.0461 (13)0.0036 (8)0.0105 (9)0.0028 (10)
C440.0243 (7)0.0269 (9)0.0385 (11)0.0009 (7)0.0018 (8)0.0004 (8)
C450.0282 (8)0.0297 (10)0.0241 (9)0.0036 (7)0.0010 (7)0.0018 (7)
C460.0310 (9)0.0375 (11)0.0375 (11)0.0029 (8)0.0019 (9)0.0048 (9)
C470.0518 (12)0.0398 (12)0.0406 (13)0.0016 (10)0.0055 (10)0.0115 (10)
C480.0552 (12)0.0467 (13)0.0335 (12)0.0125 (11)0.0009 (10)0.0099 (10)
C490.0389 (10)0.0531 (14)0.0391 (13)0.0134 (10)0.0075 (9)0.0044 (10)
C500.0264 (8)0.0424 (12)0.0350 (11)0.0017 (8)0.0014 (8)0.0017 (9)
C510.0288 (8)0.0271 (9)0.0229 (9)0.0021 (7)0.0032 (7)0.0005 (7)
C520.0293 (9)0.0387 (11)0.0299 (10)0.0017 (8)0.0018 (8)0.0050 (9)
C530.0324 (9)0.0379 (11)0.0417 (12)0.0001 (8)0.0078 (9)0.0093 (10)
C540.0536 (12)0.0352 (11)0.0307 (11)0.0051 (9)0.0151 (10)0.0042 (9)
C550.0568 (13)0.0389 (12)0.0270 (10)0.0040 (10)0.0057 (9)0.0003 (9)
C560.0350 (9)0.0318 (10)0.0306 (10)0.0004 (7)0.0023 (8)0.0018 (8)
Geometric parameters (Å, º) top
Mn1—O21.8717 (13)C22—H220.9500
Mn1—O11.8740 (13)C2S2—H2S40.9800
Mn1—N11.9868 (15)C2S2—H2S50.9800
Mn1—N21.9910 (14)C2S2—H2S60.9800
Mn1—O1S2.3069 (15)C23—C281.384 (3)
Mn1—Cl12.5732 (6)C23—C241.396 (3)
N1—C71.286 (2)C24—C251.365 (3)
N1—C81.496 (2)C24—H240.9500
O1—C11.319 (2)C25—C261.390 (4)
C1—C21.412 (3)C25—H250.9500
C1—C61.412 (3)C26—C271.363 (4)
O1S—C1S21.355 (7)C26—H260.9500
O1S—C1S11.416 (4)C27—C281.413 (3)
O1S—H1S0.73 (3)C27—H270.9500
Mn2—O31.8749 (13)C28—H280.9500
Mn2—O41.8823 (13)C29—C301.405 (3)
Mn2—N41.9828 (15)C29—C341.419 (3)
Mn2—N31.9979 (14)C30—C311.378 (3)
Mn2—O2S2.3130 (15)C30—H300.9500
Mn2—Cl22.5509 (6)C31—C321.392 (3)
O2—C161.313 (2)C31—H310.9500
N2—C101.286 (2)C3S1—C4S11.489 (11)
N2—C91.491 (2)C3S1—H3S10.9900
O2S—C3S11.369 (5)C3S1—H3S20.9900
O2S—C3S21.421 (6)C32—C331.367 (3)
O2S—H2S0.74 (3)C32—H320.9500
C2—C31.378 (3)C3S2—C4S21.496 (9)
C2—H20.9500C3S2—H3S30.9900
O3—C291.321 (2)C3S2—H3S40.9900
N3—C351.291 (2)C33—C341.415 (3)
N3—C361.491 (2)C33—H330.9500
C3—C41.392 (3)C34—C351.440 (3)
C3—H30.9500C35—H350.9500
O4—C441.314 (2)C36—C451.514 (3)
N4—C381.289 (2)C36—C371.541 (2)
N4—C371.495 (2)C36—H361.0000
C4—C51.370 (3)C37—C511.514 (2)
C4—H40.9500C37—H371.0000
C5—C61.413 (3)C38—C391.442 (3)
C5—H50.9500C38—H380.9500
C6—C71.443 (2)C39—C401.409 (3)
C7—H70.9500C39—C441.416 (3)
C8—C231.510 (2)C40—C411.370 (3)
C8—C91.535 (2)C40—H400.9500
C8—H81.0000C41—C421.396 (3)
C9—C171.518 (2)C41—H410.9500
C9—H91.0000C4S1—H4S10.9800
C10—C111.439 (3)C4S1—H4S20.9800
C10—H100.9500C4S1—H4S30.9800
C11—C121.411 (3)C42—C431.375 (3)
C11—C161.423 (3)C42—H420.9500
C1S1—C2S11.507 (17)C4S2—H4S40.9800
C1S1—H1S10.9900C4S2—H4S50.9800
C1S1—H1S20.9900C4S2—H4S60.9800
C12—C131.374 (3)C43—C441.409 (3)
C12—H120.9500C43—H430.9500
C1S2—C2S21.498 (11)C45—C501.392 (2)
C1S2—H1S30.9900C45—C461.394 (3)
C1S2—H1S40.9900C46—C471.384 (3)
C13—C141.394 (3)C46—H460.9500
C13—H130.9500C47—C481.386 (3)
C14—C151.375 (3)C47—H470.9500
C14—H140.9500C48—C491.377 (3)
C15—C161.411 (3)C48—H480.9500
C15—H150.9500C49—C501.390 (3)
C17—C221.384 (3)C49—H490.9500
C17—C181.385 (3)C50—H500.9500
C18—C191.395 (3)C51—C561.387 (3)
C18—H180.9500C51—C521.395 (2)
C19—C201.377 (3)C52—C531.385 (3)
C19—H190.9500C52—H520.9500
C20—C211.370 (3)C53—C541.383 (3)
C20—H200.9500C53—H530.9500
C21—C221.384 (3)C54—C551.380 (3)
C21—H210.9500C54—H540.9500
C2S1—H2S10.9800C55—C561.388 (3)
C2S1—H2S20.9800C55—H550.9500
C2S1—H2S30.9800C56—H560.9500
O2—Mn1—O192.03 (6)C22—C21—H21119.4
O2—Mn1—N1175.03 (6)C21—C22—C17120.0 (2)
O1—Mn1—N192.52 (6)C21—C22—H22120.0
O2—Mn1—N292.73 (6)C17—C22—H22120.0
O1—Mn1—N2174.07 (6)C1S2—C2S2—H2S4109.5
N1—Mn1—N282.61 (6)C1S2—C2S2—H2S5109.5
O2—Mn1—O1S90.10 (6)H2S4—C2S2—H2S5109.5
O1—Mn1—O1S92.63 (6)C1S2—C2S2—H2S6109.5
N1—Mn1—O1S87.68 (6)H2S4—C2S2—H2S6109.5
N2—Mn1—O1S83.82 (6)H2S5—C2S2—H2S6109.5
O2—Mn1—Cl195.08 (4)C28—C23—C24119.24 (19)
O1—Mn1—Cl195.53 (5)C28—C23—C8120.32 (18)
N1—Mn1—Cl186.48 (4)C24—C23—C8120.44 (17)
N2—Mn1—Cl187.59 (4)C25—C24—C23120.9 (2)
O1S—Mn1—Cl1170.16 (4)C25—C24—H24119.5
C7—N1—C8121.06 (15)C23—C24—H24119.5
C7—N1—Mn1124.72 (13)C24—C25—C26119.8 (2)
C8—N1—Mn1114.22 (11)C24—C25—H25120.1
C1—O1—Mn1128.66 (12)C26—C25—H25120.1
O1—C1—C2118.69 (17)C27—C26—C25120.7 (2)
O1—C1—C6123.48 (16)C27—C26—H26119.7
C2—C1—C6117.82 (17)C25—C26—H26119.7
C1S2—O1S—Mn1131.6 (5)C26—C27—C28119.8 (2)
C1S1—O1S—Mn1126.5 (2)C26—C27—H27120.1
C1S2—O1S—H1S110 (2)C28—C27—H27120.1
C1S1—O1S—H1S107 (2)C23—C28—C27119.6 (2)
Mn1—O1S—H1S117 (2)C23—C28—H28120.2
O3—Mn2—O492.35 (6)C27—C28—H28120.2
O3—Mn2—N4175.29 (6)O3—C29—C30118.35 (17)
O4—Mn2—N492.03 (6)O3—C29—C34123.35 (16)
O3—Mn2—N392.87 (6)C30—C29—C34118.29 (17)
O4—Mn2—N3170.89 (6)C31—C30—C29120.90 (19)
N4—Mn2—N382.56 (6)C31—C30—H30119.5
O3—Mn2—O2S90.81 (6)C29—C30—H30119.5
O4—Mn2—O2S87.73 (6)C30—C31—C32121.16 (19)
N4—Mn2—O2S87.64 (6)C30—C31—H31119.4
N3—Mn2—O2S84.73 (6)C32—C31—H31119.4
O3—Mn2—Cl294.33 (4)O2S—C3S1—C4S1112.8 (8)
O4—Mn2—Cl296.93 (5)O2S—C3S1—H3S1109.0
N4—Mn2—Cl286.85 (4)C4S1—C3S1—H3S1109.0
N3—Mn2—Cl290.11 (4)O2S—C3S1—H3S2109.0
O2S—Mn2—Cl2172.90 (4)C4S1—C3S1—H3S2109.0
C16—O2—Mn1128.75 (12)H3S1—C3S1—H3S2107.8
C10—N2—C9122.62 (15)C33—C32—C31119.03 (19)
C10—N2—Mn1124.95 (13)C33—C32—H32120.5
C9—N2—Mn1112.14 (11)C31—C32—H32120.5
C3S1—O2S—Mn2129.0 (2)O2S—C3S2—C4S2116.4 (8)
C3S2—O2S—Mn2122.8 (2)O2S—C3S2—H3S3108.2
C3S1—O2S—H2S105 (2)C4S2—C3S2—H3S3108.2
C3S2—O2S—H2S113 (2)O2S—C3S2—H3S4108.2
Mn2—O2S—H2S122 (2)C4S2—C3S2—H3S4108.2
C3—C2—C1120.97 (19)H3S3—C3S2—H3S4107.3
C3—C2—H2119.5C32—C33—C34121.74 (19)
C1—C2—H2119.5C32—C33—H33119.1
C29—O3—Mn2129.11 (12)C34—C33—H33119.1
C35—N3—C36120.85 (15)C33—C34—C29118.86 (17)
C35—N3—Mn2124.74 (13)C33—C34—C35117.65 (17)
C36—N3—Mn2114.06 (10)C29—C34—C35123.49 (17)
C2—C3—C4121.30 (19)N3—C35—C34125.63 (17)
C2—C3—H3119.4N3—C35—H35117.2
C4—C3—H3119.4C34—C35—H35117.2
C44—O4—Mn2129.44 (12)N3—C36—C45114.99 (14)
C38—N4—C37121.38 (16)N3—C36—C37106.90 (13)
C38—N4—Mn2125.99 (13)C45—C36—C37111.77 (15)
C37—N4—Mn2112.43 (11)N3—C36—H36107.6
C5—C4—C3118.79 (19)C45—C36—H36107.6
C5—C4—H4120.6C37—C36—H36107.6
C3—C4—H4120.6N4—C37—C51115.21 (15)
C4—C5—C6121.6 (2)N4—C37—C36106.52 (14)
C4—C5—H5119.2C51—C37—C36113.10 (13)
C6—C5—H5119.2N4—C37—H37107.2
C1—C6—C5119.48 (17)C51—C37—H37107.2
C1—C6—C7123.12 (16)C36—C37—H37107.2
C5—C6—C7117.37 (17)N4—C38—C39125.24 (17)
N1—C7—C6125.59 (17)N4—C38—H38117.4
N1—C7—H7117.2C39—C38—H38117.4
C6—C7—H7117.2C40—C39—C44119.71 (18)
N1—C8—C23114.13 (14)C40—C39—C38117.28 (18)
N1—C8—C9106.64 (14)C44—C39—C38122.79 (17)
C23—C8—C9112.39 (15)C41—C40—C39122.0 (2)
N1—C8—H8107.8C41—C40—H40119.0
C23—C8—H8107.8C39—C40—H40119.0
C9—C8—H8107.8C40—C41—C42118.3 (2)
N2—C9—C17116.30 (14)C40—C41—H41120.9
N2—C9—C8106.95 (14)C42—C41—H41120.9
C17—C9—C8113.35 (15)C43—C42—C41121.2 (2)
N2—C9—H9106.5C43—C42—H42119.4
C17—C9—H9106.5C41—C42—H42119.4
C8—C9—H9106.5C3S2—C4S2—H4S4109.5
N2—C10—C11125.38 (17)C3S2—C4S2—H4S5109.5
N2—C10—H10117.3H4S4—C4S2—H4S5109.5
C11—C10—H10117.3C3S2—C4S2—H4S6109.5
C12—C11—C16119.01 (17)H4S4—C4S2—H4S6109.5
C12—C11—C10117.85 (18)H4S5—C4S2—H4S6109.5
C16—C11—C10122.83 (17)C42—C43—C44121.6 (2)
O1S—C1S1—C2S1108.4 (15)C42—C43—H43119.2
O1S—C1S1—H1S1110.0C44—C43—H43119.2
C2S1—C1S1—H1S1110.0O4—C44—C43118.83 (18)
O1S—C1S1—H1S2110.0O4—C44—C39124.00 (17)
C2S1—C1S1—H1S2110.0C43—C44—C39117.17 (18)
H1S1—C1S1—H1S2108.4C50—C45—C46118.95 (18)
C13—C12—C11122.0 (2)C50—C45—C36118.82 (16)
C13—C12—H12119.0C46—C45—C36122.21 (16)
C11—C12—H12119.0C47—C46—C45120.49 (19)
O1S—C1S2—C2S2114.2 (8)C47—C46—H46119.8
O1S—C1S2—H1S3108.7C45—C46—H46119.8
C2S2—C1S2—H1S3108.7C46—C47—C48120.1 (2)
O1S—C1S2—H1S4108.7C46—C47—H47120.0
C2S2—C1S2—H1S4108.7C48—C47—H47120.0
H1S3—C1S2—H1S4107.6C49—C48—C47120.0 (2)
C12—C13—C14118.7 (2)C49—C48—H48120.0
C12—C13—H13120.6C47—C48—H48120.0
C14—C13—H13120.6C48—C49—C50120.29 (19)
C15—C14—C13121.1 (2)C48—C49—H49119.9
C15—C14—H14119.4C50—C49—H49119.9
C13—C14—H14119.4C49—C50—C45120.24 (19)
C14—C15—C16121.4 (2)C49—C50—H50119.9
C14—C15—H15119.3C45—C50—H50119.9
C16—C15—H15119.3C56—C51—C52118.78 (17)
O2—C16—C15118.08 (17)C56—C51—C37119.74 (16)
O2—C16—C11124.12 (17)C52—C51—C37121.48 (16)
C15—C16—C11117.78 (17)C53—C52—C51120.28 (19)
C22—C17—C18118.40 (18)C53—C52—H52119.9
C22—C17—C9123.39 (18)C51—C52—H52119.9
C18—C17—C9118.15 (16)C54—C53—C52120.43 (19)
C17—C18—C19121.31 (19)C54—C53—H53119.8
C17—C18—H18119.3C52—C53—H53119.8
C19—C18—H18119.3C55—C54—C53119.65 (19)
C20—C19—C18119.3 (2)C55—C54—H54120.2
C20—C19—H19120.4C53—C54—H54120.2
C18—C19—H19120.4C54—C55—C56120.1 (2)
C21—C20—C19119.62 (19)C54—C55—H55119.9
C21—C20—H20120.2C56—C55—H55119.9
C19—C20—H20120.2C51—C56—C55120.71 (18)
C20—C21—C22121.27 (19)C51—C56—H56119.6
C20—C21—H21119.4C55—C56—H56119.6
O1—Mn1—N1—C711.08 (15)Mn1—O2—C16—C15179.19 (14)
N2—Mn1—N1—C7172.32 (15)Mn1—O2—C16—C112.7 (3)
O1S—Mn1—N1—C7103.61 (15)C14—C15—C16—O2179.8 (2)
Cl1—Mn1—N1—C784.31 (14)C14—C15—C16—C111.6 (3)
O1—Mn1—N1—C8169.09 (11)C12—C11—C16—O2179.94 (17)
N2—Mn1—N1—C87.50 (11)C10—C11—C16—O26.4 (3)
O1S—Mn1—N1—C876.56 (11)C12—C11—C16—C151.8 (3)
Cl1—Mn1—N1—C895.52 (11)C10—C11—C16—C15171.69 (18)
O2—Mn1—O1—C1166.76 (15)N2—C9—C17—C2284.3 (2)
N1—Mn1—O1—C115.25 (15)C8—C9—C17—C2240.2 (2)
O1S—Mn1—O1—C1103.04 (15)N2—C9—C17—C1898.6 (2)
Cl1—Mn1—O1—C171.46 (15)C8—C9—C17—C18136.87 (19)
Mn1—O1—C1—C2169.84 (13)C22—C17—C18—C191.4 (3)
Mn1—O1—C1—C611.4 (3)C9—C17—C18—C19178.7 (2)
O2—Mn1—O1S—C1S228.0 (11)C17—C18—C19—C202.0 (4)
O1—Mn1—O1S—C1S264.0 (11)C18—C19—C20—C210.4 (4)
N1—Mn1—O1S—C1S2156.4 (11)C19—C20—C21—C221.7 (3)
N2—Mn1—O1S—C1S2120.8 (11)C20—C21—C22—C172.2 (3)
O2—Mn1—O1S—C1S184.2 (4)C18—C17—C22—C210.7 (3)
O1—Mn1—O1S—C1S17.8 (4)C9—C17—C22—C21176.44 (18)
N1—Mn1—O1S—C1S1100.3 (4)N1—C8—C23—C28113.43 (19)
N2—Mn1—O1S—C1S1176.9 (4)C9—C8—C23—C28124.98 (19)
O1—Mn1—O2—C16167.11 (15)N1—C8—C23—C2467.2 (2)
N2—Mn1—O2—C169.34 (15)C9—C8—C23—C2454.4 (2)
O1S—Mn1—O2—C1674.47 (15)C28—C23—C24—C251.0 (3)
Cl1—Mn1—O2—C1697.16 (15)C8—C23—C24—C25178.34 (19)
O2—Mn1—N2—C1010.98 (14)C23—C24—C25—C260.7 (3)
N1—Mn1—N2—C10167.29 (14)C24—C25—C26—C272.1 (4)
O1S—Mn1—N2—C1078.83 (14)C25—C26—C27—C281.7 (4)
Cl1—Mn1—N2—C10105.95 (14)C24—C23—C28—C271.4 (3)
O2—Mn1—N2—C9163.03 (11)C8—C23—C28—C27177.97 (18)
N1—Mn1—N2—C918.70 (11)C26—C27—C28—C230.0 (3)
O1S—Mn1—N2—C9107.16 (12)Mn2—O3—C29—C30170.58 (13)
Cl1—Mn1—N2—C968.05 (11)Mn2—O3—C29—C3410.5 (3)
O3—Mn2—O2S—C3S184.7 (5)O3—C29—C30—C31177.56 (17)
O4—Mn2—O2S—C3S17.6 (5)C34—C29—C30—C311.4 (3)
N4—Mn2—O2S—C3S199.7 (5)C29—C30—C31—C320.1 (3)
N3—Mn2—O2S—C3S1177.5 (5)C3S2—O2S—C3S1—C4S139.8 (7)
O3—Mn2—O2S—C3S240.1 (6)Mn2—O2S—C3S1—C4S1134.1 (6)
O4—Mn2—O2S—C3S252.2 (6)C30—C31—C32—C330.9 (3)
N4—Mn2—O2S—C3S2144.3 (6)C3S1—O2S—C3S2—C4S261.2 (10)
N3—Mn2—O2S—C3S2132.9 (6)Mn2—O2S—C3S2—C4S2174.0 (8)
O1—C1—C2—C3178.99 (17)C31—C32—C33—C340.5 (3)
C6—C1—C2—C30.1 (3)C32—C33—C34—C290.8 (3)
O4—Mn2—O3—C29178.68 (15)C32—C33—C34—C35179.20 (18)
N3—Mn2—O3—C298.79 (15)O3—C29—C34—C33177.15 (17)
O2S—Mn2—O3—C2993.55 (15)C30—C29—C34—C331.7 (3)
Cl2—Mn2—O3—C2981.54 (14)O3—C29—C34—C352.8 (3)
O3—Mn2—N3—C351.32 (14)C30—C29—C34—C35178.31 (17)
N4—Mn2—N3—C35179.84 (15)C36—N3—C35—C34177.24 (15)
O2S—Mn2—N3—C3591.87 (14)Mn2—N3—C35—C344.5 (2)
Cl2—Mn2—N3—C3593.03 (14)C33—C34—C35—N3175.09 (17)
O3—Mn2—N3—C36171.88 (11)C29—C34—C35—N34.9 (3)
N4—Mn2—N3—C366.96 (11)C35—N3—C36—C4531.7 (2)
O2S—Mn2—N3—C3681.33 (11)Mn2—N3—C36—C45154.85 (11)
Cl2—Mn2—N3—C3693.77 (10)C35—N3—C36—C37156.35 (15)
C1—C2—C3—C41.0 (3)Mn2—N3—C36—C3730.16 (16)
O3—Mn2—O4—C44170.87 (15)C38—N4—C37—C5118.3 (2)
N4—Mn2—O4—C447.39 (16)Mn2—N4—C37—C51166.49 (11)
O2S—Mn2—O4—C4480.16 (16)C38—N4—C37—C36144.60 (16)
Cl2—Mn2—O4—C4494.47 (15)Mn2—N4—C37—C3640.19 (14)
O4—Mn2—N4—C386.93 (15)N3—C36—C37—N443.80 (16)
N3—Mn2—N4—C38165.71 (15)C45—C36—C37—N4170.43 (13)
O2S—Mn2—N4—C3880.71 (15)N3—C36—C37—C51171.36 (14)
Cl2—Mn2—N4—C38103.77 (14)C45—C36—C37—C5162.00 (19)
O4—Mn2—N4—C37168.02 (10)C37—N4—C38—C39170.78 (15)
N3—Mn2—N4—C3719.34 (10)Mn2—N4—C38—C393.7 (3)
O2S—Mn2—N4—C37104.34 (11)N4—C38—C39—C40176.45 (17)
Cl2—Mn2—N4—C3771.18 (10)N4—C38—C39—C441.9 (3)
C2—C3—C4—C51.2 (3)C44—C39—C40—C411.8 (3)
C3—C4—C5—C60.4 (3)C38—C39—C40—C41176.55 (18)
O1—C1—C6—C5179.73 (17)C39—C40—C41—C420.2 (3)
C2—C1—C6—C50.9 (3)C40—C41—C42—C430.7 (3)
O1—C1—C6—C71.8 (3)C41—C42—C43—C440.7 (3)
C2—C1—C6—C7177.01 (17)Mn2—O4—C44—C43176.23 (14)
C4—C5—C6—C10.7 (3)Mn2—O4—C44—C394.5 (3)
C4—C5—C6—C7177.37 (18)C42—C43—C44—O4176.73 (18)
C8—N1—C7—C6176.81 (16)C42—C43—C44—C392.6 (3)
Mn1—N1—C7—C63.4 (3)C40—C39—C44—O4176.17 (17)
C1—C6—C7—N15.5 (3)C38—C39—C44—O41.8 (3)
C5—C6—C7—N1176.47 (17)C40—C39—C44—C433.1 (3)
C7—N1—C8—C2324.6 (2)C38—C39—C44—C43177.54 (18)
Mn1—N1—C8—C23155.26 (12)N3—C36—C45—C50129.31 (18)
C7—N1—C8—C9149.29 (16)C37—C36—C45—C50108.59 (19)
Mn1—N1—C8—C930.54 (16)N3—C36—C45—C4652.1 (2)
C10—N2—C9—C1718.3 (2)C37—C36—C45—C4670.0 (2)
Mn1—N2—C9—C17167.58 (12)C50—C45—C46—C471.0 (3)
C10—N2—C9—C8146.04 (15)C36—C45—C46—C47179.58 (19)
Mn1—N2—C9—C839.79 (15)C45—C46—C47—C480.6 (3)
N1—C8—C9—N243.86 (17)C46—C47—C48—C490.7 (4)
C23—C8—C9—N2169.64 (13)C47—C48—C49—C501.5 (4)
N1—C8—C9—C17173.35 (14)C48—C49—C50—C451.1 (3)
C23—C8—C9—C1760.87 (19)C46—C45—C50—C490.2 (3)
C9—N2—C10—C11167.16 (16)C36—C45—C50—C49178.80 (19)
Mn1—N2—C10—C116.2 (2)N4—C37—C51—C56107.82 (19)
N2—C10—C11—C12177.76 (17)C36—C37—C51—C56129.32 (18)
N2—C10—C11—C164.2 (3)N4—C37—C51—C5273.0 (2)
C1S2—O1S—C1S1—C2S141.2 (12)C36—C37—C51—C5249.8 (2)
Mn1—O1S—C1S1—C2S173.6 (11)C56—C51—C52—C531.7 (3)
C16—C11—C12—C130.6 (3)C37—C51—C52—C53177.47 (18)
C10—C11—C12—C13173.2 (2)C51—C52—C53—C540.6 (3)
C1S1—O1S—C1S2—C2S256.4 (11)C52—C53—C54—C550.5 (3)
Mn1—O1S—C1S2—C2S246.1 (19)C53—C54—C55—C560.6 (3)
C11—C12—C13—C140.9 (3)C52—C51—C56—C551.6 (3)
C12—C13—C14—C151.1 (4)C37—C51—C56—C55177.55 (18)
C13—C14—C15—C160.1 (4)C54—C55—C56—C510.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···Cl20.73 (3)2.41 (3)3.1281 (16)166 (3)
O2S—H2S···Cl1i0.74 (3)2.39 (3)3.1282 (15)176 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[MnCl(C28H22N2O2)(C2H6O)]
Mr554.93
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)13.3857 (19), 19.467 (3), 20.823 (3)
V3)5425.9 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.861, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
41965, 13026, 11709
Rint0.030
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.04
No. of reflections13026
No. of parameters709
No. of restraints46
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.22
Absolute structureFlack (1983), with x Friedel pairs
Absolute structure parameter0.017 (9)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), XCIF in SHELXTL.

Selected geometric parameters (Å, º) top
Mn1—O21.8717 (13)Mn2—N41.9828 (15)
Mn1—O11.8740 (13)Mn2—N31.9979 (14)
Mn1—N11.9868 (15)Mn2—O2S2.3130 (15)
Mn1—N21.9910 (14)Mn2—Cl22.5509 (6)
Mn1—O1S2.3069 (15)O2—C161.313 (2)
Mn1—Cl12.5732 (6)N2—C101.286 (2)
N1—C71.286 (2)O3—C291.321 (2)
O1—C11.319 (2)N3—C351.291 (2)
Mn2—O31.8749 (13)O4—C441.314 (2)
Mn2—O41.8823 (13)N4—C381.289 (2)
O2—Mn1—O192.03 (6)O3—Mn2—O492.35 (6)
O2—Mn1—N1175.03 (6)O3—Mn2—N4175.29 (6)
O1—Mn1—N192.52 (6)O4—Mn2—N492.03 (6)
O2—Mn1—N292.73 (6)O3—Mn2—N392.87 (6)
O1—Mn1—N2174.07 (6)O4—Mn2—N3170.89 (6)
N1—Mn1—N282.61 (6)N4—Mn2—N382.56 (6)
O2—Mn1—O1S90.10 (6)O3—Mn2—O2S90.81 (6)
O1—Mn1—O1S92.63 (6)O4—Mn2—O2S87.73 (6)
N1—Mn1—O1S87.68 (6)N4—Mn2—O2S87.64 (6)
N2—Mn1—O1S83.82 (6)N3—Mn2—O2S84.73 (6)
O2—Mn1—Cl195.08 (4)O3—Mn2—Cl294.33 (4)
O1—Mn1—Cl195.53 (5)O4—Mn2—Cl296.93 (5)
N1—Mn1—Cl186.48 (4)N4—Mn2—Cl286.85 (4)
N2—Mn1—Cl187.59 (4)N3—Mn2—Cl290.11 (4)
O1S—Mn1—Cl1170.16 (4)O2S—Mn2—Cl2172.90 (4)
N1—C8—C9—N243.86 (17)N3—C36—C37—N443.80 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···Cl20.73 (3)2.41 (3)3.1281 (16)166 (3)
O2S—H2S···Cl1i0.74 (3)2.39 (3)3.1282 (15)176 (3)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds