Download citation
Download citation
link to html
A trimeric compound containing CoII is described, namely tris{[mu]-2-[3-(di­methyl­amino)­propyl­imino]­propane-1-thiol­ato}­tricobalt(II) chloride bis­(hexa­fluoro­phosphate), [Co3(C10H21N2S)3]Cl(PF6)2. Each Co atom is ligated by one 2-[3-(di­methyl­amino)­propyl­imino]­propane-1-thiol­ate ligand, an am­ine group and an imine group. The thiol­ate groups bridge the Co atoms, forming a six-membered ring that encloses the chloride ion in a well defined binding pocket.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103013593/sq1019sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013593/sq1019Isup2.hkl
Contains datablock I

CCDC reference: 221069

Comment top

Host–guest chemistry has received a considerable amount of attention in recent years owing to its importance in biological, material and environmental chemistry (Mueller et al., 1995; Hof et al., 2002; Rebek, 2000). The selective recognition and non-covalent binding of cations is well documented, and numerous systems that perform this function have been prepared. In contrast, comparatively few systems have been prepared that will recognize and non-covalently bind anions (Schmidtchen, 1997). It was reasoned that a metal complex with a well defined electrostatic binding pocket would make an excellent candidate for such an application.

The title compound, [Co3II(DADIT)3](Cl)(PF6)2, (I), where DADIT is 2-[3-(dimethylamino)propylimino]propane-1-thiolate, was produced from the reaction of CoCl2, N,N-dimethyl-propane-1,3-diamine, 3-mercapto-3-methyl- butane-2-one (Shoner et al. 1998) and ferrocinium hexafluorophosphate in acetonitrile·The reaction mixture was then layered with diethyl ether, and after 3 d the title compound crystallized as dark-red needles from the green mother liquor. The crystals were well formed prisms with approximate dimensions of 10 × 10 × 25 mm and were soluble in a number of solvents, including acetonitrile, methanol and dichloromethane. Cutting these large crystals produced smaller fragments, which were suitable for X-ray analysis.

Compound (I) crystallized in the P21/n space group, with four trimers per unit-cell. Each asymmetric unit contains two PF6 anions, one well ordered chloride anion and one cobalt trimer (Figure 1). Complex 1 contains three CoII atoms in a distorted tetrahedral coordination environment ligated by two nitrogen ligands and two thiolate sulfur ligands. The two thiolate ligands are bridging, one being derived from the DADIT ligand and the other from an S atom on an adjacent CoII DADIT unit.

The three bridging thiolate ligands and three Co atoms form a well defined six-membered ring in which the Co—S bond lengths range from 2.259 (1) to 2.324 (1) Å [mean 2.292 (1) Å]. This mean bond length falls in the range expected for a CoII thiolate bond in this ligand environment (Shoner et al. 1998). The average Co—S—Co bond angle is 100.01 (3)°, while the average S—Co—S bond angle is 132.6 (6)°, and thus the mean bond angle for the six-membered ring is 116°, which is comparable to the angle of 109° that would be expected in the idealized geometry for this ring system.

The Co atoms in the six-membered ring are puckered above the mean plane. Ligated to the cobalt ions and directly above this mean plane are the dimethylamine N atoms derived from the DADIT ligand. The average Co—N(Me)2 bond distance is 2.086 (3) Å, which is consistent with that expected for a CoII—N bond length in similar ligand environments (Shoner et al. 1998). These N atoms, along with the cobalt ions, form an electropositively charged pocket that could allow for non-covalent anion binding. The methyl groups derived from the three NMe2 groups sit above this electropositive pocket and are oriented parallel to the Co—S ring, thus forming a hydrophobic ring. This hydrophobic ring could exhibit similar behavior to that found in membrane proteins, by shielding the polar inner pocket from interactions with the solvent, which both increases the solubility of 1 in less polar solvents and further enhances the stability of the pocket–anion interaction (Spudich, 2000).

Contained in this well defined claw-like setting is a chloride anion, which rests intermediate between the cobalt ions and amine N atoms. The average distance between the cobalt and chloride ions is 2.665 (5) Å, and the average distance between the Co and N atoms is 3.498 (9) Å. This places the Cl atom well out of bonding distance for both the N and the Co atoms, which indicates that the chloride ion is associated in the binding pocket through a Coulomb interaction and not a covalent bond. All studies performed thus far have indicated that the chloride ion will not exchange for other anions, thus indicating that the chloride anion is tightly bound in the binding pocket. Studies aimed at generating other complexes of similar structure with different anions are currently under way.

Experimental top

For the preparation of (I), 3-mercapto-3-methyl- butane-2-one (472 mg, 4 mmol s) in acetonitrile (10 ml) was added to a stirred solution of NaOMe (216 mg, 4 mmol s) in acetonitrile (10 ml). The mixture was stirred for 10 min and then anhydrous CoCl2 (258 mg, 2 mmol s) in methanol (20 ml) was added dropwise. A brick-red precipitate formed immediately. To this precipitate was added N,N'-dimethyl-1,3-diamino-propane (408 mg) in acetonitrile (10 ml). The solution turned dark green and was stirred overnight at room temperature. Ferrocinium hexafluorophosphate (693 mg, 2.1 mmol s) was then added to the mixture in one portion, and after 1 h, the solids were removed by vacuum filtration. The filtrate was then concentrated to 5 ml, layered with diethyl ether (10 ml) and cooled to 243 K. After 3 d, (I) had formed as dark-red crystals.

Refinement top

All H atoms were refined using a riding model, with C—H distances of 0.98–0.99 Å.

Computing details top

Data collection: Collect (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski and Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: maXus (MacKay et al., 1998) and ZORTEP (Zsolnai & Huttner, 1994).

Figures top
[Figure 1] Fig. 1. A view of [CoII3(DADIT)3](Cl)(PF6)2, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
[Co3(C10H21N2S)3](Cl)(PF6)2F(000) = 2276
Mr = 1106.22Dx = 1.603 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
a = 12.5020 (2) ÅCell parameters from 1038 reflections
b = 17.2040 (3) Åθ = 1.9–27.5°
c = 21.3400 (3) ŵ = 1.42 mm1
β = 93.0940 (11)°T = 130 K
V = 4583.21 (13) Å3Prism, dark-red
Z = 40.37 × 0.30 × 0.25 mm
Data collection top
Nonius KappaCCD
diffractometer
10034 independent reflections
Radiation source: fine-focus sealed tube7664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
multi-scan (hkl SCALEPACK; Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.622, Tmax = 0.718k = 2022
17828 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0545P)2 + 1.2602P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.009
10034 reflectionsΔρmax = 0.88 e Å3
530 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0009 (2)
Crystal data top
[Co3(C10H21N2S)3](Cl)(PF6)2V = 4583.21 (13) Å3
Mr = 1106.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5020 (2) ŵ = 1.42 mm1
b = 17.2040 (3) ÅT = 130 K
c = 21.3400 (3) Å0.37 × 0.30 × 0.25 mm
β = 93.0940 (11)°
Data collection top
Nonius KappaCCD
diffractometer
10034 independent reflections
Absorption correction: empirical (using intensity measurements)
multi-scan (hkl SCALEPACK; Otwinowski & Minor, 1997)
7664 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.718Rint = 0.036
17828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 0.88 e Å3
10034 reflectionsΔρmin = 0.47 e Å3
530 parameters
Special details top

Experimental. Data was collected with ω and ϕ scans in 1.4º increments with 20 second exposures per degree. Crystal-to-detector distance was 30 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms were placed and refined with a riding model. Uiso values were fixed such that they were 1.2Ueq of heir parent atom Ueq for CH's and 1.5Ueq of their parent atom Ueq in case of methyl groups.

A dark-red crystal prism (0.37 x 0.30 x 0.25 mm) was mounted on a glass capillary in oil. Data were collected at 130 K with two sets of exposures. Crystal-to-detector distance was 30 mm and exposure time was 20 s for all sets. The scan width was 1.4o. Data collection was 91.8% complete. A total of 73464 partial and complete reflections were collected covering the indices, h = −16 to 16, k = −20 to 22, l = −27 to 27. 10034 reflections were symmetry independent and the Rint = 0.0386 indicated that the quality of data was excellent (the average value is 0.07). Indexing and unit cell refinement indicated a monoclinic P lattice. The space group was found to be P21/n. Analysis of the normalized structure factors indicated a centric cell favoring above symmetry. The data was integrated and scaled using hkl-SCALEPACK. Solution by direct methods (SIR92) produced a complete heavy atom phasing model consistent with the proposed structure. All hydrogen atoms were located using a riding model. All other non-hydrogen atoms were refined anisotropically by full-matrix least-squares.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9667 (2)0.30697 (18)0.39408 (13)0.0334 (6)
H1A1.02060.26560.39380.050*
H1B0.99820.35590.38050.050*
H1C0.90570.29330.36540.050*
C20.8499 (2)0.38461 (16)0.46200 (13)0.0296 (6)
H2A0.82690.39150.50480.044*
H2B0.78740.37380.43370.044*
H2C0.88520.43210.44850.044*
C30.9284 (2)0.31653 (14)0.46048 (12)0.0225 (5)
C41.0221 (2)0.33193 (15)0.50772 (12)0.0253 (6)
C51.1022 (2)0.39243 (17)0.48935 (14)0.0332 (6)
H5A1.13470.41690.52720.050*
H5B1.06560.43210.46310.050*
H5C1.15800.36760.46580.050*
C61.1232 (2)0.30685 (17)0.60399 (13)0.0309 (6)
H6A1.11480.35600.62730.037*
H6B1.18860.31120.58000.037*
C71.1361 (3)0.2401 (2)0.65020 (16)0.0458 (8)
H7A1.20640.24550.67350.055*
H7B1.08010.24490.68100.055*
C81.1295 (2)0.16095 (19)0.62285 (18)0.0471 (8)
H8A1.16120.16160.58130.056*
H8B1.17250.12500.65020.056*
C90.9857 (3)0.0948 (2)0.67323 (15)0.0448 (8)
H9A0.98710.13370.70680.067*
H9B1.03560.05260.68500.067*
H9C0.91310.07380.66690.067*
C101.0150 (3)0.0684 (2)0.56655 (17)0.0501 (9)
H10A0.94270.04650.56190.075*
H10B1.06590.02730.57960.075*
H10C1.03480.09020.52640.075*
C110.5805 (2)0.40664 (15)0.53167 (13)0.0280 (6)
H11A0.56500.41690.57540.042*
H11B0.56330.45290.50630.042*
H11C0.65660.39410.52920.042*
C120.3941 (2)0.35100 (17)0.51847 (14)0.0314 (6)
H12A0.38450.35220.56370.047*
H12B0.35150.30850.49940.047*
H12C0.37040.40050.49970.047*
C130.5126 (2)0.33810 (14)0.50689 (12)0.0234 (5)
C140.5308 (2)0.32868 (15)0.43684 (12)0.0239 (5)
C150.4697 (2)0.38225 (17)0.39203 (14)0.0360 (7)
H15A0.51600.39830.35870.054*
H15B0.44650.42820.41480.054*
H15C0.40680.35510.37340.054*
C160.6129 (2)0.26907 (16)0.35067 (12)0.0298 (6)
H16A0.65850.31150.33570.036*
H16B0.54240.27220.32730.036*
C170.6646 (2)0.19132 (17)0.33799 (12)0.0303 (6)
H17A0.66550.18340.29210.036*
H17B0.73980.19230.35500.036*
C180.6072 (2)0.12338 (16)0.36673 (12)0.0274 (6)
H18A0.53010.13600.36820.033*
H18B0.61370.07720.33960.033*
C190.5698 (2)0.05769 (15)0.46319 (13)0.0304 (6)
H19A0.59900.04170.50480.046*
H19B0.55140.01140.43800.046*
H19C0.50530.08910.46770.046*
C200.7484 (2)0.05602 (16)0.42745 (13)0.0302 (6)
H20A0.77820.04440.46980.045*
H20B0.80160.08440.40430.045*
H20C0.73010.00740.40560.045*
C210.9021 (2)0.37796 (18)0.75315 (13)0.0342 (7)
H21A0.97350.36050.74250.051*
H21B0.87690.34600.78740.051*
H21C0.90570.43250.76640.051*
C220.8575 (2)0.42471 (16)0.64322 (13)0.0318 (6)
H22A0.80720.41980.60660.048*
H22B0.92970.41090.63130.048*
H22C0.85740.47840.65850.048*
C230.8238 (2)0.37008 (15)0.69511 (12)0.0242 (5)
C240.7089 (2)0.39015 (14)0.71080 (11)0.0233 (5)
C250.6944 (2)0.46468 (17)0.74656 (14)0.0350 (7)
H25A0.63460.49420.72680.052*
H25B0.76010.49570.74610.052*
H25C0.67910.45260.79000.052*
C260.5201 (2)0.36215 (16)0.70712 (13)0.0284 (6)
H26A0.47430.36640.66800.034*
H26B0.51690.41220.72980.034*
C270.4786 (2)0.29757 (16)0.74759 (13)0.0310 (6)
H27A0.53000.29010.78400.037*
H27B0.40990.31470.76410.037*
C280.4607 (2)0.21967 (17)0.71532 (14)0.0328 (6)
H28A0.42080.18580.74340.039*
H28B0.41430.22820.67690.039*
C290.5204 (3)0.10430 (17)0.66542 (15)0.0399 (7)
H29A0.58240.07380.65360.060*
H29B0.47610.11750.62770.060*
H29C0.47810.07380.69390.060*
C300.6255 (3)0.15490 (17)0.75393 (13)0.0372 (7)
H30A0.65040.20200.77610.056*
H30B0.68740.12490.74130.056*
H30C0.58330.12330.78170.056*
N11.02912 (17)0.29525 (12)0.55992 (10)0.0239 (5)
N21.01761 (17)0.13105 (13)0.61521 (11)0.0293 (5)
N30.59843 (17)0.27892 (12)0.41873 (10)0.0231 (5)
N40.65085 (17)0.10418 (12)0.43150 (10)0.0237 (5)
N50.63132 (17)0.34628 (12)0.69169 (9)0.0227 (5)
N60.55805 (18)0.17692 (13)0.69740 (10)0.0281 (5)
S10.86286 (5)0.22481 (4)0.48113 (3)0.02387 (15)
S20.55388 (5)0.24750 (4)0.54748 (3)0.02311 (15)
S30.82855 (5)0.26743 (4)0.67086 (3)0.02481 (15)
Cl10.74473 (5)0.12599 (3)0.58661 (3)0.02454 (14)
P10.75822 (6)0.50200 (4)0.29631 (3)0.02984 (17)
P20.75106 (6)0.34968 (4)0.92199 (3)0.03084 (17)
F10.73349 (18)0.59232 (11)0.28793 (11)0.0618 (6)
F20.88160 (16)0.52131 (15)0.30015 (15)0.0893 (9)
F30.78256 (16)0.41172 (10)0.30634 (10)0.0553 (5)
F40.63412 (15)0.48251 (12)0.29197 (11)0.0620 (6)
F50.7629 (3)0.48936 (16)0.22307 (10)0.0925 (9)
F60.7534 (2)0.51355 (13)0.36922 (9)0.0700 (7)
F70.79751 (17)0.37753 (14)0.98919 (9)0.0616 (6)
F80.69363 (15)0.27808 (11)0.95459 (10)0.0493 (5)
F90.70487 (16)0.32069 (13)0.85453 (9)0.0552 (5)
F100.80963 (15)0.41993 (10)0.88959 (8)0.0441 (4)
F110.85548 (15)0.29770 (11)0.91440 (9)0.0487 (5)
F120.64757 (17)0.40070 (14)0.92899 (12)0.0710 (7)
Co10.91175 (3)0.21837 (2)0.584476 (16)0.02201 (10)
Co20.67951 (3)0.206318 (19)0.481931 (16)0.02123 (10)
Co30.65403 (3)0.24544 (2)0.641811 (15)0.02170 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0330 (16)0.0422 (17)0.0255 (14)0.0010 (13)0.0060 (12)0.0007 (12)
C20.0301 (15)0.0275 (14)0.0310 (14)0.0041 (11)0.0006 (12)0.0030 (11)
C30.0204 (13)0.0234 (12)0.0239 (13)0.0007 (10)0.0025 (11)0.0029 (10)
C40.0219 (13)0.0249 (13)0.0294 (14)0.0030 (11)0.0059 (11)0.0037 (11)
C50.0280 (15)0.0298 (14)0.0420 (17)0.0051 (12)0.0028 (13)0.0016 (13)
C60.0205 (13)0.0403 (16)0.0312 (15)0.0034 (12)0.0040 (12)0.0029 (12)
C70.0366 (18)0.052 (2)0.047 (2)0.0045 (15)0.0142 (16)0.0025 (16)
C80.0302 (16)0.0473 (19)0.063 (2)0.0055 (14)0.0069 (16)0.0122 (17)
C90.0387 (18)0.051 (2)0.0456 (18)0.0129 (15)0.0078 (15)0.0260 (16)
C100.049 (2)0.0447 (19)0.057 (2)0.0245 (16)0.0025 (17)0.0046 (16)
C110.0258 (14)0.0224 (13)0.0352 (15)0.0030 (11)0.0033 (12)0.0025 (11)
C120.0216 (14)0.0336 (15)0.0389 (16)0.0033 (11)0.0019 (12)0.0025 (13)
C130.0232 (13)0.0212 (12)0.0255 (13)0.0028 (10)0.0010 (11)0.0011 (10)
C140.0220 (13)0.0218 (12)0.0275 (13)0.0008 (10)0.0009 (11)0.0003 (11)
C150.0396 (17)0.0323 (15)0.0351 (16)0.0095 (13)0.0072 (14)0.0029 (13)
C160.0323 (15)0.0347 (15)0.0222 (13)0.0002 (12)0.0014 (12)0.0021 (11)
C170.0286 (15)0.0420 (16)0.0204 (13)0.0009 (12)0.0013 (11)0.0042 (12)
C180.0277 (14)0.0309 (14)0.0234 (13)0.0022 (11)0.0005 (11)0.0071 (11)
C190.0319 (15)0.0245 (13)0.0349 (15)0.0037 (12)0.0019 (12)0.0026 (12)
C200.0281 (15)0.0274 (14)0.0350 (15)0.0076 (11)0.0003 (12)0.0079 (12)
C210.0315 (16)0.0422 (17)0.0285 (15)0.0033 (13)0.0026 (13)0.0070 (13)
C220.0348 (16)0.0304 (14)0.0307 (14)0.0037 (12)0.0056 (12)0.0035 (12)
C230.0270 (14)0.0235 (13)0.0221 (13)0.0028 (11)0.0017 (11)0.0035 (10)
C240.0288 (14)0.0219 (12)0.0193 (12)0.0010 (11)0.0031 (11)0.0012 (10)
C250.0355 (16)0.0296 (15)0.0403 (16)0.0032 (12)0.0053 (13)0.0097 (13)
C260.0260 (14)0.0295 (14)0.0301 (14)0.0058 (11)0.0057 (12)0.0009 (11)
C270.0264 (14)0.0374 (15)0.0298 (15)0.0053 (12)0.0080 (12)0.0000 (12)
C280.0274 (15)0.0364 (16)0.0355 (16)0.0024 (12)0.0109 (13)0.0029 (13)
C290.0449 (18)0.0295 (15)0.0471 (18)0.0132 (14)0.0190 (15)0.0035 (13)
C300.0454 (18)0.0352 (16)0.0316 (15)0.0074 (14)0.0072 (14)0.0082 (13)
N10.0201 (11)0.0288 (11)0.0225 (11)0.0011 (9)0.0002 (9)0.0013 (9)
N20.0228 (12)0.0345 (13)0.0306 (12)0.0034 (10)0.0016 (10)0.0090 (10)
N30.0220 (11)0.0243 (11)0.0228 (11)0.0018 (9)0.0010 (9)0.0001 (9)
N40.0223 (11)0.0248 (11)0.0239 (11)0.0018 (9)0.0002 (9)0.0034 (9)
N50.0228 (11)0.0239 (11)0.0217 (11)0.0018 (9)0.0047 (9)0.0014 (9)
N60.0292 (12)0.0274 (11)0.0284 (12)0.0031 (10)0.0090 (10)0.0014 (10)
S10.0214 (3)0.0253 (3)0.0246 (3)0.0020 (3)0.0016 (3)0.0025 (3)
S20.0247 (3)0.0219 (3)0.0227 (3)0.0027 (3)0.0011 (3)0.0012 (2)
S30.0219 (3)0.0252 (3)0.0277 (3)0.0004 (3)0.0052 (3)0.0043 (3)
Cl10.0255 (3)0.0215 (3)0.0269 (3)0.0015 (2)0.0033 (3)0.0002 (2)
P10.0290 (4)0.0296 (4)0.0307 (4)0.0039 (3)0.0004 (3)0.0029 (3)
P20.0284 (4)0.0322 (4)0.0322 (4)0.0011 (3)0.0043 (3)0.0026 (3)
F10.0713 (14)0.0325 (10)0.0800 (15)0.0005 (10)0.0114 (12)0.0191 (10)
F20.0311 (11)0.0723 (16)0.165 (3)0.0157 (11)0.0127 (13)0.0397 (17)
F30.0580 (12)0.0315 (10)0.0762 (14)0.0047 (9)0.0016 (11)0.0032 (9)
F40.0313 (10)0.0554 (12)0.0985 (17)0.0037 (9)0.0030 (10)0.0002 (12)
F50.151 (3)0.0930 (19)0.0351 (11)0.0527 (18)0.0221 (14)0.0051 (12)
F60.123 (2)0.0527 (13)0.0325 (10)0.0022 (13)0.0079 (12)0.0004 (9)
F70.0722 (14)0.0794 (15)0.0338 (10)0.0267 (12)0.0084 (10)0.0075 (10)
F80.0396 (10)0.0487 (11)0.0595 (12)0.0142 (9)0.0029 (9)0.0160 (9)
F90.0550 (12)0.0674 (13)0.0419 (11)0.0208 (10)0.0101 (9)0.0013 (10)
F100.0532 (11)0.0343 (9)0.0453 (10)0.0076 (8)0.0076 (9)0.0050 (8)
F110.0385 (10)0.0440 (10)0.0644 (13)0.0101 (8)0.0116 (9)0.0087 (9)
F120.0511 (13)0.0688 (14)0.0958 (17)0.0266 (11)0.0293 (12)0.0193 (13)
Co10.01922 (19)0.02627 (19)0.02064 (18)0.00297 (14)0.00191 (14)0.00231 (14)
Co20.01941 (18)0.02130 (17)0.02291 (19)0.00180 (13)0.00040 (14)0.00296 (13)
Co30.02137 (19)0.02332 (18)0.02055 (18)0.00107 (14)0.00259 (14)0.00119 (13)
Geometric parameters (Å, º) top
C1—C31.529 (4)C20—H20A0.9800
C1—H1A0.9800C20—H20B0.9800
C1—H1B0.9800C20—H20C0.9800
C1—H1C0.9800C21—C231.543 (4)
C2—C31.529 (4)C21—H21A0.9800
C2—H2A0.9800C21—H21B0.9800
C2—H2B0.9800C21—H21C0.9800
C2—H2C0.9800C22—C231.529 (4)
C3—C41.527 (4)C22—H22A0.9800
C3—S11.842 (3)C22—H22B0.9800
C4—N11.279 (3)C22—H22C0.9800
C4—C51.510 (4)C23—C241.531 (4)
C5—H5A0.9800C23—S31.842 (3)
C5—H5B0.9800C24—N51.279 (3)
C5—H5C0.9800C24—C251.508 (4)
C6—N11.480 (3)C25—H25A0.9800
C6—C71.517 (4)C25—H25B0.9800
C6—H6A0.9900C25—H25C0.9800
C6—H6B0.9900C26—N51.471 (3)
C7—C81.481 (5)C26—C271.516 (4)
C7—H7A0.9900C26—H26A0.9900
C7—H7B0.9900C26—H26B0.9900
C8—N21.491 (4)C27—C281.518 (4)
C8—H8A0.9900C27—H27A0.9900
C8—H8B0.9900C27—H27B0.9900
C9—N21.461 (4)C28—N61.489 (4)
C9—H9A0.9800C28—H28A0.9900
C9—H9B0.9800C28—H28B0.9900
C9—H9C0.9800C29—N61.488 (4)
C10—N21.496 (4)C29—H29A0.9800
C10—H10A0.9800C29—H29B0.9800
C10—H10B0.9800C29—H29C0.9800
C10—H10C0.9800C30—N61.483 (4)
C11—C131.530 (3)C30—H30A0.9800
C11—H11A0.9800C30—H30B0.9800
C11—H11B0.9800C30—H30C0.9800
C11—H11C0.9800N1—Co12.064 (2)
C12—C131.532 (4)N2—Co12.084 (2)
C12—H12A0.9800N3—Co22.064 (2)
C12—H12B0.9800N4—Co22.081 (2)
C12—H12C0.9800N5—Co32.063 (2)
C13—C141.533 (4)N6—Co32.095 (2)
C13—S21.843 (3)S1—Co12.2593 (7)
C14—N31.277 (3)S1—Co22.3152 (7)
C14—C151.506 (4)S2—Co22.2723 (7)
C15—H15A0.9800S2—Co32.3128 (7)
C15—H15B0.9800S3—Co32.2676 (7)
C15—H15C0.9800S3—Co12.3237 (7)
C16—N31.483 (3)Cl1—Co12.6264 (7)
C16—C171.516 (4)Cl1—Co32.6535 (7)
C16—H16A0.9900Cl1—Co22.7143 (7)
C16—H16B0.9900P1—F61.573 (2)
C17—C181.518 (4)P1—F21.576 (2)
C17—H17A0.9900P1—F51.582 (2)
C17—H17B0.9900P1—F41.585 (2)
C18—N41.495 (3)P1—F11.592 (2)
C18—H18A0.9900P1—F31.5950 (19)
C18—H18B0.9900P2—F121.577 (2)
C19—N41.483 (3)P2—F71.592 (2)
C19—H19A0.9800P2—F101.5905 (18)
C19—H19B0.9800P2—F111.5978 (19)
C19—H19C0.9800P2—F81.6034 (19)
C20—N41.481 (3)P2—F91.602 (2)
C3—C1—H1A109.5C24—C25—H25A109.5
C3—C1—H1B109.5C24—C25—H25B109.5
H1A—C1—H1B109.5H25A—C25—H25B109.5
C3—C1—H1C109.5C24—C25—H25C109.5
H1A—C1—H1C109.5H25A—C25—H25C109.5
H1B—C1—H1C109.5H25B—C25—H25C109.5
C3—C2—H2A109.5N5—C26—C27110.4 (2)
C3—C2—H2B109.5N5—C26—H26A109.6
H2A—C2—H2B109.5C27—C26—H26A109.6
C3—C2—H2C109.5N5—C26—H26B109.6
H2A—C2—H2C109.5C27—C26—H26B109.6
H2B—C2—H2C109.5H26A—C26—H26B108.1
C4—C3—C1111.3 (2)C28—C27—C26115.8 (2)
C4—C3—C2108.9 (2)C28—C27—H27A108.3
C1—C3—C2109.6 (2)C26—C27—H27A108.3
C4—C3—S1109.03 (17)C28—C27—H27B108.3
C1—C3—S1107.15 (18)C26—C27—H27B108.3
C2—C3—S1110.90 (17)H27A—C27—H27B107.4
N1—C4—C5123.4 (2)N6—C28—C27116.7 (2)
N1—C4—C3120.2 (2)N6—C28—H28A108.1
C5—C4—C3116.3 (2)C27—C28—H28A108.1
C4—C5—H5A109.5N6—C28—H28B108.1
C4—C5—H5B109.5C27—C28—H28B108.1
H5A—C5—H5B109.5H28A—C28—H28B107.3
C4—C5—H5C109.5N6—C29—H29A109.5
H5A—C5—H5C109.5N6—C29—H29B109.5
H5B—C5—H5C109.5H29A—C29—H29B109.5
N1—C6—C7111.3 (2)N6—C29—H29C109.5
N1—C6—H6A109.4H29A—C29—H29C109.5
C7—C6—H6A109.4H29B—C29—H29C109.5
N1—C6—H6B109.4N6—C30—H30A109.5
C7—C6—H6B109.4N6—C30—H30B109.5
H6A—C6—H6B108.0H30A—C30—H30B109.5
C8—C7—C6116.0 (3)N6—C30—H30C109.5
C8—C7—H7A108.3H30A—C30—H30C109.5
C6—C7—H7A108.3H30B—C30—H30C109.5
C8—C7—H7B108.3C4—N1—C6120.1 (2)
C6—C7—H7B108.3C4—N1—Co1121.40 (18)
H7A—C7—H7B107.4C6—N1—Co1118.48 (17)
N2—C8—C7113.0 (3)C9—N2—C8110.6 (2)
N2—C8—H8A109.0C9—N2—C10106.5 (3)
C7—C8—H8A109.0C8—N2—C10108.0 (2)
N2—C8—H8B109.0C9—N2—Co1112.12 (17)
C7—C8—H8B109.0C8—N2—Co1111.21 (18)
H8A—C8—H8B107.8C10—N2—Co1108.16 (17)
N2—C9—H9A109.5C14—N3—C16119.4 (2)
N2—C9—H9B109.5C14—N3—Co2121.17 (17)
H9A—C9—H9B109.5C16—N3—Co2119.30 (16)
N2—C9—H9C109.5C19—N4—C20108.1 (2)
H9A—C9—H9C109.5C19—N4—C18108.4 (2)
H9B—C9—H9C109.5C20—N4—C18109.3 (2)
N2—C10—H10A109.5C19—N4—Co2108.81 (15)
N2—C10—H10B109.5C20—N4—Co2112.52 (16)
H10A—C10—H10B109.5C18—N4—Co2109.60 (15)
N2—C10—H10C109.5C24—N5—C26121.9 (2)
H10A—C10—H10C109.5C24—N5—Co3122.53 (17)
H10B—C10—H10C109.5C26—N5—Co3115.44 (16)
C13—C11—H11A109.5C30—N6—C28110.7 (2)
C13—C11—H11B109.5C30—N6—C29108.1 (2)
H11A—C11—H11B109.5C28—N6—C29106.9 (2)
C13—C11—H11C109.5C30—N6—Co3106.63 (17)
H11A—C11—H11C109.5C28—N6—Co3111.62 (17)
H11B—C11—H11C109.5C29—N6—Co3112.91 (17)
C13—C12—H12A109.5C3—S1—Co1100.08 (8)
C13—C12—H12B109.5C3—S1—Co2124.94 (8)
H12A—C12—H12B109.5Co1—S1—Co2101.64 (3)
C13—C12—H12C109.5C13—S2—Co299.18 (8)
H12A—C12—H12C109.5C13—S2—Co3123.14 (8)
H12B—C12—H12C109.5Co2—S2—Co399.86 (3)
C11—C13—C12110.8 (2)C23—S3—Co3101.03 (9)
C11—C13—C14108.0 (2)C23—S3—Co1126.43 (9)
C12—C13—C14111.6 (2)Co3—S3—Co1100.82 (3)
C11—C13—S2110.69 (17)Co1—Cl1—Co384.16 (2)
C12—C13—S2107.19 (18)Co1—Cl1—Co283.19 (2)
C14—C13—S2108.44 (17)Co3—Cl1—Co281.633 (19)
N3—C14—C15122.6 (2)F6—P1—F290.67 (15)
N3—C14—C13120.1 (2)F6—P1—F5179.35 (14)
C15—C14—C13117.2 (2)F2—P1—F589.56 (16)
C14—C15—H15A109.5F6—P1—F489.70 (14)
C14—C15—H15B109.5F2—P1—F4179.63 (16)
H15A—C15—H15B109.5F5—P1—F490.07 (14)
C14—C15—H15C109.5F6—P1—F188.30 (12)
H15A—C15—H15C109.5F2—P1—F189.07 (13)
H15B—C15—H15C109.5F5—P1—F192.32 (14)
N3—C16—C17110.6 (2)F4—P1—F190.94 (12)
N3—C16—H16A109.5F6—P1—F390.43 (12)
C17—C16—H16A109.5F2—P1—F391.09 (13)
N3—C16—H16B109.5F5—P1—F388.96 (13)
C17—C16—H16B109.5F4—P1—F388.90 (11)
H16A—C16—H16B108.1F1—P1—F3178.72 (13)
C18—C17—C16113.1 (2)F12—P2—F790.48 (14)
C18—C17—H17A109.0F12—P2—F1091.01 (11)
C16—C17—H17A109.0F7—P2—F1090.50 (11)
C18—C17—H17B109.0F12—P2—F11179.55 (12)
C16—C17—H17B109.0F7—P2—F1189.97 (12)
H17A—C17—H17B107.8F10—P2—F1189.04 (10)
N4—C18—C17112.8 (2)F12—P2—F889.87 (11)
N4—C18—H18A109.0F7—P2—F889.46 (11)
C17—C18—H18A109.0F10—P2—F8179.12 (11)
N4—C18—H18B109.0F11—P2—F890.08 (10)
C17—C18—H18B109.0F12—P2—F990.04 (13)
H18A—C18—H18B107.8F7—P2—F9179.35 (13)
N4—C19—H19A109.5F10—P2—F989.89 (10)
N4—C19—H19B109.5F11—P2—F989.51 (11)
H19A—C19—H19B109.5F8—P2—F990.15 (11)
N4—C19—H19C109.5N1—Co1—N295.38 (9)
H19A—C19—H19C109.5N1—Co1—S183.07 (6)
H19B—C19—H19C109.5N2—Co1—S1118.44 (7)
N4—C20—H20A109.5N1—Co1—S3108.87 (6)
N4—C20—H20B109.5N2—Co1—S3108.42 (7)
H20A—C20—H20B109.5S1—Co1—S3130.36 (3)
N4—C20—H20C109.5N1—Co1—Cl1165.68 (6)
H20A—C20—H20C109.5N2—Co1—Cl192.88 (7)
H20B—C20—H20C109.5S1—Co1—Cl182.71 (2)
C23—C21—H21A109.5S3—Co1—Cl179.38 (2)
C23—C21—H21B109.5N3—Co2—N496.22 (8)
H21A—C21—H21B109.5N3—Co2—S283.23 (6)
C23—C21—H21C109.5N4—Co2—S2118.43 (6)
H21A—C21—H21C109.5N3—Co2—S1111.32 (6)
H21B—C21—H21C109.5N4—Co2—S1104.78 (6)
C23—C22—H22A109.5S2—Co2—S1132.79 (3)
C23—C22—H22B109.5N3—Co2—Cl1163.96 (6)
H22A—C22—H22B109.5N4—Co2—Cl191.80 (6)
C23—C22—H22C109.5S2—Co2—Cl180.74 (2)
H22A—C22—H22C109.5S1—Co2—Cl179.77 (2)
H22B—C22—H22C109.5N5—Co3—N694.70 (8)
C22—C23—C24108.6 (2)N5—Co3—S382.87 (6)
C22—C23—C21109.8 (2)N6—Co3—S3120.73 (7)
C24—C23—C21111.5 (2)N5—Co3—S2110.67 (6)
C22—C23—S3111.80 (18)N6—Co3—S2101.64 (7)
C24—C23—S3108.82 (17)S3—Co3—S2134.68 (3)
C21—C23—S3106.31 (18)N5—Co3—Cl1162.62 (6)
N5—C24—C25123.6 (2)N6—Co3—Cl195.00 (6)
N5—C24—C23120.1 (2)S3—Co3—Cl179.78 (2)
C25—C24—C23116.3 (2)S2—Co3—Cl181.36 (2)
C1—C3—C4—N1134.2 (3)C23—S3—Co1—S174.06 (11)
C2—C3—C4—N1104.9 (3)Co3—S3—Co1—S138.48 (4)
S1—C3—C4—N116.2 (3)C23—S3—Co1—Cl1144.87 (11)
C1—C3—C4—C546.7 (3)Co3—S3—Co1—Cl132.33 (2)
C2—C3—C4—C574.2 (3)Co3—Cl1—Co1—N199.8 (3)
S1—C3—C4—C5164.71 (19)Co2—Cl1—Co1—N117.5 (3)
N1—C6—C7—C848.1 (4)Co3—Cl1—Co1—N2135.02 (7)
C6—C7—C8—N286.7 (4)Co2—Cl1—Co1—N2142.74 (7)
C11—C13—C14—N397.1 (3)Co3—Cl1—Co1—S1106.66 (2)
C12—C13—C14—N3140.7 (2)Co2—Cl1—Co1—S124.43 (2)
S2—C13—C14—N322.9 (3)Co3—Cl1—Co1—S326.82 (2)
C11—C13—C14—C1580.4 (3)Co2—Cl1—Co1—S3109.06 (2)
C12—C13—C14—C1541.7 (3)C14—N3—Co2—N4131.9 (2)
S2—C13—C14—C15159.6 (2)C16—N3—Co2—N443.47 (19)
N3—C16—C17—C1852.0 (3)C14—N3—Co2—S213.89 (19)
C16—C17—C18—N491.1 (3)C16—N3—Co2—S2161.46 (18)
C22—C23—C24—N5104.6 (3)C14—N3—Co2—S1119.58 (19)
C21—C23—C24—N5134.3 (3)C16—N3—Co2—S165.07 (19)
S3—C23—C24—N517.3 (3)C14—N3—Co2—Cl112.3 (4)
C22—C23—C24—C2572.8 (3)C16—N3—Co2—Cl1163.01 (17)
C21—C23—C24—C2548.4 (3)C19—N4—Co2—N3106.41 (16)
S3—C23—C24—C25165.31 (19)C20—N4—Co2—N3133.84 (17)
N5—C26—C27—C2869.2 (3)C18—N4—Co2—N312.03 (17)
C26—C27—C28—N668.8 (3)C19—N4—Co2—S220.76 (18)
C5—C4—N1—C64.6 (4)C20—N4—Co2—S2140.51 (15)
C3—C4—N1—C6176.4 (2)C18—N4—Co2—S297.68 (15)
C5—C4—N1—Co1176.02 (19)C19—N4—Co2—S1139.58 (15)
C3—C4—N1—Co13.0 (3)C20—N4—Co2—S119.82 (18)
C7—C6—N1—C4160.0 (3)C18—N4—Co2—S1101.99 (15)
C7—C6—N1—Co119.5 (3)C19—N4—Co2—Cl159.68 (16)
C7—C8—N2—C985.5 (3)C20—N4—Co2—Cl160.08 (17)
C7—C8—N2—C10158.3 (3)C18—N4—Co2—Cl1178.11 (15)
C7—C8—N2—Co139.8 (3)C13—S2—Co2—N320.99 (10)
C15—C14—N3—C164.3 (4)Co3—S2—Co2—N3147.16 (6)
C13—C14—N3—C16178.3 (2)C13—S2—Co2—N4114.42 (10)
C15—C14—N3—Co2179.6 (2)Co3—S2—Co2—N4119.41 (7)
C13—C14—N3—Co23.0 (3)C13—S2—Co2—S191.90 (9)
C17—C16—N3—C14160.3 (2)Co3—S2—Co2—S134.27 (4)
C17—C16—N3—Co215.1 (3)C13—S2—Co2—Cl1158.57 (8)
C17—C18—N4—C19160.9 (2)Co3—S2—Co2—Cl132.40 (2)
C17—C18—N4—C2081.4 (3)C3—S1—Co2—N328.07 (12)
C17—C18—N4—Co242.3 (2)Co1—S1—Co2—N3139.30 (7)
C25—C24—N5—C264.5 (4)C3—S1—Co2—N4130.97 (12)
C23—C24—N5—C26178.3 (2)Co1—S1—Co2—N4117.81 (6)
C25—C24—N5—Co3179.13 (19)C3—S1—Co2—S272.81 (11)
C23—C24—N5—Co32.0 (3)Co1—S1—Co2—S238.41 (4)
C27—C26—N5—C24115.6 (3)C3—S1—Co2—Cl1139.87 (10)
C27—C26—N5—Co360.9 (2)Co1—S1—Co2—Cl128.65 (2)
C27—C28—N6—C3064.0 (3)Co1—Cl1—Co2—N3111.2 (2)
C27—C28—N6—C29178.5 (2)Co3—Cl1—Co2—N326.2 (2)
C27—C28—N6—Co354.6 (3)Co1—Cl1—Co2—N4128.69 (6)
C4—C3—S1—Co123.97 (17)Co3—Cl1—Co2—N4146.24 (6)
C1—C3—S1—Co1144.54 (16)Co1—Cl1—Co2—S2112.78 (2)
C2—C3—S1—Co195.90 (17)Co3—Cl1—Co2—S227.72 (2)
C4—C3—S1—Co2135.95 (14)Co1—Cl1—Co2—S124.00 (2)
C1—C3—S1—Co2103.48 (17)Co3—Cl1—Co2—S1109.07 (2)
C2—C3—S1—Co216.1 (2)C24—N5—Co3—N6131.4 (2)
C11—C13—S2—Co290.49 (17)C26—N5—Co3—N645.17 (18)
C12—C13—S2—Co2148.52 (16)C24—N5—Co3—S310.93 (19)
C14—C13—S2—Co227.86 (17)C26—N5—Co3—S3165.60 (17)
C11—C13—S2—Co317.7 (2)C24—N5—Co3—S2124.32 (19)
C12—C13—S2—Co3103.25 (17)C26—N5—Co3—S259.15 (17)
C14—C13—S2—Co3136.09 (14)C24—N5—Co3—Cl17.6 (4)
C22—C23—S3—Co398.37 (18)C26—N5—Co3—Cl1168.95 (15)
C24—C23—S3—Co321.55 (17)C30—N6—Co3—N581.55 (18)
C21—C23—S3—Co3141.78 (16)C28—N6—Co3—N539.49 (18)
C22—C23—S3—Co114.1 (2)C29—N6—Co3—N5159.9 (2)
C24—C23—S3—Co1133.99 (14)C30—N6—Co3—S32.9 (2)
C21—C23—S3—Co1105.79 (17)C28—N6—Co3—S3123.98 (16)
C4—N1—Co1—N2134.3 (2)C29—N6—Co3—S3115.61 (18)
C6—N1—Co1—N245.2 (2)C30—N6—Co3—S2166.20 (16)
C4—N1—Co1—S116.21 (19)C28—N6—Co3—S272.76 (18)
C6—N1—Co1—S1163.21 (19)C29—N6—Co3—S247.6 (2)
C4—N1—Co1—S3114.17 (19)C30—N6—Co3—Cl184.02 (17)
C6—N1—Co1—S366.41 (19)C28—N6—Co3—Cl1154.94 (17)
C4—N1—Co1—Cl19.3 (4)C29—N6—Co3—Cl134.54 (19)
C6—N1—Co1—Cl1170.10 (19)C23—S3—Co3—N516.29 (10)
C9—N2—Co1—N1137.8 (2)Co1—S3—Co3—N5147.07 (6)
C8—N2—Co1—N113.4 (2)C23—S3—Co3—N6107.54 (11)
C10—N2—Co1—N1105.0 (2)Co1—S3—Co3—N6121.68 (8)
C9—N2—Co1—S1137.14 (19)C23—S3—Co3—S295.84 (9)
C8—N2—Co1—S198.4 (2)Co1—S3—Co3—S234.95 (5)
C10—N2—Co1—S120.0 (2)C23—S3—Co3—Cl1162.70 (9)
C9—N2—Co1—S325.9 (2)Co1—S3—Co3—Cl131.91 (2)
C8—N2—Co1—S398.5 (2)C13—S2—Co3—N525.95 (12)
C10—N2—Co1—S3143.01 (18)Co2—S2—Co3—N5133.83 (6)
C9—N2—Co1—Cl153.9 (2)C13—S2—Co3—N6125.58 (12)
C8—N2—Co1—Cl1178.3 (2)Co2—S2—Co3—N6126.54 (7)
C10—N2—Co1—Cl163.25 (19)C13—S2—Co3—S374.80 (11)
C3—S1—Co1—N119.75 (10)Co2—S2—Co3—S333.08 (5)
Co2—S1—Co1—N1148.84 (6)C13—S2—Co3—Cl1141.05 (10)
C3—S1—Co1—N2112.13 (11)Co2—S2—Co3—Cl133.18 (2)
Co2—S1—Co1—N2118.78 (7)Co1—Cl1—Co3—N524.1 (2)
C3—S1—Co1—S389.17 (9)Co2—Cl1—Co3—N5108.1 (2)
Co2—S1—Co1—S339.92 (4)Co1—Cl1—Co3—N6147.87 (6)
C3—S1—Co1—Cl1158.54 (8)Co2—Cl1—Co3—N6128.18 (6)
Co2—S1—Co1—Cl129.44 (2)Co1—Cl1—Co3—S327.50 (2)
C23—S3—Co1—N123.02 (13)Co2—Cl1—Co3—S3111.45 (2)
Co3—S3—Co1—N1135.55 (7)Co1—Cl1—Co3—S2111.09 (2)
C23—S3—Co1—N2125.62 (13)Co2—Cl1—Co3—S227.14 (2)
Co3—S3—Co1—N2121.85 (7)

Experimental details

Crystal data
Chemical formula[Co3(C10H21N2S)3](Cl)(PF6)2
Mr1106.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)12.5020 (2), 17.2040 (3), 21.3400 (3)
β (°) 93.0940 (11)
V3)4583.21 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.37 × 0.30 × 0.25
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
multi-scan (hkl SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.622, 0.718
No. of measured, independent and
observed [I > 2σ(I)] reflections
17828, 10034, 7664
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.01
No. of reflections10034
No. of parameters530
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.47

Computer programs: Collect (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski and Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), maXus (MacKay et al., 1998) and ZORTEP (Zsolnai & Huttner, 1994).

Selected geometric parameters (Å, º) top
N1—Co12.064 (2)S2—Co22.2723 (7)
N2—Co12.084 (2)S2—Co32.3128 (7)
N3—Co22.064 (2)S3—Co32.2676 (7)
N4—Co22.081 (2)S3—Co12.3237 (7)
N5—Co32.063 (2)Cl1—Co12.6264 (7)
N6—Co32.095 (2)Cl1—Co32.6535 (7)
S1—Co12.2593 (7)Cl1—Co22.7143 (7)
S1—Co22.3152 (7)
N1—Co1—N295.38 (9)N3—Co2—S1111.32 (6)
N1—Co1—S183.07 (6)N4—Co2—S1104.78 (6)
N2—Co1—S1118.44 (7)S2—Co2—S1132.79 (3)
N1—Co1—S3108.87 (6)N5—Co3—N694.70 (8)
N2—Co1—S3108.42 (7)N5—Co3—S382.87 (6)
S1—Co1—S3130.36 (3)N6—Co3—S3120.73 (7)
N3—Co2—N496.22 (8)N5—Co3—S2110.67 (6)
N3—Co2—S283.23 (6)N6—Co3—S2101.64 (7)
N4—Co2—S2118.43 (6)S3—Co3—S2134.68 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds