Download citation
Download citation
link to html
The incommensurately modulated structure of the fresnoite framework-structure type compound Ba2TiGe2O8 has been solved using a (3 + 1)-dimensional superspace approach. The structure is orthorhombic and adopts the superspace group Cmm2(0,β,1/2)s00 with β ≃ 0.635 at room temperature. The refinement was based on neutron powder diffraction data obtained from a powdered single crystal grown by Czochralski pulling. The modulation parameters that were obtained support the idea that frozen-in rigid-unit modes cause the modulation. The modulation is mainly manifested by positional displacements of O atoms. Barium ions are either eightfold, ninefold or tenfold coordinated in the one-dimensional modulated structure. A significant improvement of the bond-valence sum for both barium positions is achieved by the introduction of the positional modulation. This finding strongly suggests that underbonded barium positions are critically involved in provoking the incommensurate modulation in Ba2TiGe2O8.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768102021353/sn0029sup1.cif
Contains datablocks global, I

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S0108768102021353/sn0029Isup2.rtv
Contains datablock I

gif

Graphic Interchange Format (GIF) image https://doi.org/10.1107/S0108768102021353/sn0029sup3.gif
Supplementary material

Computing details top

Program(s) used to refine structure: (Jana2000; Petricek and Dusek, 2000); software used to prepare material for publication: (Jana2000; Petricek and Dusek, 2000).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
(I) top
Crystal data top
Ba2Ge2O8TiV = 1622.39 Å3
Mr = 595.7Z = 8
Orthorhombic, Xmm2(0β0)s00†F(000) = 556
q = 0.63497b*Dx = 4.876 Mg m3
a = 12.3014 ÅNeutron radiation, λ = 1 Å
b = 12.2837 Åcolourless
c = 10.7367 Å?, ? × ? × ? mm
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2, x3, 1/2+x4; (3) x1, −x2, x3, −x4; (4) −x1, −x2, x3, 1/2−x4; (5) 1/2+x1, 1/2+x2, x3, x4; (6) 1/2−x1, 1/2+x2, x3, 1/2+x4; (7) 1/2+x1, 1/2−x2, x3, −x4; (8) 1/2−x1, 1/2−x2, x3, 1/2−x4; (9) x1, x2, 1/2+x3, 1/2+x4; (10) −x1, x2, 1/2+x3, x4; (11) x1, −x2, 1/2+x3, 1/2−x4; (12) −x1, −x2, 1/2+x3, −x4; (13) 1/2+x1, 1/2+x2, 1/2+x3, 1/2+x4; (14) 1/2−x1, 1/2+x2, 1/2+x3, x4; (15) 1/2+x1, 1/2−x2, 1/2+x3, 1/2−x4; (16) 1/2−x1, 1/2−x2, 1/2+x3, −x4.

Data collection top
2θmin = 23.207°, 2θmax = 97.808°, 2θstep =
Refinement top
Rp = 0.060Profile function: Pseudo-Voigt
Rwp = 0.059127 parameters
Rexp = 0.025Weighting scheme based on measured s.u.'s
R(F) = 0.102(Δ/σ)max = 1.118
χ2 = NOT FOUNDBackground function: 8 Chebyshev polynoms
4404 data pointsPreferred orientation correction: none
Excluded region(s): from 26.85 to 27.200
Crystal data top
Ba2Ge2O8Tic = 10.7367 Å
Mr = 595.7V = 1622.39 Å3
Orthorhombic, Xmm2(0β0)s00†Z = 8
q = 0.63497b*Neutron radiation, λ = 1 Å
a = 12.3014 Å?, ? × ? × ? mm
b = 12.2837 Å
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2, x3, 1/2+x4; (3) x1, −x2, x3, −x4; (4) −x1, −x2, x3, 1/2−x4; (5) 1/2+x1, 1/2+x2, x3, x4; (6) 1/2−x1, 1/2+x2, x3, 1/2+x4; (7) 1/2+x1, 1/2−x2, x3, −x4; (8) 1/2−x1, 1/2−x2, x3, 1/2−x4; (9) x1, x2, 1/2+x3, 1/2+x4; (10) −x1, x2, 1/2+x3, x4; (11) x1, −x2, 1/2+x3, 1/2−x4; (12) −x1, −x2, 1/2+x3, −x4; (13) 1/2+x1, 1/2+x2, 1/2+x3, 1/2+x4; (14) 1/2−x1, 1/2+x2, 1/2+x3, x4; (15) 1/2+x1, 1/2−x2, 1/2+x3, 1/2−x4; (16) 1/2−x1, 1/2−x2, 1/2+x3, −x4.

Data collection top
2θmin = 23.207°, 2θmax = 97.808°, 2θstep =
Refinement top
Rp = 0.060χ2 = NOT FOUND
Rwp = 0.0594404 data points
Rexp = 0.025127 parameters
R(F) = 0.102(Δ/σ)max = 1.118
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba100.3267 (6)00.057 (3)
Ba20.1699 (5)00.0022 (13)0.036 (2)
Ge100.1309 (4)0.2425 (9)0.0472 (16)
Ge20.3695 (4)00.2450 (10)0.057 (2)
Ti10.250.250.2271 (10)0.034 (3)
O10.1076 (3)0.1951 (4)0.1784 (11)0.059 (2)
O2000.1793 (13)0.035 (3)
O30.3063 (4)0.1116 (3)0.1718 (10)0.0450 (16)
O40.500.1767 (14)0.047 (3)
O500.1259 (4)0.3987 (12)0.042 (2)
O60.3752 (4)00.4045 (11)0.046 (3)
O70.250.250.3877 (9)0.057 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.065 (4)0.043 (3)0.064 (5)000.036 (4)
Ba20.029 (3)0.060 (4)0.019 (4)00.014 (3)0
Ge10.046 (3)0.048 (2)0.048 (3)000.005 (2)
Ge20.078 (4)0.027 (2)0.065 (4)00.019 (3)0
Ti10.017 (4)0.052 (6)0.032 (4)0.012 (5)00
O10.039 (2)0.037 (3)0.103 (5)0.003 (2)0.007 (3)0.017 (4)
O20.024 (6)0.067 (6)0.014 (4)000
O30.054 (3)0.042 (3)0.039 (3)0.015 (2)0.001 (3)0.016 (3)
O40.007 (4)0.070 (6)0.065 (6)000
O50.046 (4)0.032 (3)0.048 (5)000.010 (3)
O60.025 (3)0.064 (4)0.050 (5)00.002 (3)0
O70.053 (3)0.063 (5)0.055 (3)0.011 (5)00
Bond lengths (Å) top
AverageMinimumMaximum
Ge1—O11.746 (14)1.665 (14)1.833 (14)
Ge1—O1i1.741 (14)1.665 (14)1.833 (14)
Ge1—O21.780 (8)1.746 (8)1.810 (8)
Ge1—O51.680 (16)1.679 (16)1.681 (16)
Ge2—O31.771 (12)1.742 (12)1.798 (12)
Ge2—O3ii1.771 (12)1.742 (12)1.798 (12)
Ge2—O41.768 (12)1.747 (17)1.783 (16)
Ge2—O61.715 (19)1.714 (16)1.72 (2)
Ti1—O11.988 (13)1.941 (16)2.064 (12)
Ti1—O1iii1.990 (13)1.941 (14)2.066 (12)
Ti1—O31.950 (13)1.880 (17)1.987 (11)
Ti1—O3iii1.953 (13)1.880 (17)1.987 (11)
Ti1—O71.725 (18)1.71 (2)1.74 (2)
Symmetry codes: (i) x1, x2, x3, x1/2; (ii) x1, x2, x3, x4; (iii) x1+1/2, x2+1/2, x3, x1/2.

Experimental details

Crystal data
Chemical formulaBa2Ge2O8Ti
Mr595.7
Crystal system, space groupOrthorhombic, Xmm2(0β0)s00†
Temperature (K)?
Wave vectorsq = 0.63497b*
a, b, c (Å)12.3014, 12.2837, 10.7367
V3)1622.39
Z8
Radiation typeNeutron, λ = 1 Å
Specimen shape, size (mm)?, ? × ? × ?
Data collection
Diffractometer?
Specimen mounting?
Data collection mode?
Scan method?
2θ values (°)2θmin = 23.207 2θmax = 97.808 2θstep = 1
Refinement
R factors and goodness of fitRp = 0.060, Rwp = 0.059, Rexp = 0.025, R(F) = 0.102, χ2 = NOT FOUND
No. of data points4404
No. of parameters127
No. of restraints?
(Δ/σ)max1.118

† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2, x3, 1/2+x4; (3) x1, −x2, x3, −x4; (4) −x1, −x2, x3, 1/2−x4; (5) 1/2+x1, 1/2+x2, x3, x4; (6) 1/2−x1, 1/2+x2, x3, 1/2+x4; (7) 1/2+x1, 1/2−x2, x3, −x4; (8) 1/2−x1, 1/2−x2, x3, 1/2−x4; (9) x1, x2, 1/2+x3, 1/2+x4; (10) −x1, x2, 1/2+x3, x4; (11) x1, −x2, 1/2+x3, 1/2−x4; (12) −x1, −x2, 1/2+x3, −x4; (13) 1/2+x1, 1/2+x2, 1/2+x3, 1/2+x4; (14) 1/2−x1, 1/2+x2, 1/2+x3, x4; (15) 1/2+x1, 1/2−x2, 1/2+x3, 1/2−x4; (16) 1/2−x1, 1/2−x2, 1/2+x3, −x4.

Computer programs: (Jana2000; Petricek and Dusek, 2000).

Selected bond lengths (Å) top
AverageMinimumMaximum
Ge1—O11.746 (14)1.665 (14)1.833 (14)
Ge1—O1i1.741 (14)1.665 (14)1.833 (14)
Ge1—O21.780 (8)1.746 (8)1.810 (8)
Ge1—O51.680 (16)1.679 (16)1.681 (16)
Ge2—O31.771 (12)1.742 (12)1.798 (12)
Ge2—O3ii1.771 (12)1.742 (12)1.798 (12)
Ge2—O41.768 (12)1.747 (17)1.783 (16)
Ge2—O61.715 (19)1.714 (16)1.72 (2)
Ti1—O11.988 (13)1.941 (16)2.064 (12)
Ti1—O1iii1.990 (13)1.941 (14)2.066 (12)
Ti1—O31.950 (13)1.880 (17)1.987 (11)
Ti1—O3iii1.953 (13)1.880 (17)1.987 (11)
Ti1—O71.725 (18)1.71 (2)1.74 (2)
Symmetry codes: (i) x1, x2, x3, x1/2; (ii) x1, x2, x3, x4; (iii) x1+1/2, x2+1/2, x3, x1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds