Download citation
Download citation
link to html
As a class of multifunctional materials, crystalline supra­molecular complexes have attracted much attention because of their unique architectures, intriguing topologies and potential applications. In this article, a new supra­molecular compound, namely catena-poly[4,4′-(buta-1,3-diene-1,4-di­yl)dipyridin-1-ium [(μ4-benzene-1,2,4,5-tetra­carboxyl­ato-κ6O1,O1′:O2:O4,O4′:O5)cadmium(II)]], {(C14H14N2)[Cd(C10H2O8)]}n or {(1,4-H2bpbd)[Cd(1,2,4,5-btc)]}n, has been pre­pared by the self-assembly of Cd(NO3)2·4H2O, benzene-1,2,4,5-tetra­car­boxy­lic acid (1,2,4,5-H4btc) and 1,4-bis­(pyridin-4-yl)buta-1,3-diene (1,4-bpbd) under hydro­thermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. Each CdII centre is coordinated by six O atoms from four different (1,2,4,5-btc)4− tetra­anions. Each CdII cation, located on a site of twofold symmetry, binds to four carboxyl­ate groups belonging to four separate (1,2,4,5-btc)4− ligands. Each (1,2,4,5-btc)4− anion, situated on a position of \overline{1} symmetry, binds to four crystallographically equivalent CdII centres. Neighbouring CdII cations inter­connect bridging (1,2,4,5-btc)4− anions to form a three-dimensional {[Cd(1,2,4,5-btc)]2−}n anionic coordination network with infinite tubular channels. The channels are visible in both the [1\overline{1}0] and the [001] direction. Such a coordination network can be simplified as a (4,4)-connected framework with the point symbol (4284)(4284). To balance the negative charge of the metal–carboxyl­ate coordination network, the cavities of the network are occupied by protonated (1,4-H2bpbd)2+ cations that are located on sites of twofold symmetry. In the crystal, there are strong hydrogen-bonding inter­actions between the anionic coordination network and the (1,4-H2bpbd)2+ cations. Considering the hydrogen-bonding inter­actions, the structure can be further regarded as a three-dimensional (4,6)-connected supra­molecular architecture with the point symbol (4264)(42687·84). The thermal stability and photoluminescence properties of the title compound have been investigated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618009233/sk3694sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618009233/sk3694Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618009233/sk3694sup3.pdf
PXRD pattern, TGA curve and photoluminescence spectra

CCDC reference: 1845552

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[4,4'-(buta-1,3-diene-1,4-diyl)dipyridin-1-ium [(µ4-benzene-1,2,4,5-tetracarboxylato-κ6O1,O1':O2:O4,O4':O5)cadmium(II)]] top
Crystal data top
(C14H14N2)[Cd(C10H2O8)]F(000) = 1144
Mr = 572.80Dx = 1.874 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.392 (2) ÅCell parameters from 18574 reflections
b = 12.459 (3) Åθ = 2.9–27.5°
c = 15.726 (3) ŵ = 1.14 mm1
β = 94.25 (3)°T = 223 K
V = 2030.5 (7) Å3Block, yellow
Z = 40.12 × 0.08 × 0.07 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2240 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
phi and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.853, Tmax = 0.921k = 1416
18574 measured reflectionsl = 2020
2337 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0306P)2 + 2.7443P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2337 reflectionsΔρmax = 0.38 e Å3
163 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.49448 (2)0.75000.01338 (6)
N10.69212 (15)0.86219 (12)0.60852 (9)0.0228 (3)
H10.706 (3)0.852 (2)0.6605 (18)0.046 (7)*
O10.90691 (13)0.87312 (12)0.82656 (8)0.0330 (3)
O20.71262 (15)0.81903 (13)0.77233 (8)0.0393 (4)
O30.69232 (12)0.57138 (11)0.81480 (8)0.0265 (3)
O40.50545 (13)0.62278 (14)0.85667 (9)0.0409 (4)
C10.66919 (14)0.66518 (12)1.01167 (9)0.0154 (3)
H1A0.61340.60721.01940.018*
C20.69112 (14)0.69659 (12)0.92904 (9)0.0142 (3)
C30.77305 (14)0.78339 (12)0.91679 (9)0.0140 (3)
C40.79915 (16)0.82832 (12)0.83020 (10)0.0184 (3)
C50.62575 (15)0.62775 (12)0.86007 (9)0.0168 (3)
C60.56910 (17)0.86382 (14)0.57607 (10)0.0229 (3)
H60.50200.85620.61250.028*
C70.54034 (16)0.87658 (14)0.48974 (10)0.0212 (3)
H70.45380.87790.46750.025*
C80.64010 (16)0.88766 (13)0.43484 (10)0.0187 (3)
C90.76708 (16)0.88676 (14)0.47214 (10)0.0214 (3)
H90.83670.89500.43780.026*
C100.79015 (16)0.87386 (14)0.55896 (11)0.0230 (3)
H100.87540.87330.58350.028*
C110.62006 (17)0.89565 (15)0.34199 (10)0.0238 (3)
H110.69420.89950.31130.029*
C120.50556 (17)0.89795 (15)0.29653 (10)0.0237 (3)
H120.42980.89960.32570.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01605 (9)0.01498 (9)0.00897 (9)0.0000.00000 (6)0.000
N10.0322 (8)0.0236 (7)0.0118 (6)0.0047 (6)0.0039 (5)0.0009 (5)
O10.0304 (7)0.0427 (8)0.0266 (7)0.0092 (6)0.0073 (5)0.0164 (6)
O20.0506 (9)0.0525 (9)0.0130 (6)0.0181 (7)0.0092 (6)0.0115 (6)
O30.0248 (6)0.0305 (7)0.0236 (6)0.0027 (5)0.0017 (5)0.0119 (5)
O40.0200 (6)0.0710 (11)0.0320 (7)0.0136 (6)0.0048 (5)0.0311 (7)
C10.0175 (7)0.0151 (7)0.0137 (7)0.0041 (5)0.0014 (5)0.0009 (5)
C20.0155 (6)0.0158 (7)0.0110 (6)0.0010 (5)0.0008 (5)0.0007 (5)
C30.0163 (7)0.0161 (6)0.0098 (6)0.0013 (5)0.0011 (5)0.0016 (5)
C40.0281 (8)0.0160 (7)0.0113 (7)0.0006 (6)0.0039 (6)0.0024 (5)
C50.0213 (7)0.0183 (7)0.0106 (6)0.0045 (6)0.0007 (5)0.0002 (5)
C60.0279 (8)0.0258 (8)0.0154 (7)0.0060 (7)0.0035 (6)0.0001 (6)
C70.0203 (7)0.0267 (8)0.0163 (7)0.0031 (6)0.0008 (6)0.0009 (6)
C80.0235 (8)0.0197 (7)0.0125 (7)0.0023 (6)0.0007 (6)0.0005 (6)
C90.0211 (8)0.0253 (8)0.0178 (8)0.0029 (6)0.0015 (6)0.0009 (6)
C100.0241 (8)0.0249 (8)0.0189 (8)0.0022 (6)0.0058 (6)0.0019 (6)
C110.0275 (8)0.0316 (9)0.0125 (7)0.0012 (7)0.0023 (6)0.0009 (6)
C120.0280 (8)0.0300 (9)0.0129 (8)0.0005 (7)0.0003 (6)0.0000 (6)
Geometric parameters (Å, º) top
Cd1—O1i2.2010 (13)C1—H1A0.9400
Cd1—O1ii2.2010 (13)C2—C31.399 (2)
Cd1—O42.3147 (14)C2—C51.505 (2)
Cd1—O32.3767 (13)C3—C1v1.392 (2)
Cd1—O3iii2.3767 (13)C3—C41.515 (2)
Cd1—O4iii2.3148 (14)C6—C71.378 (2)
Cd1—C5iii2.6694 (16)C6—H60.9400
Cd1—C52.6694 (16)C7—C81.404 (2)
N1—C101.336 (2)C7—H70.9400
N1—C61.341 (2)C8—C91.404 (2)
N1—H10.83 (3)C8—C111.463 (2)
O1—C41.256 (2)C9—C101.378 (2)
O1—Cd1iv2.2009 (13)C9—H90.9400
O2—C41.236 (2)C10—H100.9400
O3—C51.246 (2)C11—C121.342 (2)
O4—C51.249 (2)C11—H110.9400
C1—C3v1.392 (2)C12—C12vi1.459 (3)
C1—C21.392 (2)C12—H120.9400
O1ii—Cd1—O1i93.21 (8)C1—C2—C3119.30 (13)
O1ii—Cd1—O4151.97 (5)C1—C2—C5114.60 (13)
O1i—Cd1—O493.79 (6)C3—C2—C5126.04 (13)
O1ii—Cd1—O4iii93.79 (6)C1v—C3—C2118.37 (13)
O1i—Cd1—O4iii151.97 (5)C1v—C3—C4117.47 (13)
O4—Cd1—O4iii92.65 (9)C2—C3—C4124.11 (13)
O1ii—Cd1—O3iii115.60 (5)O2—C4—O1127.60 (15)
O1i—Cd1—O3iii96.99 (5)O2—C4—C3117.25 (15)
O4—Cd1—O3iii90.40 (6)O1—C4—C3115.13 (14)
O4iii—Cd1—O3iii55.69 (5)O3—C5—O4122.97 (15)
O1ii—Cd1—O396.99 (5)O3—C5—C2119.55 (14)
O1i—Cd1—O3115.60 (5)O4—C5—C2117.14 (14)
O4—Cd1—O355.69 (5)O3—C5—Cd162.91 (8)
O4iii—Cd1—O390.40 (6)O4—C5—Cd160.07 (9)
O3iii—Cd1—O3132.46 (7)C2—C5—Cd1174.33 (10)
O1ii—Cd1—C5iii106.65 (5)N1—C6—C7120.51 (16)
O1i—Cd1—C5iii124.62 (5)N1—C6—H6119.7
O4—Cd1—C5iii91.43 (6)C7—C6—H6119.7
O4iii—Cd1—C5iii27.88 (5)C6—C7—C8120.08 (15)
O3iii—Cd1—C5iii27.81 (5)C6—C7—H7120.0
O3—Cd1—C5iii112.52 (5)C8—C7—H7120.0
O1ii—Cd1—C5124.62 (5)C9—C8—C7117.15 (14)
O1i—Cd1—C5106.65 (5)C9—C8—C11118.51 (15)
O4—Cd1—C527.88 (5)C7—C8—C11124.29 (15)
O4iii—Cd1—C591.43 (6)C10—C9—C8120.26 (15)
O3iii—Cd1—C5112.52 (5)C10—C9—H9119.9
O3—Cd1—C527.81 (5)C8—C9—H9119.9
C5iii—Cd1—C5103.07 (7)N1—C10—C9120.44 (15)
C10—N1—C6121.54 (15)N1—C10—H10119.8
C10—N1—H1120.2 (19)C9—C10—H10119.8
C6—N1—H1118.3 (19)C12—C11—C8126.02 (16)
C4—O1—Cd1iv139.43 (12)C12—C11—H11117.0
C5—O3—Cd189.28 (10)C8—C11—H11117.0
C5—O4—Cd192.06 (10)C11—C12—C12vi122.4 (2)
C3v—C1—C2122.32 (14)C11—C12—H12118.8
C3v—C1—H1A118.8C12vi—C12—H12118.8
C2—C1—H1A118.8
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y, z+3/2; (iv) x+1/2, y+1/2, z; (v) x+3/2, y+3/2, z+2; (vi) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.83 (3)1.80 (3)2.6249 (19)171 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds