Download citation
Download citation
link to html
Mol­ecular salts and cocrystals of amino acids have potential applications as mol­ecular materials with nonlinear optical, ferroelectric, piezoelectric, and other various target physical properties. The wide choice of amino acids and coformers makes it possible to design various crystal structures. The amino acid–maleic acid system provides a perfect example of a rich variety of crystal structures with different stoichiometries, symmetries and packing motifs built from the mol­ecular building blocks, which are either exactly the same, or differ merely by protonation or as optical isomers. The present paper reports the crystal structures of two new salts of the DL-norvaline–maleic acid system with 1:1 and 2:1 stoichiometries, namely DL-norvalinium hydrogen maleate, C5H12NO2+·C4H3O4, (I), and DL-norvalinium hydrogen maleate–DL-norvaline, C5H12NO2+·C4H3O4·C5H11NO2, (II). These are the first examples of mol­ecular salts of DL-norvaline with an organic anion. The crystal structure of (I) has the same C22(12) structure-forming motif which is common for hydrogen maleates of amino acids. The structure of (II) has dimeric cations. Of special inter­est is that the single crystals of (I) which are originally formed on crystallization from aqueous solution transform into single crystals of (II) if stored in the mother liquor for several hours.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616018271/sk3642sup1.cif
Contains datablocks I, 2dl_nv_mal

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616018271/sk3642Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616018271/sk3642IIsup3.hkl
Contains datablock 2dl_nv_mal

CCDC references: 1517422; 1519878

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014) for (I); CrysAlis PRO (Rigaku OD, 2015) for 2dl_nv_mal. Cell refinement: CrysAlis PRO (Agilent, 2014) for (I); CrysAlis PRO (Rigaku OD, 2015) for 2dl_nv_mal. Data reduction: CrysAlis PRO (Agilent, 2014) for (I); CrysAlis PRO (Rigaku OD, 2015) for 2dl_nv_mal. For both compounds, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009) for (I); Mercury (Macrae et al., 2008) for 2dl_nv_mal. For both compounds, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) DL-Norvalinium hydrogen maleate top
Crystal data top
C5H12NO2+·C4H3O4F(000) = 992
Mr = 233.22Dx = 1.247 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.6385 (15) ÅCell parameters from 3032 reflections
b = 5.62705 (18) Åθ = 1.8–25.1°
c = 23.6867 (10) ŵ = 0.11 mm1
β = 108.283 (6)°T = 293 K
V = 2485.4 (2) Å3Block, clear light colourless
Z = 80.25 × 0.15 × 0.1 mm
Data collection top
Agilent Xcalibur Ruby Gemini ultra
diffractometer
2198 independent reflections
Radiation source: Enhance (Mo) X-ray Source1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.3457 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 66
Tmin = 0.866, Tmax = 1.000l = 2828
13186 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.2674P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max < 0.001
2198 reflectionsΔρmax = 0.25 e Å3
169 parametersΔρmin = 0.15 e Å3
12 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.30316 (12)0.1684 (3)0.75497 (7)0.0587 (6)
O40.33415 (13)0.3088 (3)0.45870 (8)0.0634 (6)
O60.34166 (13)0.3563 (3)0.56205 (8)0.0653 (6)
H60.33880.34280.52690.098*
O50.33741 (12)0.1258 (4)0.63532 (8)0.0640 (6)
O30.32140 (14)0.0195 (3)0.39432 (8)0.0733 (7)
O10.35365 (15)0.4538 (4)0.71650 (9)0.0797 (8)
H10.34610.36140.68840.120*
N10.29849 (14)0.4474 (4)0.84537 (9)0.0530 (6)
H1A0.25410.47540.82180.064*
H1B0.30730.53550.87810.064*
H1C0.30300.29430.85530.064*
C90.33889 (16)0.1511 (4)0.58407 (10)0.0472 (7)
C10.33256 (16)0.3576 (5)0.75847 (11)0.0493 (7)
C60.32998 (17)0.0889 (5)0.44513 (11)0.0517 (7)
C20.35023 (16)0.5090 (5)0.81368 (11)0.0513 (7)
H20.34460.67700.80220.062*
C80.33796 (19)0.0648 (5)0.54893 (11)0.0602 (9)
H80.34010.20630.56970.072*
C70.33452 (19)0.0911 (5)0.49233 (12)0.0637 (9)
H70.33500.24800.48020.076*
C30.4257 (2)0.4676 (7)0.85504 (15)0.0804 (11)
H3AA0.43030.54340.89280.097*0.865 (8)
H3AB0.43250.29830.86230.097*0.865 (8)
H3BC0.42170.32990.87840.097*0.135 (8)
H3BD0.45250.41450.82920.097*0.135 (8)
C4A0.4845 (3)0.5576 (11)0.8329 (2)0.1011 (19)0.865 (8)
H4AA0.53010.50920.86080.121*0.865 (8)
H4AB0.48000.48080.79520.121*0.865 (8)
C4B0.473 (2)0.624 (7)0.8964 (16)0.114 (9)0.135 (8)
H4BA0.45270.66380.92740.136*0.135 (8)
H4BB0.51810.54090.91500.136*0.135 (8)
C5A0.4863 (4)0.8168 (15)0.8244 (5)0.143 (3)0.865 (8)
H5AA0.44400.86530.79340.214*0.865 (8)
H5AB0.52800.85780.81350.214*0.865 (8)
H5AC0.48810.89610.86070.214*0.865 (8)
C5B0.488 (4)0.829 (11)0.872 (3)0.166 (18)0.135 (8)
H5BA0.44710.87460.83920.249*0.135 (8)
H5BB0.52850.80540.85810.249*0.135 (8)
H5BC0.49880.95300.90140.249*0.135 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0956 (16)0.0514 (12)0.0351 (10)0.0135 (11)0.0289 (9)0.0092 (8)
O40.1220 (19)0.0344 (10)0.0397 (10)0.0056 (10)0.0336 (10)0.0026 (7)
O60.1231 (19)0.0385 (11)0.0417 (11)0.0051 (11)0.0364 (12)0.0074 (8)
O50.1054 (17)0.0600 (12)0.0355 (10)0.0015 (11)0.0350 (10)0.0014 (8)
O30.139 (2)0.0517 (12)0.0381 (11)0.0037 (12)0.0405 (12)0.0057 (8)
O10.129 (2)0.0787 (16)0.0470 (12)0.0372 (14)0.0501 (13)0.0171 (10)
N10.0863 (18)0.0445 (13)0.0319 (11)0.0082 (11)0.0240 (11)0.0036 (9)
C90.0698 (19)0.0395 (14)0.0354 (14)0.0031 (12)0.0208 (12)0.0009 (10)
C10.0698 (19)0.0502 (17)0.0322 (13)0.0032 (14)0.0221 (12)0.0026 (11)
C60.087 (2)0.0372 (14)0.0364 (14)0.0011 (13)0.0279 (13)0.0007 (11)
C20.072 (2)0.0471 (15)0.0380 (14)0.0066 (13)0.0210 (13)0.0077 (11)
C80.111 (3)0.0333 (14)0.0418 (15)0.0039 (15)0.0321 (15)0.0065 (11)
C70.124 (3)0.0296 (13)0.0429 (15)0.0042 (15)0.0347 (16)0.0041 (11)
C30.082 (3)0.088 (3)0.065 (2)0.002 (2)0.0144 (19)0.0186 (18)
C4A0.072 (3)0.129 (5)0.096 (3)0.002 (3)0.019 (3)0.028 (3)
C4B0.114 (16)0.106 (16)0.104 (16)0.005 (15)0.012 (14)0.044 (14)
C5A0.112 (5)0.122 (6)0.195 (9)0.031 (4)0.050 (6)0.010 (6)
C5B0.15 (3)0.15 (3)0.17 (3)0.03 (3)0.01 (3)0.05 (3)
Geometric parameters (Å, º) top
O2—C11.202 (3)C7—H70.9300
O4—C61.274 (3)C3—H3AA0.9700
O6—H60.8200C3—H3AB0.9700
O6—C91.275 (3)C3—H3BC0.9700
O5—C91.231 (3)C3—H3BD0.9700
O3—C61.226 (3)C3—C4A1.498 (6)
O1—H10.8200C3—C4B1.43 (3)
O1—C11.308 (3)C4A—H4AA0.9700
N1—H1A0.8900C4A—H4AB0.9700
N1—H1B0.8900C4A—C5A1.474 (9)
N1—H1C0.8900C4B—H4BA0.9700
N1—C21.482 (4)C4B—H4BB0.9700
C9—C81.469 (4)C4B—C5B1.36 (7)
C1—C21.507 (4)C5A—H5AA0.9600
C6—C71.490 (4)C5A—H5AB0.9600
C2—H20.9800C5A—H5AC0.9600
C2—C31.517 (5)C5B—H5BA0.9600
C8—H80.9300C5B—H5BB0.9600
C8—C71.329 (4)C5B—H5BC0.9600
C9—O6—H6109.5H3AA—C3—H3AB107.5
C1—O1—H1109.5H3BC—C3—H3BD105.7
H1A—N1—H1B109.5C4A—C3—C2115.2 (3)
H1A—N1—H1C109.5C4A—C3—H3AA108.5
H1B—N1—H1C109.5C4A—C3—H3AB108.5
C2—N1—H1A109.5C4B—C3—C2130.3 (16)
C2—N1—H1B109.5C4B—C3—H3BC104.7
C2—N1—H1C109.5C4B—C3—H3BD104.7
O6—C9—C8120.8 (2)C3—C4A—H4AA108.3
O5—C9—O6121.7 (2)C3—C4A—H4AB108.3
O5—C9—C8117.6 (2)H4AA—C4A—H4AB107.4
O2—C1—O1125.0 (2)C5A—C4A—C3115.9 (5)
O2—C1—C2122.4 (2)C5A—C4A—H4AA108.3
O1—C1—C2112.6 (2)C5A—C4A—H4AB108.3
O4—C6—C7119.1 (2)C3—C4B—H4BA108.7
O3—C6—O4122.4 (2)C3—C4B—H4BB108.7
O3—C6—C7118.5 (2)H4BA—C4B—H4BB107.6
N1—C2—C1107.4 (2)C5B—C4B—C3114 (3)
N1—C2—H2109.3C5B—C4B—H4BA108.7
N1—C2—C3108.9 (2)C5B—C4B—H4BB108.7
C1—C2—H2109.3C4A—C5A—H5AA109.5
C1—C2—C3112.7 (3)C4A—C5A—H5AB109.5
C3—C2—H2109.3C4A—C5A—H5AC109.5
C9—C8—H8114.7H5AA—C5A—H5AB109.5
C7—C8—C9130.6 (2)H5AA—C5A—H5AC109.5
C7—C8—H8114.7H5AB—C5A—H5AC109.5
C6—C7—H7114.6C4B—C5B—H5BA109.5
C8—C7—C6130.8 (2)C4B—C5B—H5BB109.5
C8—C7—H7114.6C4B—C5B—H5BC109.5
C2—C3—H3AA108.5H5BA—C5B—H5BB109.5
C2—C3—H3AB108.5H5BA—C5B—H5BC109.5
C2—C3—H3BC104.7H5BB—C5B—H5BC109.5
C2—C3—H3BD104.7
O2—C1—C2—N126.0 (4)N1—C2—C3—C4A170.8 (3)
O2—C1—C2—C393.9 (4)N1—C2—C3—C4B90 (2)
O4—C6—C7—C85.0 (6)C9—C8—C7—C60.4 (7)
O6—C9—C8—C75.4 (6)C1—C2—C3—C4A70.1 (4)
O5—C9—C8—C7175.1 (4)C1—C2—C3—C4B151 (2)
O3—C6—C7—C8174.1 (4)C2—C3—C4A—C5A63.3 (7)
O1—C1—C2—N1154.9 (3)C2—C3—C4B—C5B57 (5)
O1—C1—C2—C385.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O40.821.602.421 (2)178
O1—H1···O50.821.802.612 (3)171
N1—H1A···O2i0.892.112.864 (3)142
N1—H1B···O4ii0.892.012.898 (3)172
N1—H1C···O3iii0.891.972.850 (3)168
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+1/2; (iii) x, y, z+1/2.
(2dl_nv_mal) DL-Norvalinium hydrogen maleate–DL-norvaline (1/1) top
Crystal data top
C5H12NO2+·C4H3O4·C5H11NO2Dx = 1.226 Mg m3
Mr = 350.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 6447 reflections
a = 8.8572 (4) Åθ = 2.3–27.7°
b = 27.3614 (11) ŵ = 0.10 mm1
c = 7.8306 (4) ÅT = 293 K
V = 1897.71 (15) Å3Block, clear light colourless
Z = 40.5 × 0.25 × 0.2 mm
F(000) = 752
Data collection top
Agilent Xcalibur Ruby Gemini ultra
diffractometer
1975 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 10.3457 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 3434
Tmin = 0.948, Tmax = 1.000l = 99
21923 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + 2.5627P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1975 reflectionsΔρmax = 0.15 e Å3
216 parametersΔρmin = 0.20 e Å3
298 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3996 (7)0.5283 (3)0.4353 (8)0.0588 (14)0.733 (5)
O20.2253 (12)0.4842 (4)0.5382 (11)0.0673 (19)0.733 (5)
N10.1895 (3)0.58452 (10)0.2864 (4)0.0436 (9)0.733 (5)
H1A0.2092360.5663960.1947540.052*0.733 (5)
H1B0.2719730.6010060.3163570.052*0.733 (5)
H1C0.1155460.6054550.2625070.052*0.733 (5)
C10.2668 (10)0.5162 (3)0.486 (2)0.053 (2)0.733 (5)
C60.4597 (4)0.69058 (10)0.2591 (5)0.0667 (9)
C30.0925 (9)0.5831 (2)0.5848 (10)0.0563 (15)0.733 (5)
H3A0.0150170.6058210.5479030.068*0.733 (5)
H3B0.0476970.5616150.6692520.068*0.733 (5)
C20.1420 (5)0.55218 (16)0.4302 (6)0.0450 (10)0.733 (5)
H20.0548650.5330110.3920040.054*0.733 (5)
O40.4852 (12)0.70580 (16)0.1052 (7)0.082 (3)0.532 (13)
C40.2156 (11)0.6112 (4)0.6672 (11)0.078 (2)0.733 (5)
H4A0.2580510.6338070.5847840.093*0.733 (5)
H4B0.2950230.5887850.7013210.093*0.733 (5)
C70.4209 (11)0.7257 (3)0.3969 (11)0.055 (2)0.532 (13)
H70.3919430.7114750.4995710.066*0.532 (13)
O4B0.5932 (11)0.70603 (18)0.1975 (19)0.112 (5)0.468 (13)
N1B0.0750 (11)0.5607 (3)0.3297 (13)0.054 (3)0.267 (5)
H1BA0.1166140.5431140.2465740.065*0.267 (5)
H1BB0.0342460.5876710.2856700.065*0.267 (5)
H1BC0.0036940.5432230.3812360.065*0.267 (5)
O1B0.425 (2)0.5365 (8)0.503 (2)0.067 (5)0.267 (5)
O2B0.229 (4)0.4803 (10)0.593 (3)0.066 (5)0.267 (5)
C2B0.1906 (15)0.5742 (4)0.4535 (19)0.054 (3)0.267 (5)
H2B0.2593370.5975570.3990150.064*0.267 (5)
C7B0.3551 (12)0.7257 (3)0.3272 (18)0.068 (3)0.468 (13)
H7B0.2719680.7118380.3812950.082*0.468 (13)
C1B0.271 (3)0.5271 (8)0.473 (7)0.049 (4)0.267 (5)
C3B0.117 (4)0.5995 (9)0.605 (4)0.086 (6)0.267 (5)
H3BA0.0522940.6255990.5638190.103*0.267 (5)
H3BB0.0532070.5761560.6648500.103*0.267 (5)
C4B0.223 (4)0.6193 (12)0.723 (4)0.107 (7)0.267 (5)
H4BA0.2403240.5965310.8154530.129*0.267 (5)
H4BB0.3186020.6251570.6653810.129*0.267 (5)
O30.453 (5)0.6486 (10)0.284 (6)0.073 (7)0.532 (13)
O3B0.440 (5)0.6447 (12)0.290 (6)0.063 (5)0.468 (13)
C50.1602 (13)0.6408 (3)0.8296 (14)0.096 (3)0.733 (5)
H5A0.0893870.6654410.7947060.145*0.733 (5)
H5B0.2452800.6560780.8836800.145*0.733 (5)
H5C0.1124090.6189010.9085340.145*0.733 (5)
C5B0.170 (5)0.6600 (9)0.782 (5)0.129 (11)0.267 (5)
H5BA0.1033000.6743080.6986210.193*0.267 (5)
H5BB0.2513460.6820680.8049350.193*0.267 (5)
H5BC0.1147730.6537310.8850120.193*0.267 (5)
H10.5000000.5000000.5000000.193*
H40.483 (9)0.7500000.115 (11)0.193*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.044 (3)0.052 (3)0.080 (4)0.016 (2)0.004 (2)0.021 (3)
O20.058 (2)0.061 (4)0.083 (6)0.005 (2)0.002 (4)0.030 (4)
N10.0397 (17)0.0352 (15)0.056 (2)0.0090 (13)0.0013 (15)0.0050 (14)
C10.045 (3)0.051 (4)0.061 (5)0.023 (3)0.001 (3)0.019 (5)
C60.064 (2)0.0354 (15)0.101 (3)0.0003 (13)0.0253 (19)0.0043 (17)
C30.048 (3)0.052 (3)0.069 (4)0.018 (2)0.009 (3)0.006 (3)
C20.040 (2)0.034 (2)0.061 (3)0.0051 (18)0.001 (2)0.008 (2)
O40.115 (7)0.047 (2)0.084 (3)0.000 (3)0.028 (4)0.011 (2)
C40.072 (4)0.080 (4)0.081 (5)0.010 (3)0.014 (4)0.023 (4)
C70.066 (5)0.035 (3)0.065 (4)0.001 (3)0.007 (4)0.003 (3)
O4B0.070 (5)0.043 (3)0.223 (12)0.004 (3)0.081 (7)0.000 (4)
N1B0.050 (6)0.041 (5)0.070 (6)0.009 (4)0.002 (5)0.010 (4)
O1B0.044 (6)0.057 (7)0.101 (14)0.013 (5)0.003 (7)0.017 (9)
O2B0.074 (7)0.059 (6)0.064 (11)0.029 (5)0.017 (8)0.050 (7)
C2B0.050 (6)0.029 (5)0.083 (8)0.012 (5)0.006 (6)0.008 (5)
C7B0.048 (5)0.038 (3)0.119 (9)0.000 (4)0.027 (5)0.002 (5)
C1B0.053 (7)0.035 (8)0.059 (10)0.006 (6)0.014 (6)0.026 (7)
C3B0.084 (13)0.090 (14)0.083 (10)0.037 (11)0.002 (9)0.005 (9)
C4B0.127 (15)0.103 (14)0.092 (15)0.041 (12)0.025 (13)0.013 (10)
O30.071 (14)0.023 (4)0.124 (11)0.004 (5)0.026 (9)0.005 (5)
O3B0.050 (6)0.032 (6)0.108 (12)0.002 (6)0.019 (7)0.007 (7)
C50.098 (5)0.094 (7)0.097 (6)0.020 (5)0.004 (4)0.023 (5)
C5B0.20 (3)0.071 (14)0.12 (2)0.029 (16)0.020 (18)0.002 (12)
Geometric parameters (Å, º) top
O1—C11.286 (11)N1B—H1BA0.8900
O1—H11.284 (6)N1B—H1BB0.8900
O2—C11.034 (15)N1B—H1BC0.8900
N1—H1A0.8900N1B—C2B1.457 (17)
N1—H1B0.8900O1B—C1B1.41 (2)
N1—H1C0.8900O1B—H11.20 (2)
N1—C21.492 (6)O2B—C1B1.63 (4)
C1—C21.544 (7)C2B—H2B0.9800
C6—O41.295 (6)C2B—C1B1.481 (18)
C6—C71.486 (8)C2B—C3B1.52 (3)
C6—O4B1.345 (6)C7B—C7Bi1.331 (17)
C6—C7B1.437 (9)C7B—H7B0.9300
C6—O31.17 (3)C3B—H3BA0.9700
C6—O3B1.29 (3)C3B—H3BB0.9700
C3—H3A0.9700C3B—C4B1.42 (3)
C3—H3B0.9700C4B—H4BA0.9700
C3—C21.541 (8)C4B—H4BB0.9700
C3—C41.481 (10)C4B—C5B1.29 (4)
C2—H20.9800C5—H5A0.9600
O4—H41.212 (7)C5—H5B0.9600
C4—H4A0.9700C5—H5C0.9600
C4—H4B0.9700C5B—H5BA0.9600
C4—C51.586 (12)C5B—H5BB0.9600
C7—C7i1.327 (14)C5B—H5BC0.9600
C7—H70.9300
C1—O1—H1110.8 (7)C2B—N1B—H1BA109.5
H1A—N1—H1B109.5C2B—N1B—H1BB109.5
H1A—N1—H1C109.5C2B—N1B—H1BC109.5
H1B—N1—H1C109.5C1B—O1B—H1112.4 (17)
C2—N1—H1A109.5N1B—C2B—H2B108.1
C2—N1—H1B109.5N1B—C2B—C1B100.8 (18)
C2—N1—H1C109.5N1B—C2B—C3B109.4 (15)
O1—C1—C2113.7 (8)C1B—C2B—H2B108.1
O2—C1—O1131.8 (9)C1B—C2B—C3B121 (2)
O2—C1—C2113.5 (9)C3B—C2B—H2B108.1
O4—C6—C7120.5 (4)C6—C7B—H7B114.0
O4B—C6—C7B119.3 (5)C7Bi—C7B—C6131.9 (4)
O3—C6—O4119 (2)C7Bi—C7B—H7B114.0
O3—C6—C7120 (2)O1B—C1B—O2B106 (2)
O3B—C6—O4B120 (2)O1B—C1B—C2B109.0 (19)
O3B—C6—C7B120 (2)C2B—C1B—O2B129 (3)
H3A—C3—H3B107.6C2B—C3B—H3BA109.0
C2—C3—H3A108.6C2B—C3B—H3BB109.0
C2—C3—H3B108.6H3BA—C3B—H3BB107.8
C4—C3—H3A108.6C4B—C3B—C2B113 (3)
C4—C3—H3B108.6C4B—C3B—H3BA109.0
C4—C3—C2114.7 (6)C4B—C3B—H3BB109.0
N1—C2—C1113.0 (6)C3B—C4B—H4BA110.0
N1—C2—C3110.3 (4)C3B—C4B—H4BB110.0
N1—C2—H2108.0H4BA—C4B—H4BB108.4
C1—C2—H2108.0C5B—C4B—C3B108 (3)
C3—C2—C1109.3 (8)C5B—C4B—H4BA110.0
C3—C2—H2108.0C5B—C4B—H4BB110.0
C6—O4—H4105 (4)C4—C5—H5A109.5
C3—C4—H4A109.0C4—C5—H5B109.5
C3—C4—H4B109.0C4—C5—H5C109.5
C3—C4—C5112.7 (8)H5A—C5—H5B109.5
H4A—C4—H4B107.8H5A—C5—H5C109.5
C5—C4—H4A109.0H5B—C5—H5C109.5
C5—C4—H4B109.0C4B—C5B—H5BA109.5
C6—C7—H7114.8C4B—C5B—H5BB109.5
C7i—C7—C6130.4 (3)C4B—C5B—H5BC109.5
C7i—C7—H7114.8H5BA—C5B—H5BB109.5
H1BA—N1B—H1BB109.5H5BA—C5B—H5BC109.5
H1BA—N1B—H1BC109.5H5BB—C5B—H5BC109.5
H1BB—N1B—H1BC109.5
O1—C1—C2—N117.9 (14)N1B—C2B—C1B—O1B147 (3)
O1—C1—C2—C3105.4 (12)N1B—C2B—C1B—O2B83 (4)
O2—C1—C2—N1151.9 (12)N1B—C2B—C3B—C4B173 (2)
O2—C1—C2—C384.9 (15)C2B—C3B—C4B—C5B144 (3)
C2—C3—C4—C5177.9 (7)C1B—C2B—C3B—C4B71 (3)
O4—C6—C7—C7i7.7 (7)C3B—C2B—C1B—O1B92 (3)
C4—C3—C2—N167.1 (8)C3B—C2B—C1B—O2B38 (4)
C4—C3—C2—C157.7 (9)O3—C6—C7—C7i180 (3)
O4B—C6—C7B—C7Bi8.4 (9)O3B—C6—C7B—C7Bi174 (3)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.891.942.807 (8)165
N1—H1B···O30.892.082.92 (4)157
N1—H1C···O3iii0.891.902.79 (4)178
O1—H1···O1iv1.28 (1)1.28 (1)2.568 (13)180 (1)
O4—H4···O4i1.21 (1)1.21 (1)2.418 (9)173 (8)
Symmetry codes: (i) x, y+3/2, z; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y, z+1/2; (iv) x+1, y+1, z+1.
Classification of hydrogen maleates according with their stoichiometry top
Brutto formulaStoichiometry classCSD refcodes (references to original work)
(GlyH+).M-A+B-RENBAN (Rajagopal, Krishnakumar, Mostad & Natarajan, 2001)
(L-AlaH+).M-BOQTEG (Alagar, Krishnakumar, Nandhini & Natarajan, 2001)
(L-PheH+).M-EDAXIQ (Alagar, Krishnakumar & Natarajan, 2001)
(DL-PheH+).M-VAGVIJ (Alagar et al., 2003)
(DL-ValH+).M-QURSUR (Alagar, Krishnakumar, Mostad & Natarajan, 2001)
(L-SerH+).M-REZPET (Arkhipov et al., 2013)
(DL-SerH+). M-REZPAP (Arkhipov et al., 2013)
(DL-MetH+).M-MOCXUX (Alagar et al., 2002)
(SarH+).M-MIYBAX01 (Ilczyszyn et al., 2003)
(L-ValH+).M-NUZMIG (Rychkov et al., 2016)
(DL-ThrH+).M-ETEYOR (Rajagopal et al., 2004)
(β-AlaH+).M-EDASUX (Rajagopal, Krishnakumar & Natarajan, 2001)
(BacH+).M-LUSXII (Báthori & Kilinkissa, 2015)
(L-LysH+).M-XADTOL (Pratap et al., 2000)
(DL-ArgH+).M-(Ravishankar et al., 1998)
(BetH+).M-NASQED01 (Haussühl & Schreuer, 2001)
(L-HisH22+).(M-)2An+nB-TENVOZ (Fleck et al., 2013)
L-Met.L-MetH+.M-A2+B-(Natarajan et al. 2010)
L-Nva.L-NvaH+.M-VUKQID (Arkhipov et al., 2015)
(L-HisH+)2.(M-)2nA+nB-XADTIF (Pratap et al., 2000)
(L-LeuH+)3.(M-)3VUKQAV (Arkhipov et al., 2015)
There are also two hydrates belonging to the A+B- class: (L-ArgH+).M-.2H2O (CSD refcode GIHGEK; Sun et al., 2007), (L-HisH+).M-.H2O (CSD refcode TENVUF; Fleck et al., 2013); and two other hydrates related to the nA+nB- class: (L-HisH+)2.(M-)2.3H2O (CSD refcode VAZJUD; Gonsago et al., 2012), (L-IleH+)2.(M-)2.H2O (CSD refcode VUKQEZ; Arkhipov et al., 2015).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds