Download citation
Download citation
link to html
The crystal structures of four substituted-ammonium dichloride dodeca­chloro­hexa­silanes are presented. Each is crystallized with a different cation and one of the structures contains a benzene solvent mol­ecule: bis­(tetra­ethyl­ammonium) dichloride dodeca­chloro­hexa­silane, 2C8H20N+·2Cl-·Cl12Si6, (I), tetra­butyl­ammonium tri­butyl­methyl­ammonium dichloride dodeca­chloro­hexa­silane, C16H36N+·C13H30N+·2Cl-·Cl12Si6, (II), bis­(tetra­butyl­ammonium) di­chlo­ride dodeca­chloro­hexa­silane benzene disolvate, 2C16H36N+·2Cl-·Cl12Si6·2C6H6, (III), and bis­(benzyl­tri­phenyl­phospho­nium) dichloride dodeca­chloro­hexa­silane, 2C25H22P+·2Cl-·Cl12Si6, (IV). In all four structures, the dodeca­chloro­hexa­silane ring is located on a crystallographic centre of inversion. The geometry of the dichloride dodeca­chloro­hexa­silanes in the different structures is almost the same, irrespective of the cocrystallized cation and solvent. However, the crystal structure of the parent dodeca­chloro­hexa­silane mol­ecule shows that this mol­ecule adopts a chair conformation. In (IV), the P atom and the benzyl group of the cation are disordered over two sites, with a site-occupation factor of 0.560 (5) for the major-occupied site.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615016484/sk3599sup1.cif
Contains datablocks I, II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016484/sk3599Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016484/sk3599IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016484/sk3599IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016484/sk3599IVsup5.hkl
Contains datablock IV

CCDC references: 1422137; 1422136; 1422135; 1422134

Introduction top

Thin films of nanocrystalline, microcrystalline and amorphous silicon (Si) are and will be an important element of present and future semiconductors. Until today, such Si films are made through gas-phase deposition of smaller silanes. Those silanes are obtained from the reduction of the corresponding chloro­silanes. A promising approach to improve the manufacturing of Si films are solution-based methods, such as spin, spray or printing processes. Therefore, higher oligosilanes with boiling points significantly higher than their deposition temperatures are in demand. It is expected that silanes consisting of ten or more Si atoms meet those requirements best. Known synthetic routes are much too laborious and expensive to be used in large-scale production, it is a necessity to develop synthesis strategies that give easy access to precursor oligo­chloro­silanes. The amine-induced disproportionation of Si2Cl6 leading to Si(SiCl3)4 and SiCl4 has been known for years (Urry, 1970; Meyer-Wegner et al., 2011). Recently, we have established convenient access to chloro­silicates of the type [Si6Cl14]2-, [Si7Cl16]2- and [Si8Cl18]2- by chloride-induced disproportionation of Si2Cl6 (Tillmann et al., 2012, 2014). The Si6 rings of the chloro­silicate are coordinated at both faces by chloride ions and therefore show an inverse sandwich structure. This structural motif was first described by Choi et al. (2001).

In this context, it should be noted that chloro­silicates can be easily transformed into the corresponding silanes by treatment of these compounds with LiAlH4.

In the course of our investigations, we have prepared a series of complexes, namely [Et4N]2Cl2[Si6Cl14], (I), [nBu4N][nBu3MeN]Cl2[Si6Cl14], (II), [nBu4N]2Cl2[Si6Cl14].2C6H6, (III), and [Ph3BnP]2Cl2[Si6Cl14], (IV), the crystal structures of which we report here.

Experimental top

Synthesis and crystallization top

Synthesis of the chloro­silicates [Et4N]2[Si6Cl14], (I), [nBu4N][nBu3MeN][Si6Cl14], (II), [nBu4N]2[Si6Cl14] . 2C6H6, (III), [Ph3BnP]2[Si6Cl14], (IV):

Si2Cl6 [0.3 ml, 1.7 mmol for (I); 0.5 ml, 2.9 mmol for (II); 0.3 ml, 1.7 mmol for (IV)] was added to solutions of the related ammonium or phospho­nium chloride, namely [Et4N]Cl (92 mg, 0.6 mmol) for (I), [nBu4N]Cl (100 mg, 0.4 mmol) along with nBu3N {the ammonium salt [nBu3MeN]Cl is formed from nBu3N and two molecules of CH2Cl2 (Tillmann et al., 2012)} (60 mg, 0.3 mmol) for (II), and [Ph3BnP]Cl (220 mg, 0.6 mmol) for (IV), all in CH2Cl2 (0.3–0.5 ml). When the reaction mixtures were allowed to stand at room temperature, single crystals of the Si6-ring containing chloro­silicates [Si6Cl14]2- grew after a few days. The crystalline yields were (I) < 15%, (II) < 20% and (IV) 40%. In addition, the chloro­silicates [(Cl3Si)Si6Cl13]2-, [1,1-(Cl3Si)2Si6Cl12]2- and [1,4-(Cl3Si)2Si6Cl12]2- were obtained as side products of these reactions. Single crystals of (III) were grown from a cooled (279 K) solution of [nBu4N]2[Si6Cl14] (10 mg) after one week.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms in all structures were refined using a riding model, with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å or methyl­ene C—H = 0.99 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise.

The P atom and the benzyl group of the phospho­nium cation of (IV) are disordered over two sites with a site-occupation factor of 0.560 (5) for the major-occupied site. The C1'—C41 bond was restrained to 1.540 (5) Å. The disordered C atoms were refined isotropically.

Results and discussion top

\ Bis(tetra­ethyl­ammonium) dichloride dodeca­chloro­hexasilane, (I) (Fig. 1), crystallizes with discrete cations, anions and half a molecule of dodeca­chloro­hexasilane, which is located on a centre of inversion, in the asymmetric unit. The crystal packing diagram (Fig. 2) shows the arrangement of alternating cations and anions in the unit cell. The hexasilane ring is exactly planar and the two chloride anions are located almost exactly over the centre of the hexasilane ring (cog) (Table 2). The nonbonding Cl···Si distances range from 2.9471(10 (Cl1···Si2) to 3.0285 (10) Å [Cl1···Si1i; symmetry code: (i) -x+1, -y+1, -z+1].

Tetra­butyl­ammonium tri­butyl­methyl­ammonium dichloride dodeca­chloro­hexasilane, (Figs. 3, 4, 5 and 6), (II), crystallizes with two cations, two anions and two half molecules of dodeca­chloro­hexasilane, which are both located on a centre of inversion, in the asymmetric unit. The hexasilane ring is almost planar and the two chloride anions are located almost exactly over the centre of the hexasilane ring (Table 2). The Cl···Si distances range from 2.9473 (16) [Cl1···Si3i; symmetry code: (i) -x+1, -y+1, -z] to 3.0837 (16)Å (Si2···Cl1) and from 2.9896 (14) [Cl2···Si5ii; symmetry code: (ii) -x, -y+2, -z+1] to 3.0483 (14) Å [Cl2···Si4ii; symmetry code: (ii) -x, -y+2, -z+1]. The crystal packing (Fig. 7,) shows how the anions and cations are neatly separated.

Bis(tetra­butyl­ammonium) dichloride dodeca­chloro­hexasilane di­benzene solvate, (III) (Figs. 8 and 9) crystallizes with one cation, one anion, half a molecule of dodeca­chloro­hexasilane, which is located on a centre of inversion, and one benzene molecule in the asymmetric unit. The hexasilane ring is essentially planar and the two chloride anions are located almost exactly over the centre of the hexasilane ring (Table 2). The Cl1···Si distances range from 2.9618 (13) [Cl1···Si1i; symmetry code: (i) -x+1, -y+1, -z+1] to 3.0355 (12) Å (Cl1···Si2). The crystal packing diagram (Fig. 10) shows how the benzene solvent molecule is surrounded by the butyl chains of two cations.

Bis(benzyl­tri­phenyl­phospho­nium) dichloride dodeca­chloro­hexasilane, (IV) (Figs. 11 and 12), crystallizes with one cation, one anion and half a molecule of dodeca­chloro­hexasilane, which is located on a centre of inversion, in the asymmetric unit. The hexasilane ring is almost planar and the two chloride anions are located almost exactly over the centre of the hexasilane ring (Table 2). The Cl···Si distances range from 2.967 (2) [Cl1···Si2i; symmetry code: (i) -x+1, -y+2, -z] to 3.051 (2) Å (Cl1···Si3i). The packing diagram (Fig. 13) shows the arrangement of the different entities in the unit cell. Anions and cations are once again neatly separated.

A search in the Cambridge Structural Database (CSD, Version 3.5, with three updates; Groom & Allen, 2014) for the dichloride dodeca­chloro­hexasilane fragment yielded only 2 hits, namely bis­[2-(di­methyl­amino)-N,N,N-tri­methyl­ethanaminium] dichloride dodeca­chloro­hexasilane (CSD refcode LECXIC; Tillmann et al., 2012) and bis­[(N,N,N',N",N"-\ penta­ethyl­diethylenetri­amine-κ3N,N',N")\ chloridodihydridosilicon] dodeca­chloro­cyclo­hexasilane dichloride (NENLOH; Choi et al., 2001). Table 2 lists the most important geometric parameters of the dichloride dodeca­chloro­hexasilane fragments in all six structures. The six-membered ring is planar throughout all structures. The average Si—Si bond length and average Si—Cl bond length are almost identical in all structures. The Cl···Cg distance is also essentially the same in all structures. Only the distance from the Cl anion to the centre of the Si6 ring shows minor deviations. As a result, it can be stated that the geometric parameters of the dichloride dodeca­chloro­hexasilane fragment is almost invariable. It does not change if it is crystallized with a different anion or solvent.

It is of inter­est to note that the the dichloride dodeca­chloro­hexasilane fragment shows the tendency to crystallize on a crystallographic centre of inversion. The only exception is the structure NENLOH with a complete Cl12Si6.2Cl- fragment in the asymmetric unit.

If dodeca­chloro­hexasilane is crystallized with two iodide anions (Dai et al., 2011), the resulting structure, namely bis­(tetra­butyl­ammonium) dodeca­chloro­hexasilane bis­(iodide) di­chloro­methane solvate, shows the same features as the already discussed structures: the six-membered ring is essentially planar (r.m.s. deviation = 0.023Å), the average Si—Si bond is 2.337 (9) Å and the average Si—Cl bond is 2.084 (8) Å. In accordance with the increased size of a iodide anion compared with a chloride anion, the average Si···I distance is increased to 3.29 (3) Å and the distance from the iodide anions to the centre of the ring is 2.328 Å for I1 and 2.304 Å for I2.

If dodeca­chloro­hexasilane is crystallized for itself without any additional ion or solvent, the hexasilane ring is no longer planar but adopts a chair conformation (Dai et al., 2011). In this compound, the average Si—Si bond is slightly longer [2.342 (4) Å] and the average Si—Cl bond is significantly shortened [2.029 (4) Å].

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Atoms with suffixes A, B and C were generated using the symmetry code (-x+1, -y+1, -z+1).
[Figure 2] Fig. 2. Packing diagram of (I), viewed in the ac plane. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Perspective view of the first dichloride dodecachlorohexasilane in the asymmetric unit of (II), with displacement ellipsoids drawn at the 50% probability level. Atoms with suffixes A, B and C were generated using the symmetry code (-x+1, -y+1, -z).
[Figure 4] Fig. 4. Perspective view of the second dichloride dodecachlorohexasilane in the asymmetric unit of (II), with displacement ellipsoids drawn at the 50% probability level. Atoms with suffixes A, B and C were generated using the symmetry code (-x, -y+2, -z+1).
[Figure 5] Fig. 5. Perspective view of the tetrabutylammonium cation of (II), with displacement ellipsoids drawn at the 50% probability level.
[Figure 6] Fig. 6. Perspective view of the tributylmethylammonium cation of (II), with displacement ellipsoids drawn at the 50% probability level.
[Figure 7] Fig. 7. Packing diagram of (II), viewed in the ab plane. H atoms have been omitted for clarity.
[Figure 8] Fig. 8. Perspective view of dichloride dodecachlorohexasilane (III), with displacement ellipsoids drawn at the 50% probability level. Atoms with suffixes A, B and C were generated using the symmetry code (-x+1, -y+1, -z+1).
[Figure 9] Fig. 9. Perspective view of the tetrabutylammonium cation of (III), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 10] Fig. 10. Packing diagram of (III), viewed in the bc plane. H atoms have been omitted for clarity.
[Figure 11] Fig. 11. Perspective view of dichloride dodecachlorohexasilane of (IV), with displacement ellipsoids drawn at the 50% probability level. Atoms with suffixes A, B and C were generated using the symmetry code (-x+1, -y+2, -z).
[Figure 12] Fig. 12. Perspective view of the cation of (IV), with displacement ellipsoids drawn at the 50% probability level. H atoms and the minor-occupied sites of the disordered atoms have been omitted for clarity.
[Figure 13] Fig. 13. Packing diagram of (IV), viewed in the bc plane. H atoms have been omitted for clarity.
(I) Bis(tetraethylammonium) dichloride dodecachlorohexasilane top
Crystal data top
2C8H20N+·2Cl·Cl12Si6Dx = 1.540 Mg m3
Mr = 925.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 26169 reflections
a = 13.6864 (5) Åθ = 2.3–26.1°
b = 20.6309 (9) ŵ = 1.16 mm1
c = 14.1328 (8) ÅT = 173 K
V = 3990.6 (3) Å3Needle, colourless
Z = 40.26 × 0.03 × 0.03 mm
F(000) = 1888
Data collection top
Stoe IPDS II two-circle
diffractometer
3004 reflections with I > 2σ(I)
ω scansRint = 0.105
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
θmax = 25.7°, θmin = 2.3°
h = 1614
42017 measured reflectionsk = 2424
3747 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0304P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3747 reflectionsΔρmax = 0.37 e Å3
172 parametersΔρmin = 0.24 e Å3
Crystal data top
2C8H20N+·2Cl·Cl12Si6V = 3990.6 (3) Å3
Mr = 925.34Z = 4
Orthorhombic, PccnMo Kα radiation
a = 13.6864 (5) ŵ = 1.16 mm1
b = 20.6309 (9) ÅT = 173 K
c = 14.1328 (8) Å0.26 × 0.03 × 0.03 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3747 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
3004 reflections with I > 2σ(I)
Rint = 0.105
42017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
3747 reflectionsΔρmin = 0.24 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52334 (5)0.53665 (3)0.61863 (4)0.02761 (15)
Si10.60333 (5)0.57854 (3)0.43229 (5)0.02563 (17)
Si20.66489 (5)0.47991 (3)0.48509 (5)0.02603 (17)
Si30.56306 (6)0.40302 (3)0.55310 (5)0.02525 (16)
Cl110.64343 (6)0.59070 (4)0.29179 (5)0.04215 (19)
Cl120.67825 (6)0.65384 (3)0.49852 (5)0.03832 (18)
Cl210.73734 (6)0.43561 (4)0.37356 (6)0.0430 (2)
Cl220.77618 (6)0.50021 (4)0.57992 (6)0.04176 (19)
Cl310.58281 (6)0.31686 (3)0.47745 (5)0.03665 (17)
Cl320.61633 (6)0.37946 (4)0.68617 (5)0.04084 (19)
N10.49084 (17)0.14614 (11)0.63519 (16)0.0284 (5)
C10.5738 (2)0.14210 (14)0.7064 (2)0.0315 (6)
H1A0.54540.13430.76980.038*
H1B0.61470.10410.69040.038*
C20.6389 (3)0.20079 (15)0.7121 (3)0.0465 (8)
H2A0.68980.19350.75970.070*
H2B0.66930.20840.65030.070*
H2C0.59980.23870.72990.070*
C30.4237 (2)0.08845 (14)0.6494 (2)0.0337 (7)
H3A0.39660.09040.71430.040*
H3B0.36820.09230.60470.040*
C40.4706 (2)0.02304 (14)0.6355 (2)0.0367 (7)
H4A0.42200.01110.64600.055*
H4B0.49600.01980.57080.055*
H4C0.52440.01790.68060.055*
C50.4321 (2)0.20764 (15)0.6481 (2)0.0388 (7)
H5A0.37700.20710.60280.047*
H5B0.47410.24510.63190.047*
C60.3915 (3)0.21771 (18)0.7471 (3)0.0541 (9)
H6A0.35470.25840.74920.081*
H6B0.34820.18160.76340.081*
H6C0.44550.21960.79260.081*
C70.5352 (2)0.14618 (15)0.53629 (19)0.0356 (7)
H7A0.57890.18420.53070.043*
H7B0.57620.10690.52950.043*
C80.4634 (3)0.14792 (18)0.4553 (2)0.0507 (9)
H8A0.49910.14780.39520.076*
H8B0.42090.10980.45840.076*
H8C0.42370.18730.45960.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0308 (3)0.0288 (3)0.0232 (3)0.0012 (3)0.0017 (3)0.0050 (3)
Si10.0253 (4)0.0243 (4)0.0274 (4)0.0010 (3)0.0001 (3)0.0008 (3)
Si20.0205 (4)0.0244 (4)0.0332 (4)0.0002 (3)0.0004 (3)0.0035 (3)
Si30.0263 (4)0.0224 (4)0.0271 (4)0.0014 (3)0.0019 (3)0.0001 (3)
Cl110.0449 (5)0.0500 (4)0.0316 (4)0.0045 (4)0.0096 (3)0.0062 (3)
Cl120.0347 (4)0.0286 (3)0.0517 (5)0.0070 (3)0.0046 (3)0.0052 (3)
Cl210.0324 (4)0.0406 (4)0.0559 (5)0.0017 (3)0.0159 (4)0.0152 (4)
Cl220.0298 (4)0.0386 (4)0.0569 (5)0.0013 (3)0.0167 (3)0.0021 (3)
Cl310.0443 (4)0.0223 (3)0.0434 (4)0.0019 (3)0.0048 (3)0.0037 (3)
Cl320.0476 (5)0.0396 (4)0.0353 (4)0.0050 (4)0.0123 (3)0.0068 (3)
N10.0254 (13)0.0284 (12)0.0314 (12)0.0004 (10)0.0003 (10)0.0086 (10)
C10.0298 (16)0.0273 (14)0.0373 (15)0.0030 (12)0.0055 (13)0.0092 (12)
C20.043 (2)0.0377 (17)0.059 (2)0.0112 (15)0.0122 (16)0.0102 (15)
C30.0251 (15)0.0395 (16)0.0363 (15)0.0103 (13)0.0040 (12)0.0116 (12)
C40.0444 (19)0.0311 (15)0.0348 (15)0.0101 (14)0.0000 (14)0.0007 (12)
C50.0370 (18)0.0378 (16)0.0416 (17)0.0092 (14)0.0023 (14)0.0086 (13)
C60.055 (2)0.051 (2)0.056 (2)0.0166 (18)0.0111 (18)0.0025 (17)
C70.0416 (19)0.0339 (15)0.0313 (15)0.0011 (13)0.0085 (13)0.0086 (12)
C80.063 (3)0.057 (2)0.0322 (17)0.0051 (18)0.0046 (16)0.0056 (15)
Geometric parameters (Å, º) top
Si1—Cl112.0753 (10)C2—H2C0.9800
Si1—Cl122.0836 (10)C3—C41.507 (4)
Si1—Si3i2.3181 (11)C3—H3A0.9900
Si1—Si22.3254 (10)C3—H3B0.9900
Si2—Cl222.0716 (10)C4—H4A0.9800
Si2—Cl212.0744 (10)C4—H4B0.9800
Si2—Si32.3200 (11)C4—H4C0.9800
Si3—Cl322.0747 (10)C5—C61.520 (5)
Si3—Cl312.0919 (10)C5—H5A0.9900
Si3—Si1i2.3181 (11)C5—H5B0.9900
N1—C51.513 (4)C6—H6A0.9800
N1—C31.517 (4)C6—H6B0.9800
N1—C11.520 (4)C6—H6C0.9800
N1—C71.524 (3)C7—C81.509 (4)
C1—C21.505 (4)C7—H7A0.9900
C1—H1A0.9900C7—H7B0.9900
C1—H1B0.9900C8—H8A0.9800
C2—H2A0.9800C8—H8B0.9800
C2—H2B0.9800C8—H8C0.9800
Cl11—Si1—Cl12102.10 (4)C4—C3—N1115.3 (2)
Cl11—Si1—Si3i108.98 (4)C4—C3—H3A108.5
Cl12—Si1—Si3i108.73 (4)N1—C3—H3A108.5
Cl11—Si1—Si2108.48 (4)C4—C3—H3B108.5
Cl12—Si1—Si2109.27 (4)N1—C3—H3B108.5
Si3i—Si1—Si2118.10 (4)H3A—C3—H3B107.5
Cl22—Si2—Cl21103.26 (5)C3—C4—H4A109.5
Cl22—Si2—Si3108.17 (4)C3—C4—H4B109.5
Cl21—Si2—Si3107.50 (4)H4A—C4—H4B109.5
Cl22—Si2—Si1107.28 (4)C3—C4—H4C109.5
Cl21—Si2—Si1108.35 (4)H4A—C4—H4C109.5
Si3—Si2—Si1120.90 (4)H4B—C4—H4C109.5
Cl32—Si3—Cl31102.64 (4)N1—C5—C6114.8 (2)
Cl32—Si3—Si1i107.63 (4)N1—C5—H5A108.6
Cl31—Si3—Si1i108.17 (4)C6—C5—H5A108.6
Cl32—Si3—Si2108.95 (4)N1—C5—H5B108.6
Cl31—Si3—Si2106.96 (4)C6—C5—H5B108.6
Si1i—Si3—Si2120.99 (4)H5A—C5—H5B107.5
C5—N1—C3108.7 (2)C5—C6—H6A109.5
C5—N1—C1111.3 (2)C5—C6—H6B109.5
C3—N1—C1108.8 (2)H6A—C6—H6B109.5
C5—N1—C7108.8 (2)C5—C6—H6C109.5
C3—N1—C7111.3 (2)H6A—C6—H6C109.5
C1—N1—C7108.0 (2)H6B—C6—H6C109.5
C2—C1—N1115.7 (2)C8—C7—N1115.9 (3)
C2—C1—H1A108.4C8—C7—H7A108.3
N1—C1—H1A108.4N1—C7—H7A108.3
C2—C1—H1B108.4C8—C7—H7B108.3
N1—C1—H1B108.4N1—C7—H7B108.3
H1A—C1—H1B107.4H7A—C7—H7B107.4
C1—C2—H2A109.5C7—C8—H8A109.5
C1—C2—H2B109.5C7—C8—H8B109.5
H2A—C2—H2B109.5H8A—C8—H8B109.5
C1—C2—H2C109.5C7—C8—H8C109.5
H2A—C2—H2C109.5H8A—C8—H8C109.5
H2B—C2—H2C109.5H8B—C8—H8C109.5
C5—N1—C1—C251.4 (4)C3—N1—C5—C664.5 (3)
C3—N1—C1—C2171.1 (3)C1—N1—C5—C655.3 (4)
C7—N1—C1—C268.0 (3)C7—N1—C5—C6174.2 (3)
C5—N1—C3—C4178.0 (2)C5—N1—C7—C860.9 (3)
C1—N1—C3—C460.7 (3)C3—N1—C7—C858.8 (3)
C7—N1—C3—C458.2 (3)C1—N1—C7—C8178.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
(II) Tetrabutylammonium tributylmethylammonium dichloride dodecachlorohexasilane top
Crystal data top
C16H36N+·C13H30N+·2Cl·Cl12Si6Z = 2
Mr = 1107.67F(000) = 1152
Triclinic, P1Dx = 1.374 Mg m3
a = 11.1071 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.3992 (12) ÅCell parameters from 23095 reflections
c = 16.7434 (12) Åθ = 3.1–26.0°
α = 89.672 (6)°µ = 0.88 mm1
β = 88.689 (6)°T = 173 K
γ = 89.854 (6)°Plate, colourless
V = 2677.1 (4) Å30.15 × 0.13 × 0.04 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
6918 reflections with I > 2σ(I)
ω scansRint = 0.071
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
θmax = 25.7°, θmin = 3.3°
h = 1313
32914 measured reflectionsk = 1717
10052 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0716P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
10052 reflectionsΔρmax = 1.00 e Å3
460 parametersΔρmin = 0.37 e Å3
Crystal data top
C16H36N+·C13H30N+·2Cl·Cl12Si6γ = 89.854 (6)°
Mr = 1107.67V = 2677.1 (4) Å3
Triclinic, P1Z = 2
a = 11.1071 (9) ÅMo Kα radiation
b = 14.3992 (12) ŵ = 0.88 mm1
c = 16.7434 (12) ÅT = 173 K
α = 89.672 (6)°0.15 × 0.13 × 0.04 mm
β = 88.689 (6)°
Data collection top
Stoe IPDS II two-circle
diffractometer
10052 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
6918 reflections with I > 2σ(I)
Rint = 0.071
32914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 0.97Δρmax = 1.00 e Å3
10052 reflectionsΔρmin = 0.37 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.59130 (9)0.44934 (8)0.08400 (6)0.0431 (2)
Si10.38480 (12)0.36385 (9)0.00184 (8)0.0473 (3)
Si20.31960 (11)0.49176 (9)0.07561 (8)0.0450 (3)
Si30.44345 (12)0.62216 (9)0.07842 (7)0.0448 (3)
Cl110.39893 (15)0.24881 (9)0.07672 (9)0.0728 (4)
Cl120.24724 (13)0.32432 (11)0.07179 (10)0.0761 (4)
Cl210.28594 (13)0.44869 (11)0.19303 (8)0.0670 (4)
Cl220.14895 (11)0.52832 (10)0.04044 (9)0.0645 (4)
Cl310.49314 (14)0.64296 (10)0.19628 (8)0.0674 (4)
Cl320.33795 (12)0.73898 (9)0.05674 (9)0.0645 (4)
Cl20.08954 (8)0.96573 (6)0.40564 (5)0.0318 (2)
Si40.15792 (9)0.90659 (7)0.45815 (6)0.0299 (2)
Si50.00936 (9)0.84674 (7)0.53850 (7)0.0312 (2)
Si60.15065 (9)0.93762 (7)0.57871 (6)0.0299 (2)
Cl410.17337 (11)0.82655 (8)0.35615 (7)0.0506 (3)
Cl420.32296 (9)0.88148 (7)0.51580 (7)0.0426 (2)
Cl510.06109 (10)0.72997 (7)0.48056 (8)0.0490 (3)
Cl520.09220 (10)0.79026 (8)0.63974 (7)0.0484 (3)
Cl610.31183 (8)0.87639 (7)0.54097 (7)0.0416 (2)
Cl620.16165 (10)0.92755 (8)0.70182 (6)0.0462 (3)
N10.1656 (3)0.5466 (2)0.7100 (2)0.0420 (8)
C10.2961 (4)0.5686 (3)0.7224 (3)0.0461 (10)
H1A0.31090.56530.78050.055*
H1B0.34520.51920.69660.055*
C20.3407 (5)0.6598 (4)0.6921 (4)0.0699 (15)
H2A0.29990.71100.72130.084*
H2B0.32360.66660.63460.084*
C30.4773 (5)0.6637 (5)0.7048 (5)0.0809 (18)
H3A0.49290.64600.76080.097*
H3B0.51670.61680.67000.097*
C40.5329 (7)0.7527 (6)0.6887 (6)0.111 (3)
H4A0.61940.74850.69840.167*
H4B0.52050.77040.63290.167*
H4C0.49660.79970.72390.167*
C50.1431 (4)0.4537 (3)0.7504 (3)0.0501 (11)
H5A0.20490.40920.73070.060*
H5B0.15420.46120.80850.060*
C60.0210 (5)0.4121 (4)0.7381 (4)0.0619 (13)
H6A0.01370.39380.68150.074*
H6B0.04210.45880.75040.074*
C70.0025 (6)0.3271 (4)0.7918 (4)0.0699 (16)
H7A0.07070.28350.78370.084*
H7B0.00100.34660.84840.084*
C80.1136 (6)0.2786 (5)0.7736 (5)0.096 (2)
H8A0.12350.22440.80880.144*
H8B0.18120.32150.78240.144*
H8C0.11160.25850.71780.144*
C90.0929 (5)0.6396 (4)0.8346 (3)0.0571 (13)
H9A0.06770.58370.86520.068*
H9B0.17760.65330.84740.068*
C100.0836 (4)0.6213 (3)0.7456 (3)0.0487 (11)
H10A0.10030.68020.71670.058*
H10B0.00070.60400.73490.058*
C110.0137 (5)0.7209 (4)0.8584 (3)0.0617 (13)
H11A0.03640.77530.82500.074*
H11B0.07100.70540.84710.074*
C120.0221 (6)0.7467 (5)0.9446 (4)0.0827 (19)
H12A0.03120.79960.95600.124*
H12B0.00220.69370.97820.124*
H12C0.10530.76370.95610.124*
C130.1397 (4)0.5420 (4)0.6222 (3)0.0492 (11)
H13A0.15080.60500.59910.059*
H13B0.05380.52550.61660.059*
C140.2150 (4)0.4744 (3)0.5725 (3)0.0497 (11)
H14A0.30090.49190.57490.060*
H14B0.20610.41110.59520.060*
C150.1768 (5)0.4743 (4)0.4862 (3)0.0596 (13)
H15A0.09250.45240.48400.072*
H15B0.17920.53870.46530.072*
C160.2536 (6)0.4147 (4)0.4337 (4)0.0732 (16)
H16A0.22430.41770.37890.110*
H16B0.33690.43680.43440.110*
H16C0.25020.35040.45300.110*
N20.5719 (3)0.0642 (2)0.7209 (2)0.0394 (8)
C170.6715 (4)0.0021 (3)0.7442 (3)0.0424 (10)
H17A0.63430.05710.77050.051*
H17B0.71310.02390.69470.051*
C180.7639 (4)0.0363 (3)0.7984 (3)0.0486 (11)
H18A0.72290.06220.84650.058*
H18B0.80720.08760.77070.058*
C190.8538 (5)0.0365 (4)0.8238 (3)0.0616 (13)
H19A0.88710.06810.77570.074*
H19B0.81210.08360.85750.074*
C200.9562 (5)0.0049 (5)0.8699 (4)0.0777 (17)
H20A1.01220.04450.88510.117*
H20B0.99880.05080.83630.117*
H20C0.92380.03520.91810.117*
C210.4947 (4)0.0929 (3)0.7921 (3)0.0456 (11)
H21A0.54450.13110.82750.055*
H21B0.42880.13290.77280.055*
C220.4403 (5)0.0161 (4)0.8409 (3)0.0593 (13)
H22A0.50480.01980.86690.071*
H22B0.39630.02650.80570.071*
C230.3539 (7)0.0549 (5)0.9043 (5)0.094 (2)
H23A0.39730.10030.93720.112*
H23B0.28780.08840.87770.112*
C240.3015 (9)0.0185 (7)0.9575 (6)0.139 (4)
H24A0.24680.01000.99700.209*
H24B0.25680.06290.92540.209*
H24C0.36630.05110.98490.209*
C250.6287 (4)0.1505 (3)0.6825 (3)0.0395 (9)
H25A0.66640.18720.72500.047*
H25B0.69380.13020.64520.047*
C260.5451 (4)0.2132 (3)0.6378 (3)0.0413 (10)
H26A0.47710.23180.67350.050*
H26B0.51170.17900.59220.050*
C270.6099 (4)0.2990 (3)0.6071 (3)0.0474 (11)
H27A0.64120.33400.65290.057*
H27B0.67940.28010.57280.057*
C280.5285 (6)0.3603 (4)0.5604 (5)0.085 (2)
H28A0.57320.41500.54150.128*
H28B0.49860.32610.51460.128*
H28C0.46040.37990.59460.128*
C290.4966 (4)0.0162 (3)0.6606 (3)0.0502 (11)
H29A0.54740.00200.61480.075*
H29B0.45970.03920.68500.075*
H29C0.43320.05850.64280.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0475 (6)0.0563 (6)0.0260 (5)0.0126 (5)0.0114 (4)0.0027 (4)
Si10.0545 (7)0.0497 (7)0.0378 (7)0.0050 (6)0.0067 (6)0.0025 (5)
Si20.0441 (6)0.0556 (7)0.0351 (7)0.0119 (5)0.0019 (5)0.0001 (5)
Si30.0526 (7)0.0492 (7)0.0328 (7)0.0131 (5)0.0059 (5)0.0099 (5)
Cl110.1013 (11)0.0531 (7)0.0637 (9)0.0010 (7)0.0026 (8)0.0097 (6)
Cl120.0676 (8)0.0844 (10)0.0772 (11)0.0120 (7)0.0200 (7)0.0134 (8)
Cl210.0720 (8)0.0856 (9)0.0426 (7)0.0163 (7)0.0115 (6)0.0092 (6)
Cl220.0443 (6)0.0762 (9)0.0731 (9)0.0147 (6)0.0055 (6)0.0057 (7)
Cl310.0918 (10)0.0765 (9)0.0345 (7)0.0136 (7)0.0093 (6)0.0228 (6)
Cl320.0670 (8)0.0541 (7)0.0725 (9)0.0236 (6)0.0066 (7)0.0086 (6)
Cl20.0310 (4)0.0381 (5)0.0262 (5)0.0054 (4)0.0025 (4)0.0007 (4)
Si40.0305 (5)0.0313 (5)0.0281 (6)0.0034 (4)0.0048 (4)0.0016 (4)
Si50.0303 (5)0.0284 (5)0.0351 (6)0.0029 (4)0.0039 (4)0.0047 (4)
Si60.0285 (5)0.0339 (5)0.0274 (6)0.0048 (4)0.0032 (4)0.0034 (4)
Cl410.0587 (7)0.0520 (6)0.0416 (6)0.0033 (5)0.0104 (5)0.0158 (5)
Cl420.0314 (5)0.0497 (6)0.0467 (6)0.0051 (4)0.0009 (4)0.0023 (5)
Cl510.0506 (6)0.0304 (5)0.0662 (8)0.0108 (4)0.0047 (5)0.0046 (5)
Cl520.0494 (6)0.0510 (6)0.0449 (6)0.0063 (5)0.0049 (5)0.0205 (5)
Cl610.0318 (5)0.0470 (6)0.0461 (6)0.0131 (4)0.0045 (4)0.0026 (4)
Cl620.0490 (6)0.0627 (7)0.0272 (5)0.0022 (5)0.0072 (4)0.0077 (5)
N10.0411 (19)0.046 (2)0.039 (2)0.0053 (15)0.0086 (16)0.0064 (16)
C10.044 (2)0.054 (3)0.041 (3)0.006 (2)0.011 (2)0.003 (2)
C20.063 (3)0.061 (3)0.086 (4)0.003 (3)0.007 (3)0.006 (3)
C30.052 (3)0.096 (5)0.095 (5)0.011 (3)0.003 (3)0.004 (4)
C40.083 (5)0.105 (6)0.145 (8)0.008 (4)0.004 (5)0.047 (5)
C50.054 (3)0.053 (3)0.043 (3)0.005 (2)0.003 (2)0.007 (2)
C60.060 (3)0.063 (3)0.062 (4)0.008 (2)0.008 (3)0.004 (3)
C70.082 (4)0.059 (3)0.068 (4)0.016 (3)0.021 (3)0.009 (3)
C80.095 (5)0.085 (5)0.108 (6)0.040 (4)0.022 (4)0.021 (4)
C90.061 (3)0.062 (3)0.048 (3)0.011 (2)0.005 (2)0.010 (2)
C100.046 (2)0.053 (3)0.047 (3)0.009 (2)0.009 (2)0.006 (2)
C110.064 (3)0.064 (3)0.057 (3)0.011 (3)0.004 (3)0.006 (3)
C120.098 (5)0.079 (4)0.070 (4)0.026 (4)0.014 (4)0.001 (3)
C130.047 (2)0.061 (3)0.040 (3)0.008 (2)0.013 (2)0.003 (2)
C140.045 (2)0.056 (3)0.048 (3)0.006 (2)0.010 (2)0.000 (2)
C150.054 (3)0.072 (3)0.054 (3)0.007 (2)0.011 (2)0.004 (3)
C160.078 (4)0.080 (4)0.062 (4)0.001 (3)0.004 (3)0.018 (3)
N20.0354 (17)0.0396 (18)0.043 (2)0.0004 (14)0.0024 (15)0.0121 (15)
C170.044 (2)0.035 (2)0.048 (3)0.0015 (17)0.002 (2)0.0000 (19)
C180.054 (3)0.047 (3)0.045 (3)0.004 (2)0.003 (2)0.000 (2)
C190.055 (3)0.074 (3)0.056 (3)0.006 (3)0.004 (2)0.005 (3)
C200.066 (4)0.094 (4)0.074 (4)0.015 (3)0.019 (3)0.010 (3)
C210.041 (2)0.050 (3)0.045 (3)0.0023 (19)0.009 (2)0.010 (2)
C220.056 (3)0.059 (3)0.062 (3)0.000 (2)0.014 (3)0.004 (3)
C230.092 (5)0.096 (5)0.090 (5)0.011 (4)0.049 (4)0.019 (4)
C240.129 (7)0.160 (9)0.125 (8)0.004 (6)0.064 (6)0.055 (7)
C250.033 (2)0.041 (2)0.045 (3)0.0025 (17)0.0014 (18)0.0043 (18)
C260.037 (2)0.049 (2)0.038 (2)0.0022 (18)0.0032 (18)0.0097 (19)
C270.046 (2)0.048 (2)0.048 (3)0.0041 (19)0.007 (2)0.005 (2)
C280.086 (4)0.065 (4)0.105 (6)0.003 (3)0.021 (4)0.024 (4)
C290.052 (3)0.046 (3)0.053 (3)0.005 (2)0.007 (2)0.012 (2)
Geometric parameters (Å, º) top
Si1—Cl122.068 (2)C12—H12B0.9800
Si1—Cl112.0795 (19)C12—H12C0.9800
Si1—Si3i2.3167 (19)C13—C141.521 (7)
Si1—Si22.3282 (18)C13—H13A0.9900
Si2—Cl222.0637 (17)C13—H13B0.9900
Si2—Cl212.0840 (18)C14—C151.516 (7)
Si2—Si32.332 (2)C14—H14A0.9900
Si3—Cl322.0824 (17)C14—H14B0.9900
Si3—Cl312.0848 (18)C15—C161.485 (8)
Si3—Si1i2.3167 (19)C15—H15A0.9900
Si4—Cl412.0764 (16)C15—H15B0.9900
Si4—Cl422.0835 (14)C16—H16A0.9800
Si4—Si52.3144 (15)C16—H16B0.9800
Si4—Si6ii2.3242 (14)C16—H16C0.9800
Si5—Cl522.0731 (15)N2—C291.498 (6)
Si5—Cl512.0875 (15)N2—C211.511 (5)
Si5—Si62.3241 (15)N2—C171.517 (5)
Si6—Cl622.0719 (15)N2—C251.526 (5)
Si6—Cl612.0805 (13)C17—C181.495 (7)
Si6—Si4ii2.3242 (14)C17—H17A0.9900
N1—C11.503 (6)C17—H17B0.9900
N1—C131.507 (6)C18—C191.512 (7)
N1—C51.515 (6)C18—H18A0.9900
N1—C101.522 (6)C18—H18B0.9900
C1—C21.489 (7)C19—C201.514 (8)
C1—H1A0.9900C19—H19A0.9900
C1—H1B0.9900C19—H19B0.9900
C2—C31.537 (8)C20—H20A0.9800
C2—H2A0.9900C20—H20B0.9800
C2—H2B0.9900C20—H20C0.9800
C3—C41.445 (10)C21—C221.491 (7)
C3—H3A0.9900C21—H21A0.9900
C3—H3B0.9900C21—H21B0.9900
C4—H4A0.9800C22—C231.523 (8)
C4—H4B0.9800C22—H22A0.9900
C4—H4C0.9800C22—H22B0.9900
C5—C61.503 (7)C23—C241.490 (10)
C5—H5A0.9900C23—H23A0.9900
C5—H5B0.9900C23—H23B0.9900
C6—C71.526 (8)C24—H24A0.9800
C6—H6A0.9900C24—H24B0.9800
C6—H6B0.9900C24—H24C0.9800
C7—C81.505 (9)C25—C261.503 (6)
C7—H7A0.9900C25—H25A0.9900
C7—H7B0.9900C25—H25B0.9900
C8—H8A0.9800C26—C271.512 (6)
C8—H8B0.9800C26—H26A0.9900
C8—H8C0.9800C26—H26B0.9900
C9—C111.512 (7)C27—C281.493 (7)
C9—C101.521 (7)C27—H27A0.9900
C9—H9A0.9900C27—H27B0.9900
C9—H9B0.9900C28—H28A0.9800
C10—H10A0.9900C28—H28B0.9800
C10—H10B0.9900C28—H28C0.9800
C11—C121.498 (8)C29—H29A0.9800
C11—H11A0.9900C29—H29B0.9800
C11—H11B0.9900C29—H29C0.9800
C12—H12A0.9800
Cl12—Si1—Cl11101.77 (9)C11—C12—H12C109.5
Cl12—Si1—Si3i106.74 (8)H12A—C12—H12C109.5
Cl11—Si1—Si3i110.19 (8)H12B—C12—H12C109.5
Cl12—Si1—Si2108.28 (8)N1—C13—C14116.8 (4)
Cl11—Si1—Si2109.64 (8)N1—C13—H13A108.1
Si3i—Si1—Si2118.80 (7)C14—C13—H13A108.1
Cl22—Si2—Cl21101.33 (8)N1—C13—H13B108.1
Cl22—Si2—Si1108.93 (8)C14—C13—H13B108.1
Cl21—Si2—Si1108.37 (8)H13A—C13—H13B107.3
Cl22—Si2—Si3110.44 (7)C15—C14—C13111.3 (4)
Cl21—Si2—Si3108.08 (8)C15—C14—H14A109.4
Si1—Si2—Si3118.31 (7)C13—C14—H14A109.4
Cl32—Si3—Cl31101.92 (7)C15—C14—H14B109.4
Cl32—Si3—Si1i106.80 (8)C13—C14—H14B109.4
Cl31—Si3—Si1i107.69 (8)H14A—C14—H14B108.0
Cl32—Si3—Si2108.16 (7)C16—C15—C14113.5 (5)
Cl31—Si3—Si2108.00 (8)C16—C15—H15A108.9
Si1i—Si3—Si2122.40 (7)C14—C15—H15A108.9
Cl41—Si4—Cl42101.29 (6)C16—C15—H15B108.9
Cl41—Si4—Si5110.23 (6)C14—C15—H15B108.9
Cl42—Si4—Si5107.37 (6)H15A—C15—H15B107.7
Cl41—Si4—Si6ii108.92 (6)C15—C16—H16A109.5
Cl42—Si4—Si6ii108.34 (6)C15—C16—H16B109.5
Si5—Si4—Si6ii119.16 (6)H16A—C16—H16B109.5
Cl52—Si5—Cl51102.76 (6)C15—C16—H16C109.5
Cl52—Si5—Si4108.00 (6)H16A—C16—H16C109.5
Cl51—Si5—Si4106.91 (6)H16B—C16—H16C109.5
Cl52—Si5—Si6108.15 (6)C29—N2—C21110.2 (3)
Cl51—Si5—Si6108.12 (6)C29—N2—C17107.6 (3)
Si4—Si5—Si6121.36 (6)C21—N2—C17112.0 (3)
Cl62—Si6—Cl61101.83 (6)C29—N2—C25109.1 (4)
Cl62—Si6—Si5108.34 (6)C21—N2—C25109.2 (3)
Cl61—Si6—Si5109.30 (6)C17—N2—C25108.7 (3)
Cl62—Si6—Si4ii108.88 (6)C18—C17—N2115.8 (3)
Cl61—Si6—Si4ii107.63 (6)C18—C17—H17A108.3
Si5—Si6—Si4ii119.43 (6)N2—C17—H17A108.3
C1—N1—C13110.6 (3)C18—C17—H17B108.3
C1—N1—C5106.0 (3)N2—C17—H17B108.3
C13—N1—C5111.0 (4)H17A—C17—H17B107.4
C1—N1—C10111.4 (3)C17—C18—C19112.2 (4)
C13—N1—C10106.9 (3)C17—C18—H18A109.2
C5—N1—C10110.9 (3)C19—C18—H18A109.2
C2—C1—N1117.1 (4)C17—C18—H18B109.2
C2—C1—H1A108.0C19—C18—H18B109.2
N1—C1—H1A108.0H18A—C18—H18B107.9
C2—C1—H1B108.0C18—C19—C20112.2 (5)
N1—C1—H1B108.0C18—C19—H19A109.2
H1A—C1—H1B107.3C20—C19—H19A109.2
C1—C2—C3108.1 (5)C18—C19—H19B109.2
C1—C2—H2A110.1C20—C19—H19B109.2
C3—C2—H2A110.1H19A—C19—H19B107.9
C1—C2—H2B110.1C19—C20—H20A109.5
C3—C2—H2B110.1C19—C20—H20B109.5
H2A—C2—H2B108.4H20A—C20—H20B109.5
C4—C3—C2115.4 (6)C19—C20—H20C109.5
C4—C3—H3A108.4H20A—C20—H20C109.5
C2—C3—H3A108.4H20B—C20—H20C109.5
C4—C3—H3B108.4C22—C21—N2116.3 (4)
C2—C3—H3B108.4C22—C21—H21A108.2
H3A—C3—H3B107.5N2—C21—H21A108.2
C3—C4—H4A109.5C22—C21—H21B108.2
C3—C4—H4B109.5N2—C21—H21B108.2
H4A—C4—H4B109.5H21A—C21—H21B107.4
C3—C4—H4C109.5C21—C22—C23110.5 (5)
H4A—C4—H4C109.5C21—C22—H22A109.6
H4B—C4—H4C109.5C23—C22—H22A109.6
C6—C5—N1115.7 (4)C21—C22—H22B109.6
C6—C5—H5A108.4C23—C22—H22B109.6
N1—C5—H5A108.4H22A—C22—H22B108.1
C6—C5—H5B108.4C24—C23—C22112.8 (7)
N1—C5—H5B108.4C24—C23—H23A109.0
H5A—C5—H5B107.4C22—C23—H23A109.0
C5—C6—C7110.5 (5)C24—C23—H23B109.0
C5—C6—H6A109.6C22—C23—H23B109.0
C7—C6—H6A109.6H23A—C23—H23B107.8
C5—C6—H6B109.6C23—C24—H24A109.5
C7—C6—H6B109.6C23—C24—H24B109.5
H6A—C6—H6B108.1H24A—C24—H24B109.5
C8—C7—C6111.0 (6)C23—C24—H24C109.5
C8—C7—H7A109.4H24A—C24—H24C109.5
C6—C7—H7A109.4H24B—C24—H24C109.5
C8—C7—H7B109.4C26—C25—N2116.1 (3)
C6—C7—H7B109.4C26—C25—H25A108.3
H7A—C7—H7B108.0N2—C25—H25A108.3
C7—C8—H8A109.5C26—C25—H25B108.3
C7—C8—H8B109.5N2—C25—H25B108.3
H8A—C8—H8B109.5H25A—C25—H25B107.4
C7—C8—H8C109.5C25—C26—C27111.1 (4)
H8A—C8—H8C109.5C25—C26—H26A109.4
H8B—C8—H8C109.5C27—C26—H26A109.4
C11—C9—C10110.2 (4)C25—C26—H26B109.4
C11—C9—H9A109.6C27—C26—H26B109.4
C10—C9—H9A109.6H26A—C26—H26B108.0
C11—C9—H9B109.6C28—C27—C26111.5 (4)
C10—C9—H9B109.6C28—C27—H27A109.3
H9A—C9—H9B108.1C26—C27—H27A109.3
C9—C10—N1117.2 (4)C28—C27—H27B109.3
C9—C10—H10A108.0C26—C27—H27B109.3
N1—C10—H10A108.0H27A—C27—H27B108.0
C9—C10—H10B108.0C27—C28—H28A109.5
N1—C10—H10B108.0C27—C28—H28B109.5
H10A—C10—H10B107.2H28A—C28—H28B109.5
C12—C11—C9113.7 (5)C27—C28—H28C109.5
C12—C11—H11A108.8H28A—C28—H28C109.5
C9—C11—H11A108.8H28B—C28—H28C109.5
C12—C11—H11B108.8N2—C29—H29A109.5
C9—C11—H11B108.8N2—C29—H29B109.5
H11A—C11—H11B107.7H29A—C29—H29B109.5
C11—C12—H12A109.5N2—C29—H29C109.5
C11—C12—H12B109.5H29A—C29—H29C109.5
H12A—C12—H12B109.5H29B—C29—H29C109.5
C13—N1—C1—C262.9 (5)N1—C13—C14—C15178.0 (4)
C5—N1—C1—C2176.7 (5)C13—C14—C15—C16175.6 (5)
C10—N1—C1—C255.9 (5)C29—N2—C17—C18174.5 (4)
N1—C1—C2—C3175.3 (5)C21—N2—C17—C1864.3 (5)
C1—C2—C3—C4171.8 (7)C25—N2—C17—C1856.4 (5)
C1—N1—C5—C6173.5 (4)N2—C17—C18—C19175.4 (4)
C13—N1—C5—C653.3 (5)C17—C18—C19—C20172.7 (5)
C10—N1—C5—C665.4 (5)C29—N2—C21—C2265.0 (5)
N1—C5—C6—C7171.2 (4)C17—N2—C21—C2254.7 (5)
C5—C6—C7—C8173.8 (5)C25—N2—C21—C22175.1 (4)
C11—C9—C10—N1175.1 (4)N2—C21—C22—C23173.5 (5)
C1—N1—C10—C958.9 (5)C21—C22—C23—C24177.1 (7)
C13—N1—C10—C9179.8 (4)C29—N2—C25—C2648.4 (5)
C5—N1—C10—C959.0 (5)C21—N2—C25—C2672.0 (5)
C10—C9—C11—C12177.2 (5)C17—N2—C25—C26165.5 (4)
C1—N1—C13—C1456.1 (5)N2—C25—C26—C27176.4 (3)
C5—N1—C13—C1461.3 (5)C25—C26—C27—C28178.3 (5)
C10—N1—C13—C14177.6 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z+1.
(III) Bis(tetrabutylammonium) dichloride dodecachlorohexasilane benzene disolvate top
Crystal data top
2C16H36N+·2Cl·Cl12Si6·2C6H6Dx = 1.322 Mg m3
Mr = 1305.97Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 57758 reflections
a = 15.4687 (4) Åθ = 1.8–26.7°
b = 18.5439 (5) ŵ = 0.73 mm1
c = 22.8784 (7) ÅT = 173 K
V = 6562.7 (3) Å3Block, colourless
Z = 40.20 × 0.18 × 0.15 mm
F(000) = 2736
Data collection top
Stoe IPDS II two-circle
diffractometer
5439 reflections with I > 2σ(I)
ω scansRint = 0.077
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
θmax = 26.2°, θmin = 1.9°
h = 1919
80026 measured reflectionsk = 2222
6554 independent reflectionsl = 2828
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.071P)2 + 6.5182P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
6554 reflectionsΔρmax = 0.80 e Å3
298 parametersΔρmin = 0.65 e Å3
Crystal data top
2C16H36N+·2Cl·Cl12Si6·2C6H6V = 6562.7 (3) Å3
Mr = 1305.97Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 15.4687 (4) ŵ = 0.73 mm1
b = 18.5439 (5) ÅT = 173 K
c = 22.8784 (7) Å0.20 × 0.18 × 0.15 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
6554 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
5439 reflections with I > 2σ(I)
Rint = 0.077
80026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.08Δρmax = 0.80 e Å3
6554 reflectionsΔρmin = 0.65 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57098 (5)0.57015 (4)0.53754 (4)0.0460 (2)
Si10.46847 (6)0.57957 (5)0.42612 (4)0.0461 (2)
Si20.37993 (6)0.57596 (5)0.50763 (4)0.0364 (2)
Si30.41146 (6)0.49536 (5)0.58214 (4)0.0439 (2)
Cl110.51169 (8)0.68479 (6)0.41618 (7)0.0905 (5)
Cl120.38966 (8)0.56708 (9)0.35290 (4)0.0856 (4)
Cl210.37059 (7)0.67897 (5)0.54255 (4)0.0563 (2)
Cl220.25360 (6)0.55793 (5)0.47953 (4)0.0508 (2)
Cl310.42110 (9)0.55539 (7)0.65884 (4)0.0774 (4)
Cl320.30481 (7)0.43083 (6)0.59782 (6)0.0775 (4)
N10.17777 (17)0.35475 (15)0.36163 (12)0.0433 (6)
C10.1084 (3)0.3518 (2)0.40847 (17)0.0558 (10)
H1A0.05320.36770.39070.067*
H1B0.10090.30080.42020.067*
C20.1229 (3)0.3958 (3)0.46311 (17)0.0664 (12)
H2A0.12780.44750.45300.080*
H2B0.17720.38060.48240.080*
C30.0468 (4)0.3841 (3)0.5041 (2)0.0763 (14)
H3A0.00720.39800.48370.092*
H3B0.04280.33220.51380.092*
C40.0543 (5)0.4268 (3)0.5596 (2)0.0947 (18)
H4A0.00380.41740.58430.142*
H4B0.10700.41250.58040.142*
H4C0.05700.47830.55030.142*
C50.2639 (2)0.32705 (19)0.38386 (16)0.0472 (8)
H5A0.28170.35740.41730.057*
H5B0.30740.33380.35260.057*
C60.2667 (3)0.2489 (2)0.4031 (2)0.0722 (13)
H6A0.25590.21700.36920.087*
H6B0.22110.23990.43260.087*
C70.3565 (3)0.2320 (3)0.4296 (2)0.0766 (14)
H7A0.36570.26290.46440.092*
H7B0.35760.18110.44280.092*
C80.4290 (4)0.2441 (3)0.3870 (3)0.0864 (16)
H8A0.48430.23270.40580.130*
H8B0.42090.21290.35290.130*
H8C0.42910.29470.37450.130*
C90.1939 (2)0.43164 (18)0.34194 (15)0.0446 (8)
H9A0.21940.45840.37520.053*
H9B0.23790.43050.31050.053*
C100.1170 (2)0.4739 (2)0.31991 (17)0.0510 (8)
H10A0.07450.48000.35190.061*
H10B0.08870.44710.28780.061*
C110.1461 (3)0.5473 (2)0.2981 (2)0.0670 (11)
H11A0.17370.57400.33060.080*
H11B0.18980.54070.26690.080*
C120.0718 (4)0.5916 (3)0.2743 (2)0.0809 (14)
H12A0.09350.63840.26080.121*
H12B0.04490.56590.24160.121*
H12C0.02880.59920.30520.121*
C130.1437 (2)0.3086 (2)0.31165 (16)0.0497 (8)
H13A0.13370.25930.32680.060*
H13B0.08690.32820.29960.060*
C140.2000 (3)0.3030 (3)0.25803 (19)0.0652 (11)
H14A0.25670.28240.26900.078*
H14B0.21000.35180.24180.078*
C150.1579 (4)0.2555 (3)0.2114 (2)0.0876 (16)
H15A0.09530.26650.21040.105*
H15B0.18220.26900.17290.105*
C160.1673 (7)0.1835 (4)0.2182 (4)0.154 (4)
H16A0.13810.15840.18610.231*
H16B0.22890.17130.21790.231*
H16C0.14180.16880.25550.231*
C210.8956 (3)0.4256 (4)0.2655 (3)0.0842 (16)
H210.90710.45690.23360.101*
C220.8545 (3)0.4506 (3)0.3136 (3)0.0852 (15)
H220.83640.49950.31500.102*
C230.8387 (3)0.4068 (3)0.3597 (2)0.0794 (14)
H230.81020.42530.39330.095*
C240.8634 (3)0.3366 (3)0.3581 (2)0.0790 (14)
H240.85260.30630.39080.095*
C250.9036 (3)0.3095 (3)0.3098 (3)0.0770 (14)
H250.91960.26010.30830.092*
C260.9207 (3)0.3545 (4)0.2631 (2)0.0822 (16)
H260.94960.33640.22960.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0436 (4)0.0356 (4)0.0588 (5)0.0027 (3)0.0099 (4)0.0098 (3)
Si10.0460 (5)0.0481 (5)0.0442 (5)0.0109 (4)0.0045 (4)0.0135 (4)
Si20.0386 (4)0.0326 (4)0.0379 (4)0.0016 (3)0.0030 (3)0.0003 (3)
Si30.0459 (5)0.0467 (5)0.0391 (5)0.0097 (4)0.0047 (4)0.0075 (4)
Cl110.0735 (7)0.0509 (6)0.1469 (13)0.0165 (5)0.0404 (8)0.0485 (7)
Cl120.0760 (7)0.1419 (12)0.0388 (5)0.0476 (8)0.0076 (5)0.0075 (6)
Cl210.0668 (6)0.0392 (4)0.0630 (6)0.0089 (4)0.0084 (5)0.0125 (4)
Cl220.0393 (4)0.0518 (5)0.0611 (5)0.0020 (4)0.0082 (4)0.0014 (4)
Cl310.0949 (8)0.1005 (9)0.0368 (5)0.0414 (7)0.0026 (5)0.0081 (5)
Cl320.0540 (6)0.0695 (7)0.1090 (9)0.0082 (5)0.0279 (6)0.0364 (6)
N10.0376 (14)0.0510 (16)0.0412 (15)0.0110 (12)0.0001 (12)0.0045 (12)
C10.053 (2)0.061 (2)0.054 (2)0.0230 (18)0.0136 (17)0.0062 (18)
C20.077 (3)0.076 (3)0.046 (2)0.026 (2)0.013 (2)0.0065 (19)
C30.102 (4)0.067 (3)0.061 (3)0.019 (3)0.033 (3)0.003 (2)
C40.127 (5)0.091 (4)0.065 (3)0.012 (3)0.032 (3)0.016 (3)
C50.0427 (19)0.051 (2)0.0482 (19)0.0131 (15)0.0052 (15)0.0048 (15)
C60.066 (3)0.063 (3)0.088 (3)0.018 (2)0.018 (2)0.029 (2)
C70.071 (3)0.068 (3)0.091 (3)0.014 (2)0.022 (3)0.030 (3)
C80.089 (4)0.072 (3)0.099 (4)0.012 (3)0.028 (3)0.002 (3)
C90.0442 (18)0.0485 (19)0.0410 (17)0.0087 (15)0.0028 (14)0.0020 (14)
C100.0484 (19)0.058 (2)0.0465 (19)0.0027 (17)0.0013 (16)0.0051 (16)
C110.069 (3)0.060 (2)0.071 (3)0.003 (2)0.007 (2)0.001 (2)
C120.094 (4)0.067 (3)0.081 (3)0.021 (3)0.012 (3)0.001 (2)
C130.0445 (18)0.050 (2)0.054 (2)0.0069 (16)0.0071 (16)0.0125 (17)
C140.059 (2)0.082 (3)0.055 (2)0.001 (2)0.0038 (19)0.022 (2)
C150.092 (4)0.097 (4)0.073 (3)0.022 (3)0.024 (3)0.037 (3)
C160.195 (9)0.089 (5)0.178 (9)0.004 (5)0.046 (7)0.040 (5)
C210.049 (2)0.114 (4)0.089 (4)0.014 (3)0.013 (2)0.030 (3)
C220.059 (3)0.078 (3)0.119 (5)0.006 (2)0.010 (3)0.004 (3)
C230.067 (3)0.101 (4)0.071 (3)0.010 (3)0.000 (2)0.012 (3)
C240.063 (3)0.105 (4)0.068 (3)0.003 (3)0.015 (2)0.016 (3)
C250.060 (3)0.074 (3)0.097 (4)0.014 (2)0.031 (3)0.007 (3)
C260.039 (2)0.141 (5)0.066 (3)0.009 (3)0.009 (2)0.022 (3)
Geometric parameters (Å, º) top
Si1—Cl112.0751 (15)C8—H8C0.9800
Si1—Cl122.0847 (15)C9—C101.511 (5)
Si1—Si22.3146 (13)C9—H9A0.9900
Si1—Si3i2.3272 (13)C9—H9B0.9900
Si2—Cl212.0756 (12)C10—C111.519 (6)
Si2—Cl222.0841 (12)C10—H10A0.9900
Si2—Si32.3192 (12)C10—H10B0.9900
Si3—Cl322.0693 (15)C11—C121.513 (6)
Si3—Cl312.0834 (15)C11—H11A0.9900
Si3—Si1i2.3272 (13)C11—H11B0.9900
N1—C51.516 (4)C12—H12A0.9800
N1—C91.516 (4)C12—H12B0.9800
N1—C11.518 (4)C12—H12C0.9800
N1—C131.523 (4)C13—C141.508 (6)
C1—C21.509 (5)C13—H13A0.9900
C1—H1A0.9900C13—H13B0.9900
C1—H1B0.9900C14—C151.530 (6)
C2—C31.520 (6)C14—H14A0.9900
C2—H2A0.9900C14—H14B0.9900
C2—H2B0.9900C15—C161.351 (9)
C3—C41.500 (7)C15—H15A0.9900
C3—H3A0.9900C15—H15B0.9900
C3—H3B0.9900C16—H16A0.9800
C4—H4A0.9800C16—H16B0.9800
C4—H4B0.9800C16—H16C0.9800
C4—H4C0.9800C21—C221.351 (8)
C5—C61.516 (5)C21—C261.376 (8)
C5—H5A0.9900C21—H210.9500
C5—H5B0.9900C22—C231.354 (8)
C6—C71.548 (6)C22—H220.9500
C6—H6A0.9900C23—C241.356 (8)
C6—H6B0.9900C23—H230.9500
C7—C81.503 (8)C24—C251.364 (8)
C7—H7A0.9900C24—H240.9500
C7—H7B0.9900C25—C261.380 (8)
C8—H8A0.9800C25—H250.9500
C8—H8B0.9800C26—H260.9500
Cl11—Si1—Cl12101.82 (8)C7—C8—H8C109.5
Cl11—Si1—Si2107.83 (6)H8A—C8—H8C109.5
Cl12—Si1—Si2107.35 (6)H8B—C8—H8C109.5
Cl11—Si1—Si3i107.18 (6)C10—C9—N1117.2 (3)
Cl12—Si1—Si3i109.58 (6)C10—C9—H9A108.0
Si2—Si1—Si3i121.36 (5)N1—C9—H9A108.0
Cl21—Si2—Cl22101.60 (5)C10—C9—H9B108.0
Cl21—Si2—Si1108.94 (5)N1—C9—H9B108.0
Cl22—Si2—Si1108.12 (5)H9A—C9—H9B107.2
Cl21—Si2—Si3108.96 (5)C9—C10—C11110.0 (3)
Cl22—Si2—Si3108.69 (5)C9—C10—H10A109.7
Si1—Si2—Si3119.11 (5)C11—C10—H10A109.7
Cl32—Si3—Cl31102.72 (7)C9—C10—H10B109.7
Cl32—Si3—Si2109.41 (6)C11—C10—H10B109.7
Cl31—Si3—Si2106.85 (6)H10A—C10—H10B108.2
Cl32—Si3—Si1i107.77 (6)C12—C11—C10112.3 (4)
Cl31—Si3—Si1i109.29 (6)C12—C11—H11A109.1
Si2—Si3—Si1i119.53 (5)C10—C11—H11A109.1
C5—N1—C9105.9 (2)C12—C11—H11B109.1
C5—N1—C1111.9 (3)C10—C11—H11B109.1
C9—N1—C1111.1 (3)H11A—C11—H11B107.9
C5—N1—C13111.5 (3)C11—C12—H12A109.5
C9—N1—C13111.3 (3)C11—C12—H12B109.5
C1—N1—C13105.4 (3)H12A—C12—H12B109.5
C2—C1—N1117.4 (3)C11—C12—H12C109.5
C2—C1—H1A108.0H12A—C12—H12C109.5
N1—C1—H1A108.0H12B—C12—H12C109.5
C2—C1—H1B108.0C14—C13—N1116.7 (3)
N1—C1—H1B108.0C14—C13—H13A108.1
H1A—C1—H1B107.2N1—C13—H13A108.1
C1—C2—C3108.6 (4)C14—C13—H13B108.1
C1—C2—H2A110.0N1—C13—H13B108.1
C3—C2—H2A110.0H13A—C13—H13B107.3
C1—C2—H2B110.0C13—C14—C15111.2 (4)
C3—C2—H2B110.0C13—C14—H14A109.4
H2A—C2—H2B108.4C15—C14—H14A109.4
C4—C3—C2112.8 (4)C13—C14—H14B109.4
C4—C3—H3A109.0C15—C14—H14B109.4
C2—C3—H3A109.0H14A—C14—H14B108.0
C4—C3—H3B109.0C16—C15—C14116.3 (6)
C2—C3—H3B109.0C16—C15—H15A108.2
H3A—C3—H3B107.8C14—C15—H15A108.2
C3—C4—H4A109.5C16—C15—H15B108.2
C3—C4—H4B109.5C14—C15—H15B108.2
H4A—C4—H4B109.5H15A—C15—H15B107.4
C3—C4—H4C109.5C15—C16—H16A109.5
H4A—C4—H4C109.5C15—C16—H16B109.5
H4B—C4—H4C109.5H16A—C16—H16B109.5
N1—C5—C6116.5 (3)C15—C16—H16C109.5
N1—C5—H5A108.2H16A—C16—H16C109.5
C6—C5—H5A108.2H16B—C16—H16C109.5
N1—C5—H5B108.2C22—C21—C26119.6 (5)
C6—C5—H5B108.2C22—C21—H21120.2
H5A—C5—H5B107.3C26—C21—H21120.2
C5—C6—C7109.4 (3)C21—C22—C23120.9 (5)
C5—C6—H6A109.8C21—C22—H22119.6
C7—C6—H6A109.8C23—C22—H22119.6
C5—C6—H6B109.8C22—C23—C24120.2 (5)
C7—C6—H6B109.8C22—C23—H23119.9
H6A—C6—H6B108.2C24—C23—H23119.9
C8—C7—C6112.6 (4)C23—C24—C25120.2 (5)
C8—C7—H7A109.1C23—C24—H24119.9
C6—C7—H7A109.1C25—C24—H24119.9
C8—C7—H7B109.1C24—C25—C26119.5 (5)
C6—C7—H7B109.1C24—C25—H25120.3
H7A—C7—H7B107.8C26—C25—H25120.3
C7—C8—H8A109.5C21—C26—C25119.6 (5)
C7—C8—H8B109.5C21—C26—H26120.2
H8A—C8—H8B109.5C25—C26—H26120.2
C5—N1—C1—C261.2 (5)N1—C9—C10—C11175.9 (3)
C9—N1—C1—C256.9 (5)C9—C10—C11—C12178.9 (4)
C13—N1—C1—C2177.5 (4)C5—N1—C13—C1459.5 (4)
N1—C1—C2—C3179.2 (4)C9—N1—C13—C1458.5 (4)
C1—C2—C3—C4179.0 (5)C1—N1—C13—C14179.0 (4)
C9—N1—C5—C6176.5 (3)N1—C13—C14—C15179.8 (4)
C1—N1—C5—C662.3 (4)C13—C14—C15—C1681.5 (8)
C13—N1—C5—C655.4 (4)C26—C21—C22—C230.9 (8)
N1—C5—C6—C7174.8 (4)C21—C22—C23—C240.6 (8)
C5—C6—C7—C859.8 (6)C22—C23—C24—C250.6 (8)
C5—N1—C9—C10177.4 (3)C23—C24—C25—C261.5 (7)
C1—N1—C9—C1055.7 (4)C22—C21—C26—C250.0 (7)
C13—N1—C9—C1061.3 (4)C24—C25—C26—C211.2 (7)
Symmetry code: (i) x+1, y+1, z+1.
(IV) Bis(benzyltriphenylphosphonium) dichloride dodecachlorohexasilane top
Crystal data top
2C25H22P+·2Cl·Cl12Si6Z = 1
Mr = 1371.64F(000) = 696
Triclinic, P1Dx = 1.520 Mg m3
a = 11.0097 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7082 (18) ÅCell parameters from 10444 reflections
c = 13.0269 (18) Åθ = 3.3–26.0°
α = 61.618 (10)°µ = 0.85 mm1
β = 72.804 (11)°T = 173 K
γ = 71.605 (11)°Block, colourless
V = 1498.3 (4) Å30.20 × 0.10 × 0.10 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3338 reflections with I > 2σ(I)
ω scansRint = 0.071
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
θmax = 26.2°, θmin = 3.3°
h = 1313
12339 measured reflectionsk = 1512
5906 independent reflectionsl = 1616
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0697P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5906 reflectionsΔρmax = 0.64 e Å3
328 parametersΔρmin = 0.35 e Å3
Crystal data top
2C25H22P+·2Cl·Cl12Si6γ = 71.605 (11)°
Mr = 1371.64V = 1498.3 (4) Å3
Triclinic, P1Z = 1
a = 11.0097 (17) ÅMo Kα radiation
b = 12.7082 (18) ŵ = 0.85 mm1
c = 13.0269 (18) ÅT = 173 K
α = 61.618 (10)°0.20 × 0.10 × 0.10 mm
β = 72.804 (11)°
Data collection top
Stoe IPDS II two-circle
diffractometer
5906 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
3338 reflections with I > 2σ(I)
Rint = 0.071
12339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0711 restraint
wR(F2) = 0.165H-atom parameters constrained
S = 1.00Δρmax = 0.64 e Å3
5906 reflectionsΔρmin = 0.35 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.64801 (14)0.89235 (12)0.04341 (12)0.0493 (4)
Si10.59281 (16)0.96447 (14)0.15446 (14)0.0443 (4)
Si20.45368 (17)0.84461 (14)0.18314 (14)0.0465 (4)
Si30.36905 (17)0.87192 (15)0.02644 (14)0.0484 (4)
Cl110.76863 (17)0.85127 (15)0.20446 (16)0.0662 (5)
Cl120.52054 (15)1.03489 (13)0.28126 (12)0.0511 (4)
Cl210.5505 (2)0.66318 (13)0.25723 (15)0.0676 (5)
Cl220.30171 (17)0.85440 (14)0.31973 (13)0.0598 (4)
Cl310.16870 (18)0.88910 (18)0.07583 (15)0.0731 (5)
Cl320.42928 (19)0.71247 (13)0.00173 (14)0.0634 (5)
P10.8445 (3)0.6830 (2)0.6904 (2)0.0394 (10)0.567 (5)
C10.8358 (10)0.8364 (8)0.6619 (9)0.043 (2)*0.567 (5)
H1A0.81250.89060.58240.052*0.567 (5)
H1B0.76410.85770.72020.052*0.567 (5)
C110.9593 (10)0.8645 (9)0.6666 (8)0.036 (2)*0.567 (5)
C120.9716 (13)0.8778 (11)0.7657 (12)0.037 (3)*0.567 (5)
H120.90570.85860.83410.045*0.567 (5)
C131.0735 (12)0.9168 (11)0.7670 (11)0.045 (3)*0.567 (5)
H131.07220.94040.82650.054*0.567 (5)
C141.1842 (15)0.9198 (14)0.6712 (13)0.060 (4)*0.567 (5)
H141.26190.93720.67150.072*0.567 (5)
C151.1757 (11)0.8981 (9)0.5829 (10)0.045 (2)*0.567 (5)
H151.24800.90280.52030.054*0.567 (5)
C161.0684 (10)0.8694 (9)0.5778 (9)0.045 (2)*0.567 (5)
H161.06830.85280.51400.054*0.567 (5)
P1'0.9289 (4)0.7062 (3)0.6925 (3)0.0409 (13)0.433 (5)
C1'0.7663 (12)0.7911 (10)0.6601 (12)0.046 (3)*0.433 (5)
H1'10.71970.82400.71980.055*0.433 (5)
H1'20.77380.86110.58140.055*0.433 (5)
C11'1.0185 (13)0.8020 (11)0.6923 (10)0.036 (3)*0.433 (5)
C12'1.1420 (12)0.8082 (11)0.6295 (11)0.041 (3)*0.433 (5)
H12'1.17970.76290.58310.049*0.433 (5)
C13'1.2124 (14)0.8783 (12)0.6320 (13)0.040 (3)*0.433 (5)
H13'1.29930.87910.59060.048*0.433 (5)
C14'1.1560 (17)0.9461 (14)0.6943 (14)0.045 (4)*0.433 (5)
H14'1.20550.99100.70100.055*0.433 (5)
C15'1.0292 (17)0.9511 (15)0.7475 (14)0.053 (4)*0.433 (5)
H15'0.99470.99870.79200.063*0.433 (5)
C16'0.949 (2)0.8940 (16)0.7422 (16)0.049 (6)*0.433 (5)
H16'0.85760.91020.76740.059*0.433 (5)
C210.8779 (7)0.5787 (5)0.8374 (5)0.0590 (17)
C220.9073 (7)0.4586 (6)0.8580 (6)0.0645 (18)
H220.94060.43480.79430.077*
C230.8877 (9)0.3724 (7)0.9734 (8)0.092 (3)
H230.90930.28800.98990.111*
C240.8373 (8)0.4077 (8)1.0644 (7)0.096 (3)
H240.82240.34761.14350.115*
C250.8090 (6)0.5249 (7)1.0434 (5)0.0610 (17)
H250.77460.54771.10770.073*
C260.8287 (7)0.6125 (6)0.9312 (6)0.0607 (17)
H260.80900.69620.91690.073*
C310.9946 (8)0.6421 (6)0.5878 (6)0.0655 (19)
C320.9745 (8)0.6873 (7)0.4735 (6)0.085 (3)
H320.89410.74020.45230.103*
C331.0676 (7)0.6575 (6)0.3903 (6)0.0620 (17)
H331.05280.69050.31150.074*
C341.1798 (9)0.5818 (8)0.4201 (8)0.083 (2)
H341.24430.55920.36300.099*
C351.2017 (9)0.5373 (9)0.5316 (10)0.107 (3)
H351.28220.48420.55190.129*
C361.1100 (9)0.5675 (7)0.6155 (7)0.075 (2)
H361.12720.53620.69330.090*
C410.6864 (7)0.7089 (9)0.6613 (6)0.086 (3)
C420.6194 (8)0.6194 (9)0.7552 (6)0.093 (3)
H420.64860.57500.82920.112*
C430.5151 (7)0.5955 (5)0.7421 (6)0.0616 (17)
H430.46900.53780.80710.074*
C440.4777 (8)0.6539 (7)0.6366 (7)0.083 (2)
H440.40630.63550.62610.100*
C450.5405 (8)0.7400 (7)0.5435 (7)0.081 (2)
H450.51260.78090.46900.097*
C460.6430 (6)0.7672 (5)0.5574 (6)0.0556 (16)
H460.68470.82850.49250.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0527 (9)0.0458 (8)0.0506 (8)0.0172 (7)0.0130 (7)0.0296 (7)
Si10.0450 (10)0.0424 (8)0.0452 (9)0.0159 (7)0.0061 (7)0.0220 (7)
Si20.0582 (11)0.0421 (8)0.0419 (8)0.0235 (7)0.0095 (8)0.0221 (7)
Si30.0575 (11)0.0487 (9)0.0430 (9)0.0291 (8)0.0118 (8)0.0230 (7)
Cl110.0511 (10)0.0666 (10)0.0723 (11)0.0056 (8)0.0102 (9)0.0270 (9)
Cl120.0564 (10)0.0571 (9)0.0481 (8)0.0197 (7)0.0004 (7)0.0293 (7)
Cl210.0991 (14)0.0414 (8)0.0602 (9)0.0182 (8)0.0130 (9)0.0181 (7)
Cl220.0682 (11)0.0702 (10)0.0466 (8)0.0387 (8)0.0182 (8)0.0303 (8)
Cl310.0596 (11)0.0998 (13)0.0628 (10)0.0442 (10)0.0142 (9)0.0339 (10)
Cl320.0963 (13)0.0469 (8)0.0570 (9)0.0342 (8)0.0016 (9)0.0246 (7)
P10.043 (2)0.0337 (13)0.0424 (15)0.0116 (11)0.0035 (12)0.0166 (11)
P1'0.040 (3)0.0433 (19)0.047 (2)0.0137 (16)0.0031 (16)0.0279 (16)
C210.084 (5)0.044 (3)0.047 (3)0.009 (3)0.006 (3)0.024 (3)
C220.076 (5)0.061 (4)0.076 (5)0.018 (4)0.018 (4)0.039 (4)
C230.111 (7)0.048 (4)0.096 (6)0.031 (4)0.007 (6)0.018 (4)
C240.084 (6)0.068 (5)0.070 (5)0.013 (4)0.022 (5)0.001 (4)
C250.049 (4)0.082 (5)0.044 (4)0.020 (3)0.005 (3)0.025 (4)
C260.073 (5)0.049 (3)0.061 (4)0.020 (3)0.007 (4)0.030 (3)
C310.090 (6)0.045 (3)0.053 (4)0.001 (4)0.009 (4)0.025 (3)
C320.073 (5)0.092 (6)0.053 (4)0.010 (4)0.004 (4)0.025 (4)
C330.063 (5)0.072 (4)0.060 (4)0.022 (4)0.005 (4)0.039 (4)
C340.078 (6)0.078 (5)0.082 (6)0.027 (5)0.032 (5)0.046 (5)
C350.050 (5)0.109 (7)0.122 (9)0.016 (5)0.003 (6)0.027 (6)
C360.082 (6)0.079 (5)0.075 (5)0.033 (4)0.027 (5)0.023 (4)
C410.051 (5)0.174 (9)0.051 (4)0.050 (5)0.013 (4)0.057 (5)
C420.048 (5)0.166 (9)0.043 (4)0.013 (5)0.003 (4)0.035 (5)
C430.057 (4)0.043 (3)0.064 (4)0.003 (3)0.008 (4)0.013 (3)
C440.096 (6)0.086 (5)0.086 (5)0.058 (5)0.026 (5)0.021 (5)
C450.068 (5)0.093 (6)0.062 (4)0.033 (4)0.028 (4)0.002 (4)
C460.048 (4)0.049 (3)0.061 (4)0.017 (3)0.000 (3)0.017 (3)
Geometric parameters (Å, º) top
Si1—Cl112.083 (2)C13'—H13'0.9500
Si1—Cl122.084 (2)C14'—C15'1.36 (2)
Si1—Si3i2.315 (2)C14'—H14'0.9500
Si1—Si22.324 (2)C15'—C16'1.34 (2)
Si2—Cl222.074 (2)C15'—H15'0.9500
Si2—Cl212.080 (2)C16'—H16'0.9500
Si2—Si32.324 (2)C21—C221.363 (8)
Si3—Cl322.072 (2)C21—C261.390 (8)
Si3—Cl312.078 (3)C22—C231.378 (10)
Si3—Si1i2.315 (2)C22—H220.9500
P1—C11.777 (10)C23—C241.369 (12)
P1—C411.787 (8)C23—H230.9500
P1—C211.804 (7)C24—C251.327 (10)
P1—C311.898 (7)C24—H240.9500
C1—C111.536 (13)C25—C261.357 (9)
C1—H1A0.9900C25—H250.9500
C1—H1B0.9900C26—H260.9500
C11—C161.393 (13)C31—C361.352 (10)
C11—C121.427 (15)C31—C321.377 (10)
C12—C131.370 (18)C32—C331.363 (9)
C12—H120.9500C32—H320.9500
C13—C141.46 (2)C33—C341.335 (11)
C13—H130.9500C33—H330.9500
C14—C151.339 (19)C34—C351.352 (12)
C14—H140.9500C34—H340.9500
C15—C161.369 (15)C35—C361.365 (12)
C15—H150.9500C35—H350.9500
C16—H160.9500C36—H360.9500
P1'—C311.774 (7)C41—C461.347 (9)
P1'—C1'1.829 (13)C41—C421.417 (11)
P1'—C11'1.792 (12)C42—C431.351 (11)
P1'—C211.883 (7)C42—H420.9500
C1'—C411.556 (5)C43—C441.334 (10)
C1'—H1'10.9900C43—H430.9500
C1'—H1'20.9900C44—C451.366 (10)
C11'—C12'1.368 (17)C44—H440.9500
C11'—C16'1.50 (2)C45—C461.360 (9)
C12'—C13'1.368 (19)C45—H450.9500
C12'—H12'0.9500C46—H460.9500
C13'—C14'1.35 (2)
Cl11—Si1—Cl12102.03 (10)C13'—C14'—C15'120.8 (14)
Cl11—Si1—Si3i109.96 (10)C13'—C14'—H14'119.6
Cl12—Si1—Si3i106.62 (8)C15'—C14'—H14'119.6
Cl11—Si1—Si2108.98 (9)C16'—C15'—C14'125.0 (16)
Cl12—Si1—Si2107.43 (9)C16'—C15'—H15'117.5
Si3i—Si1—Si2120.23 (9)C14'—C15'—H15'117.5
Cl22—Si2—Cl21102.09 (10)C15'—C16'—C11'113.0 (16)
Cl22—Si2—Si1108.46 (8)C15'—C16'—H16'123.5
Cl21—Si2—Si1107.01 (10)C11'—C16'—H16'123.5
Cl22—Si2—Si3108.85 (10)C22—C21—C26120.4 (6)
Cl21—Si2—Si3107.85 (9)C22—C21—P1113.9 (5)
Si1—Si2—Si3120.95 (8)C26—C21—P1121.1 (5)
Cl32—Si3—Cl31103.06 (10)C22—C21—P1'124.7 (5)
Cl32—Si3—Si1i108.97 (9)C26—C21—P1'113.8 (4)
Cl31—Si3—Si1i106.90 (10)C21—C22—C23118.4 (7)
Cl32—Si3—Si2109.48 (10)C21—C22—H22120.8
Cl31—Si3—Si2108.85 (9)C23—C22—H22120.8
Si1i—Si3—Si2118.47 (8)C24—C23—C22120.3 (7)
C1—P1—C4196.1 (4)C24—C23—H23119.8
C1—P1—C21111.0 (4)C22—C23—H23119.8
C41—P1—C21118.2 (4)C25—C24—C23120.7 (7)
C1—P1—C31106.1 (4)C25—C24—H24119.6
C41—P1—C31120.0 (4)C23—C24—H24119.6
C21—P1—C31104.4 (3)C24—C25—C26120.8 (7)
C11—C1—P1116.3 (7)C24—C25—H25119.6
C11—C1—H1A108.2C26—C25—H25119.6
P1—C1—H1A108.2C25—C26—C21119.4 (6)
C11—C1—H1B108.2C25—C26—H26120.3
P1—C1—H1B108.2C21—C26—H26120.3
H1A—C1—H1B107.4C36—C31—C32118.3 (7)
C16—C11—C12116.8 (9)C36—C31—P1'106.8 (6)
C16—C11—C1121.2 (8)C32—C31—P1'129.8 (6)
C12—C11—C1121.8 (9)C36—C31—P1128.4 (6)
C13—C12—C11123.3 (11)C32—C31—P1113.0 (6)
C13—C12—H12118.4C33—C32—C31121.2 (7)
C11—C12—H12118.4C33—C32—H32119.4
C12—C13—C14115.7 (11)C31—C32—H32119.4
C12—C13—H13122.1C34—C33—C32119.6 (7)
C14—C13—H13122.1C34—C33—H33120.2
C15—C14—C13119.7 (13)C32—C33—H33120.2
C15—C14—H14120.2C33—C34—C35119.9 (8)
C13—C14—H14120.2C33—C34—H34120.0
C14—C15—C16123.5 (11)C35—C34—H34120.0
C14—C15—H15118.2C34—C35—C36121.1 (8)
C16—C15—H15118.2C34—C35—H35119.4
C15—C16—C11119.8 (9)C36—C35—H35119.4
C15—C16—H16120.1C31—C36—C35119.8 (8)
C11—C16—H16120.1C31—C36—H36120.1
C31—P1'—C1'104.2 (5)C35—C36—H36120.1
C31—P1'—C11'116.9 (5)C46—C41—C42116.8 (6)
C1'—P1'—C11'110.9 (5)C46—C41—C1'106.8 (8)
C31—P1'—C21106.3 (3)C42—C41—C1'132.1 (8)
C1'—P1'—C2197.5 (5)C46—C41—P1129.7 (5)
C11'—P1'—C21118.4 (5)C42—C41—P1109.5 (6)
C41—C1'—P1'111.7 (7)C43—C42—C41121.6 (7)
C41—C1'—H1'1109.3C43—C42—H42119.2
P1'—C1'—H1'1109.3C41—C42—H42119.2
C41—C1'—H1'2109.3C44—C43—C42119.1 (7)
P1'—C1'—H1'2109.3C44—C43—H43120.4
H1'1—C1'—H1'2107.9C42—C43—H43120.4
C12'—C11'—C16'118.6 (12)C43—C44—C45121.0 (7)
C12'—C11'—P1'121.3 (9)C43—C44—H44119.5
C16'—C11'—P1'119.1 (11)C45—C44—H44119.5
C13'—C12'—C11'121.6 (12)C46—C45—C44120.1 (7)
C13'—C12'—H12'119.2C46—C45—H45120.0
C11'—C12'—H12'119.2C44—C45—H45120.0
C14'—C13'—C12'118.7 (13)C41—C46—C45121.3 (6)
C14'—C13'—H13'120.7C41—C46—H46119.4
C12'—C13'—H13'120.7C45—C46—H46119.4
C41—P1—C1—C11175.5 (7)C22—C23—C24—C251.4 (15)
C21—P1—C1—C1161.1 (8)C23—C24—C25—C260.4 (14)
C31—P1—C1—C1151.8 (8)C24—C25—C26—C210.6 (12)
P1—C1—C11—C1672.2 (11)C22—C21—C26—C250.6 (11)
P1—C1—C11—C12103.0 (11)P1—C21—C26—C25153.8 (6)
C16—C11—C12—C1312.5 (17)P1'—C21—C26—C25169.0 (6)
C1—C11—C12—C13172.1 (11)C1'—P1'—C31—C36173.7 (6)
C11—C12—C13—C1412.5 (18)C11'—P1'—C31—C3663.5 (8)
C12—C13—C14—C157.0 (19)C21—P1'—C31—C3671.3 (6)
C13—C14—C15—C162 (2)C1'—P1'—C31—C3232.7 (10)
C14—C15—C16—C111.6 (18)C11'—P1'—C31—C3290.1 (10)
C12—C11—C16—C156.4 (15)C21—P1'—C31—C32135.1 (8)
C1—C11—C16—C15178.2 (9)C1—P1—C31—C36106.9 (7)
C31—P1'—C1'—C4154.0 (9)C41—P1—C31—C36145.9 (7)
C11'—P1'—C1'—C41179.4 (7)C21—P1—C31—C3610.5 (8)
C21—P1'—C1'—C4155.0 (8)C1—P1—C31—C3279.6 (7)
C31—P1'—C11'—C12'11.1 (12)C41—P1—C31—C3227.6 (7)
C1'—P1'—C11'—C12'130.4 (11)C21—P1—C31—C32163.0 (6)
C21—P1'—C11'—C12'118.2 (10)C36—C31—C32—C330.3 (12)
C31—P1'—C11'—C16'157.2 (11)P1'—C31—C32—C33151.5 (7)
C1'—P1'—C11'—C16'37.9 (13)P1—C31—C32—C33173.9 (6)
C21—P1'—C11'—C16'73.6 (13)C31—C32—C33—C341.0 (12)
C16'—C11'—C12'—C13'14 (2)C32—C33—C34—C351.5 (12)
P1'—C11'—C12'—C13'177.9 (10)C33—C34—C35—C360.7 (13)
C11'—C12'—C13'—C14'3 (2)C32—C31—C36—C351.2 (12)
C12'—C13'—C14'—C15'4 (2)P1'—C31—C36—C35158.4 (7)
C13'—C14'—C15'—C16'1 (3)P1—C31—C36—C35172.0 (7)
C14'—C15'—C16'—C11'12 (3)C34—C35—C36—C310.7 (13)
C12'—C11'—C16'—C15'18 (2)P1'—C1'—C41—C46126.9 (8)
P1'—C11'—C16'—C15'173.8 (12)P1'—C1'—C41—C4278.0 (13)
C1—P1—C21—C22169.6 (6)C1—P1—C41—C4672.7 (9)
C41—P1—C21—C2280.8 (7)C21—P1—C41—C46169.4 (7)
C31—P1—C21—C2255.7 (7)C31—P1—C41—C4639.8 (10)
C1—P1—C21—C2634.5 (8)C1—P1—C41—C42131.0 (7)
C41—P1—C21—C2675.1 (7)C21—P1—C41—C4213.2 (8)
C31—P1—C21—C26148.4 (6)C31—P1—C41—C42116.4 (6)
C31—P1'—C21—C229.7 (8)C46—C41—C42—C431.5 (13)
C1'—P1'—C21—C22117.0 (7)C1'—C41—C42—C43151.7 (10)
C11'—P1'—C21—C22124.3 (8)P1—C41—C42—C43161.2 (7)
C31—P1'—C21—C26177.5 (6)C41—C42—C43—C442.9 (13)
C1'—P1'—C21—C2675.2 (6)C42—C43—C44—C452.2 (13)
C11'—P1'—C21—C2643.5 (8)C43—C44—C45—C460.1 (14)
C26—C21—C22—C230.3 (11)C42—C41—C46—C450.7 (12)
P1—C21—C22—C23156.4 (7)C1'—C41—C46—C45160.2 (8)
P1'—C21—C22—C23166.7 (7)P1—C41—C46—C45154.2 (7)
C21—C22—C23—C241.3 (13)C44—C45—C46—C411.4 (13)
Symmetry code: (i) x+1, y+2, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula2C8H20N+·2Cl·Cl12Si6C16H36N+·C13H30N+·2Cl·Cl12Si62C16H36N+·2Cl·Cl12Si6·2C6H62C25H22P+·2Cl·Cl12Si6
Mr925.341107.671305.971371.64
Crystal system, space groupOrthorhombic, PccnTriclinic, P1Orthorhombic, PbcaTriclinic, P1
Temperature (K)173173173173
a, b, c (Å)13.6864 (5), 20.6309 (9), 14.1328 (8)11.1071 (9), 14.3992 (12), 16.7434 (12)15.4687 (4), 18.5439 (5), 22.8784 (7)11.0097 (17), 12.7082 (18), 13.0269 (18)
α, β, γ (°)90, 90, 9089.672 (6), 88.689 (6), 89.854 (6)90, 90, 9061.618 (10), 72.804 (11), 71.605 (11)
V3)3990.6 (3)2677.1 (4)6562.7 (3)1498.3 (4)
Z4241
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.160.880.730.85
Crystal size (mm)0.26 × 0.03 × 0.030.15 × 0.13 × 0.040.20 × 0.18 × 0.150.20 × 0.10 × 0.10
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
No. of measured, independent and
observed [I > 2σ(I)] reflections
42017, 3747, 3004 32914, 10052, 6918 80026, 6554, 5439 12339, 5906, 3338
Rint0.1050.0710.0770.071
(sin θ/λ)max1)0.6090.6100.6210.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.070, 1.02 0.053, 0.134, 0.97 0.058, 0.150, 1.08 0.071, 0.165, 1.00
No. of reflections37471005265545906
No. of parameters172460298328
No. of restraints0001
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.241.00, 0.370.80, 0.650.64, 0.35

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Geometric parameters (Å, °) of dichloride dodecachlorohexasilane fragments top
Structurer.m.s. deviation of Si6 ringSi—Si (ave)Si—Cl (ave)Cl···CgSi···Cl (ave)
(I)0.0072.321 (3)2.079 (8)1.8672.98 (3)
(IIa)a0.0472.326 (7)2.077 (9)1.8943.00 (6)
(IIb)a0.0152.321 (5)2.079 (6)1.9143.01 (2)
(III)0.0022.320 (6)2.079 (6)1.9073.00 (2)
(IV)0.0412.321 (5)2.079 (5)1.9053.00 (3)
LECXIC0.0072.322 (4)2.075 (4)1.9303.02 (2)
NENLOH0.0312.320 (6)2.078 (8)1.904b3.00 (3)
Notes: (a) (IIa) and (IIb) refer to the two molecules in the asymmetric unit; (b) mean value of the two symmetry-independent distances.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds