Download citation
Download citation
link to html
The title compound, [Pb(C4H3N2S)2]n, was prepared by the reaction of [Pb(OAc)2]·3H2O (OAc is acetate) with pyrimidine-2-thione in the presence of tri­ethyl­amine in methanol. In the crystal structure, the PbII atom has an N4S4 coordination environment with four ligands coordinated by N- and S-donor atoms. This compound shows that the pyrimidine-2-thiol­ate anion can lead to a three-dimensional network when the coordination number of the metal ion can be higher than 6, as is the case with the PbII ion. This compound presents only covalent bonds, showing that despite the possibility of the hemidirected geometries of PbII, the eight-coordinated ion does not allow the formation of an isolated mol­ecular structure with pyrimidine-2-thiol­ate as the ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615010359/sk3588sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615010359/sk3588Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229615010359/sk3588sup3.pdf
Supplementary material

CCDC reference: 1403855

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Poly[bis(µ2-pyrimidine-2-thiolato-κ4N1,S:S,N3)lead(II)] top
Crystal data top
[Pb(C4H3N2S)2]F(000) = 784
Mr = 429.48Dx = 2.618 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2815 reflections
a = 7.6296 (3) Åθ = 2.9–29.4°
b = 7.8839 (3) ŵ = 15.84 mm1
c = 18.1151 (8) ÅT = 296 K
V = 1089.64 (8) Å3Block, yellow
Z = 40.17 × 0.08 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 29.7°, θmin = 2.3°
Absorption correction: gaussian
(XPREP and SADABS; Bruker, 2008)
h = 1010
Tmin = 0.882, Tmax = 1.000k = 410
6643 measured reflectionsl = 2425
2998 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.5627P]
where P = (Fo2 + 2Fc2)/3
S = 0.69(Δ/σ)max = 0.001
2998 reflectionsΔρmax = 0.67 e Å3
136 parametersΔρmin = 0.66 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1808 Friedel pairs
0 constraintsAbsolute structure parameter: 0.000 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Absorption correction: XPREP (Bruker, 2008) was used to perform the numeric absorption correction based onthe face-index crystal size. SADABS (Bruker, 2008) performed additional data scaling and corrections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.45126 (2)0.27672 (2)0.873479 (9)0.02505 (5)
S10.4556 (2)0.58450 (16)0.76287 (7)0.0331 (3)
S20.6556 (2)0.30154 (15)1.01441 (7)0.0369 (3)
N10.7368 (7)0.4339 (6)0.8168 (2)0.0364 (10)
N20.7568 (7)0.5361 (6)0.6946 (3)0.0399 (11)
N30.7376 (7)0.0152 (6)1.0499 (2)0.0392 (11)
N40.6244 (7)0.0309 (5)0.9300 (2)0.0349 (10)
C10.6693 (7)0.5123 (6)0.7578 (3)0.0286 (10)
C20.9030 (8)0.3824 (9)0.8128 (4)0.0517 (17)
H20.95370.33070.85370.062*
C31.0002 (8)0.4030 (10)0.7509 (4)0.0599 (19)
H31.11590.36630.74850.072*
C40.9207 (8)0.4804 (9)0.6919 (4)0.0537 (17)
H40.98410.49440.64850.064*
C50.6754 (7)0.0875 (6)0.9967 (3)0.0304 (11)
C60.7543 (9)0.1799 (7)1.0328 (4)0.0490 (16)
H60.79650.25391.06860.059*
C70.7117 (9)0.2433 (7)0.9647 (4)0.0536 (17)
H70.7270.35750.95340.064*
C80.6458 (10)0.1319 (7)0.9139 (3)0.0451 (14)
H80.61530.17110.86720.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02997 (8)0.02707 (7)0.01812 (7)0.00061 (7)0.00028 (8)0.00074 (6)
S10.0345 (6)0.0378 (6)0.0270 (6)0.0044 (7)0.0027 (7)0.0065 (5)
S20.0526 (8)0.0288 (6)0.0293 (6)0.0003 (6)0.0099 (6)0.0032 (5)
N10.037 (2)0.047 (3)0.026 (2)0.006 (2)0.011 (2)0.0091 (19)
N20.038 (3)0.049 (3)0.033 (2)0.006 (2)0.007 (2)0.013 (2)
N30.051 (3)0.032 (2)0.034 (2)0.001 (2)0.018 (2)0.0072 (19)
N40.046 (3)0.032 (2)0.027 (2)0.004 (2)0.005 (2)0.0033 (17)
C10.032 (2)0.028 (2)0.026 (2)0.002 (2)0.003 (2)0.0022 (19)
C20.044 (4)0.057 (4)0.054 (4)0.003 (3)0.016 (3)0.015 (3)
C30.029 (3)0.078 (5)0.073 (5)0.007 (3)0.003 (3)0.026 (4)
C40.039 (4)0.061 (4)0.061 (4)0.004 (3)0.015 (3)0.014 (3)
C50.030 (3)0.031 (2)0.031 (3)0.005 (2)0.002 (2)0.000 (2)
C60.045 (3)0.033 (3)0.070 (4)0.001 (3)0.014 (3)0.018 (3)
C70.062 (4)0.026 (3)0.073 (4)0.002 (3)0.006 (4)0.004 (3)
C80.061 (4)0.037 (3)0.037 (3)0.002 (3)0.008 (3)0.006 (2)
Geometric parameters (Å, º) top
Pb1—N12.709 (5)N2—Pb1iii2.764 (5)
Pb1—N2i2.764 (5)N3—C61.340 (7)
Pb1—N42.559 (5)N3—C51.345 (6)
Pb1—N3ii2.849 (5)N4—C81.327 (7)
Pb1—S13.1471 (12)N4—C51.345 (6)
Pb1—S22.9976 (13)C2—C31.353 (10)
Pb1—S1i2.9836 (12)C2—H20.93
Pb1—S2ii3.0976 (14)C3—C41.372 (9)
S1—C11.730 (5)C3—H30.93
S1—Pb1iii2.9837 (12)C4—H40.93
S2—C51.724 (5)C6—C71.371 (9)
S2—Pb1iv3.0975 (14)C6—H60.93
N1—C21.334 (8)C7—C81.367 (8)
N1—C11.338 (6)C7—H70.93
N2—C41.327 (8)C8—H80.93
N2—C11.337 (6)
N4—Pb1—N194.75 (15)C4—N2—Pb1iii138.7 (4)
N4—Pb1—N2i87.44 (16)C1—N2—Pb1iii101.1 (3)
N1—Pb1—N2i127.35 (14)C6—N3—C5116.9 (5)
N4—Pb1—S1i79.84 (10)C8—N4—C5118.9 (5)
N1—Pb1—S1i74.17 (10)C8—N4—Pb1135.1 (4)
N2i—Pb1—S1i54.45 (10)C5—N4—Pb1104.9 (3)
N4—Pb1—S255.96 (10)N1—C2—C3122.0 (6)
N1—Pb1—S282.79 (9)N1—C2—H2119
N2i—Pb1—S2136.35 (11)C3—C2—H2119
S1i—Pb1—S2127.90 (4)C2—C3—C4117.2 (6)
N4—Pb1—S2ii87.87 (12)C2—C3—H3121.4
N1—Pb1—S2ii157.73 (10)C4—C3—H3121.4
N2i—Pb1—S2ii74.80 (10)N2—C4—C3122.3 (6)
S1i—Pb1—S2ii127.96 (4)N2—C4—H4118.9
S2—Pb1—S2ii80.406 (12)C3—C4—H4118.9
N4—Pb1—S1146.43 (12)N2—C1—N1123.8 (5)
N1—Pb1—S152.95 (10)N2—C1—S1118.0 (4)
N2i—Pb1—S1104.54 (11)N1—C1—S1118.2 (4)
S1i—Pb1—S182.071 (12)N3—C5—N4123.0 (5)
S2—Pb1—S1119.11 (4)N3—C5—S2119.2 (4)
S2ii—Pb1—S1125.36 (4)N4—C5—S2117.8 (4)
C1—S1—Pb1iii84.17 (17)N3—C6—C7122.6 (5)
C1—S1—Pb177.88 (17)N3—C6—H6118.7
Pb1iii—S1—Pb1157.10 (5)C7—C6—H6118.7
C5—S2—Pb179.82 (17)C8—C7—C6117.3 (5)
C5—S2—Pb1iv82.13 (18)C8—C7—H7121.4
Pb1—S2—Pb1iv157.53 (5)C6—C7—H7121.4
C2—N1—C1117.6 (5)N4—C8—C7121.3 (5)
C2—N1—Pb1130.3 (4)N4—C8—H8119.4
C1—N1—Pb1101.8 (3)C7—C8—H8119.4
C4—N2—C1117.1 (5)
N4—Pb1—S1—C13.4 (3)S1—Pb1—N4—C892.2 (6)
N1—Pb1—S1—C114.8 (2)N1—Pb1—N4—C586.1 (3)
N2i—Pb1—S1—C1111.3 (2)N2i—Pb1—N4—C5146.6 (4)
S1i—Pb1—S1—C161.31 (17)S1i—Pb1—N4—C5159.1 (4)
S2—Pb1—S1—C167.92 (17)S2—Pb1—N4—C58.1 (3)
S2ii—Pb1—S1—C1167.20 (17)S2ii—Pb1—N4—C571.7 (3)
N4—Pb1—S1—Pb1iii35.7 (2)S1—Pb1—N4—C5100.6 (3)
N1—Pb1—S1—Pb1iii53.97 (18)C1—N1—C2—C31.9 (10)
N2i—Pb1—S1—Pb1iii72.16 (18)Pb1—N1—C2—C3136.2 (6)
S1i—Pb1—S1—Pb1iii22.14 (11)N1—C2—C3—C40.2 (12)
S2—Pb1—S1—Pb1iii107.09 (14)C1—N2—C4—C30.7 (10)
S2ii—Pb1—S1—Pb1iii153.64 (13)Pb1iii—N2—C4—C3154.9 (6)
N4—Pb1—S2—C56.2 (2)C2—C3—C4—N21.1 (12)
N1—Pb1—S2—C5106.9 (2)C4—N2—C1—N11.2 (9)
N2i—Pb1—S2—C532.0 (2)Pb1iii—N2—C1—N1165.0 (4)
S1i—Pb1—S2—C543.48 (19)C4—N2—C1—S1179.7 (5)
S2ii—Pb1—S2—C587.74 (18)Pb1iii—N2—C1—S115.9 (4)
S1—Pb1—S2—C5146.98 (17)C2—N1—C1—N22.4 (8)
N4—Pb1—S2—Pb1iv30.85 (18)Pb1—N1—C1—N2146.2 (5)
N1—Pb1—S2—Pb1iv69.88 (17)C2—N1—C1—S1178.5 (5)
N2i—Pb1—S2—Pb1iv69.0 (2)Pb1—N1—C1—S132.9 (4)
S1i—Pb1—S2—Pb1iv6.43 (16)Pb1iii—S1—C1—N214.5 (4)
S2ii—Pb1—S2—Pb1iv124.79 (16)Pb1—S1—C1—N2151.2 (4)
S1—Pb1—S2—Pb1iv109.93 (13)Pb1iii—S1—C1—N1166.4 (4)
N4—Pb1—N1—C28.0 (6)Pb1—S1—C1—N127.9 (4)
N2i—Pb1—N1—C282.4 (6)C6—N3—C5—N42.7 (9)
S1i—Pb1—N1—C270.0 (6)C6—N3—C5—S2178.5 (5)
S2—Pb1—N1—C262.8 (6)C8—N4—C5—N34.1 (9)
S2ii—Pb1—N1—C2104.0 (6)Pb1—N4—C5—N3165.6 (5)
S1—Pb1—N1—C2162.0 (6)C8—N4—C5—S2177.0 (5)
N4—Pb1—N1—C1150.7 (3)Pb1—N4—C5—S213.3 (5)
N2i—Pb1—N1—C160.3 (4)Pb1—S2—C5—N3167.8 (5)
S1i—Pb1—N1—C172.7 (3)Pb1iv—S2—C5—N325.7 (4)
S2—Pb1—N1—C1154.5 (3)Pb1—S2—C5—N411.1 (4)
S2ii—Pb1—N1—C1113.3 (3)Pb1iv—S2—C5—N4155.5 (4)
S1—Pb1—N1—C119.3 (3)C5—N3—C6—C70.3 (10)
N1—Pb1—N4—C8106.7 (6)N3—C6—C7—C81.7 (11)
N2i—Pb1—N4—C820.6 (6)C5—N4—C8—C72.6 (10)
S1i—Pb1—N4—C833.8 (6)Pb1—N4—C8—C7163.2 (5)
S2—Pb1—N4—C8175.3 (7)C6—C7—C8—N40.2 (11)
S2ii—Pb1—N4—C895.4 (6)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y+1/2, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds