Download citation
Download citation
link to html
The results of seven cocrystallization experiments of the anti­thyroid drug 6-methyl-2-thio­uracil (MTU), C5H6N2OS, with 2,4-di­amino­pyrimidine, 2,4,6-tri­amino­pyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thio­uracil-2,4-di­amino­pyrimidine-1-methyl­pyrrolidin-2-one (1/1/2), C5H6N2OS·C4H6N4·2C5H9NO, (I), 6-methyl-2-thio­uracil-2,4-di­amino­pyrimidine (1/1), C5H6N2OS·C4H6N4, (II), 6-methyl-2-thio­uracil-2,4-di­amino­pyrimidine-N,N-di­methyl­acetamide (2/1/2), 2C5H6N2OS·C4H6N4·2C4H9NO, (III), 6-methyl-2-thio­uracil-2,4-di­amino­pyrimidine-N,N-di­methyl­formamide (2/1/2), C5H6N2OS·0.5C4H6N4·C3H7NO, (IV), 2,4,6-tri­amino­pyri­mi­din­ium 6-methyl-2-thio­uracilate-6-methyl-2-thio­uracil-N,N-di­methyl­formamide (1/1/2), C4H8N5+·C5H5N2OS-·C5H6N2OS·2C3H7NO, (V), 6-methyl-2-thio­uracil-6-am­ino-3H-isocytosine-N,N-di­methyl­formamide (1/1/1), C5H6N2OS·C4H6N4O·C3H7NO, (VI), and 6-methyl-2-thio­uracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C5H6N2OS·C4H6N4O·C2H6OS, (VII). Whereas in cocrystal (I) an R22(8) inter­action similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-di­amino­pyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU mol­ecules in (III) and (IV).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615002867/sk3578sup1.cif
Contains datablocks I, II, III, IV, V, VI, VII, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615002867/sk3578Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615002867/sk3578IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615002867/sk3578IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615002867/sk3578IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615002867/sk3578Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615002867/sk3578VIsup7.hkl
Contains datablock VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615002867/sk3578VIIsup8.hkl
Contains datablock VII

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229615002867/sk3578sup9.pdf
Packing diagrams for (II), (VI) and (VII)

CCDC references: 1048668; 1048667; 1048666; 1048665; 1048664; 1048663; 1048662

Introduction top

In order to design new crystalline forms of a compound with different physical properties, especially of active pharmaceutical ingredients, cocrystallization is a versatile and powerful method (Blagden et al., 2007; Shan & Zaworotko, 2008; Schultheiss & Newman, 2009). A key step within the development of the crystallization strategy is the identification of suitable coformers. Thus different tools of crystal engineering are usually applied. One of the most important design elements are hydrogen bonds, since they are highly directional and therefore obtain a good predi­cta­bility once the preferred inter­action motif of the compounds has been determined (Etter, 1991; Prins et al., 2001). For example, triply hydrogen-bonded synthons show a high stability and are often used as potential building blocks (Desiraju, 1995, 2007; Aakeröy, 1997). The combination of three hydrogen bonds gives three possible synthon types, viz. AAA/DDD, AAD/DDA or ADA/DAD (D = donor and A = acceptor). When the relative stability of these three synthons is evaluated, secondary inter­actions must be taken into account. The synthon AAA/DDD, which contains solely attractive secondary inter­actions, is therefore more stable than the AAD/DDA motif where an equal number of attractive and repulsive secondary inter­actions is observed. On the other hand, the latter is more stable than the ADA/DAD motif which shows only repulsive secondary inter­actions (Jorgensen & Pranata, 1990; Pranata et al., 1991).

The anti­thyroid drug 6-methyl-2-thio­uracil (Hershman & Van Middlesworth, 1962), in the following referred to as MTU, exhibits an ADA and an AD binding site. A search of the Cambridge Structural Database (CSD, Version 5.36 of November 2014, plus one update; Groom & Allen, 2014) revealed that no cocrystals of MTU are known. Therefore, we decided to cocrystallize MTU with 2,4-di­amino­pyrimidine (DAPY), 2,4,6-tri­amino­pyrimidine (TAPY) and 6-amino-3H-isocytosine (AICT), which show complementary DAD hydrogen-bonding sites. The experiments were supposed to validate if the ADA/DAD N—H···O/N—H···N/N—H···S synthon is formed or if other motifs are preferred instead.

Experimental top

Synthesis and crystallization top

Isothermal solvent evaporation experiments under different conditions with the commercially available compounds and various solvents yielded the seven cocrystal structures (I)–(VII). In Table 1, the crystallization conditions are summarized. All solvents were used as supplied without further purification.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms except those of the disordered solvent molecules were initially located by difference Fourier synthesis. Subsequently, all H atoms bonded to C atoms were refined using a riding model, with methyl C—H = 0.98 Å, secondary C—H = 0.99 Å and aromatic C—H = 0.95 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for secondary and aromatic H atoms. For the H atoms of the methyl groups, free rotation about their local threefold axis was allowed, except for the disordered methyl groups of molecule A in (IV) and (V), and for those of the disordered DMAC molecules in (III).

H atoms bonded to N atoms were refined isotropically with the N—H distances restrained to 0.88 (2) Å. Their isotropic displacement parameters were coupled to the Ueq parameters of the parent N atoms, with Uiso(H) = 1.2Ueq(N). In (III), H atoms bonded to minor occupied atom N41' were refined using a riding model, with N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N).

In (I) and (VI), an isotropic extinction factor was refined, and in (I) one reflection was omitted.

In (IV) and (V), the H atoms of the methyl group at atom C6A show a rotational disorder [site-occupancy factors for the predominant conformation: 0.66 (3) in (IV) and 0.71 (3) in (V)].

In (II), (III) and (IV), the DAPY molecules are disordered [site-occupancy factors: 0.5 for (II) and (IV), and 0.818 (5) for the major occupied orientation in (III)]. The two DAPY molecules in (II) lie perpendicular to crystallographic mirror planes along C2B/C, N21B/C and C5B/C. In (IV), the DAPY molecule is disordered over a crystallographic twofold rotation axis along C2B, N21B and C5B. The DAPY molecule in (III) is disordered over a pseudo-mirror plane along C2C, N21C and C5C, perpendicular to the molecular plane.

In (III), the DMAC molecules are disordered over a pseudo-mirror plane along O21X/Y and C32X/Y, perpendicular to the molecular plane [site-occupancy factor for the major occupied orientation: 0.898 (4) for X and 0.615 (6) for Y]. For both DMAC molecules, similarity restraints for the 1,2- and 1,3-distances were applied, as well as similar-ADP and rigid-bond restraints (SIMU and DELU in SHELXL2014; Sheldrick, 2015).

Results and discussion top

6-Methyl-2-thio­uracil–2,4-di­amino­pyrimidine–1-methyl­pyrrolidin-2-one (1/1/2), (I), crystallizes in the monoclinic space group C2/c with one MTU molecule (A), one DAPY molecule (B) and two NMP molecules (X and Y) within the asymmetric unit. A and B form an R22(8) hydrogen-bonding pattern (Bernstein et al., 1995) consisting of one N—H···O and one N—H···N hydrogen bond, similar to the inter­actions in the Watson–Crick adenine/uracil base-pair-yielding dimers (Fig. 1). Each of the two molecules forms one additional hydrogen bond to the solvent molecules, whereby A is linked to X and B to Y. Molecules A, B and X show a coplanar arrangement (r.m.s. deviation for all non-H atoms = 0.064 Å) and enclose a dihedral angle of 64.89 (4)° with the mean plane through all non-H atoms of Y. In the crystal, further hydrogen bonds are formed, viz. a pair of crystallographically equivalent N—H···N R22(8) hydrogen bonds that connect B to another DAPY molecule, which enclose a dihedral angle of 70.44 (3)°, and one N—H···O hydrogen bond, establishing a connection to an additional NMP molecule Y (Fig. 2 and Table 3). As a result, a two-dimensional network parallel to (001) is formed whereby the mean planes of the MTU–DAPY dimers are orientated parallel to (112).

The asymmetric unit of cocrystal (II), namely 6-methyl-2-thio­uracil–2,4-di­amino­pyrimidine (1/1) (space group Pnma), comprises one MTU molecule (A) and two independent halves of disordered DAPY molecules (B and C). A and B are linked via R22(8) N—H···N and N—H···O hydrogen bonds. Due to the disorder of B, an additional N—H···S hydrogen bond is formed between atoms N41B and S21A, thus establishing the desired ADA/DAD inter­action (Fig. 3). Molecules A and C are connected by an N—H···N hydrogen bond and also, as a result of the disorder of atom N41C, form an N—H···S hydrogen bond, resulting in an R22(8) pattern. The molecules are tilted against each other, enclosing dihedral angles of 33.13 (12)° between molecules A and B, and 52.85 (12)° between molecules A and C with respect to the planes through all non-H atoms of each molecule. In the crystal packing, the molecules form `double' chains along the b axis stabilized by additional N—H···O hydrogen bonds [Fig. 4, Fig. S1 (in the Supporting information) and Table 4].

The cocrystal 6-methyl-2-thio­uracil–2,4-di­amino­pyrimidine–N,N-di­methyl­acetamide (2/1/2), (III), is triclinic (space group P1), with two MTU molecules (A and B) one disordered DAPY molecule (C) and two disordered DMAC molecules (X and Y) in the asymmetric unit. All molecules show an almost coplanar arrangement (Fig. 5; r.m.s. deviation for all non-H atoms = 0.126 Å). Molecules A and C form the ADA/DAD N—H···S/N—H···N/N—H···O inter­action when C adopts its major occupied orientation, while R22(8) N—H···N and N—H···O hydrogen bonds are formed if the minor occupied orientation of C is present. For the inter­actions between molecules B and C, the hydrogen-bonding pattern is vice versa. Each of the MTU molecules is linked to one of the DMAC molecules via one N—H···O hydrogen bond connecting A with X and B with Y. In the crystal, additional N—H···O hydrogen bonds yield chains running along the a axis, with the mean plane through all non-H atoms lying parallel to (014) (Fig. 6 and Table 5).

The fourth cocrystal between MTU and DAPY, namely 6-methyl-2-thio­uracil–2,4-di­amino­pyrimidine–N,N-di­methyl­formamide (2/1/2), (IV), crystallizes in the monoclinic space group C2/c with one MTU molecule (A), one half of a disordered DAPY molecule (B) and one DMF molecule (X) in the asymmetric unit. Molecules A, B and C show a nearly coplanar arrangement (Fig. 7; r.m.s. deviation for all non-H atoms = 0.103 Å). The hydrogen-bonding pattern is similar to that observed in (III). Molecules A and B form ADA/DAD inter­actions or an R22(8) hydrogen-bonding pattern, depending on the orientation of the disordered DAPY molecule. The MTU molecule is linked to the solvent molecule via one N—H···O hydrogen bond. As in (III), the crystal packing is stabilized by an additional N—H···O hydrogen bond between molecule B and a symmetry-equivalent of molecule A, leading to a similar arrangement of chains, which are parallel to (201) (Fig. 8 and Table 6).

The asymmetric unit of the structure of 2,4,6-tri­amino­pyrimidinium 6-methyl-2-thio­uracilate–6-methyl-2-thio­uracil–N,N-di­methyl­formamide (1/1/2), (V) (space group P21/m), contains one neutral MTU molecule (A), one 6-methyl-2-thio­uracilate ion (B), which is formed from MTU by deprotonation at atom N3B, one 2,4,6-tri­amino­pyrimidinium ion (C), formed from TAPY by protonation at atom N3C, and two DMF molecules (X and Y), whereby all five entities are located on a crystallographic mirror plane. Both A and B show a three-point N—H···S/N—H···N/N—H···O hydrogen-bonding inter­action with C, but the patterns are different. There is an ADA/DAD pattern between molecules A and C, while an AAA/DDD motif is present between molecules B and C (Fig. 9). In the crystal, two additional N—H···O hydrogen bonds are formed which establish an R42(12) hydrogen-bonding pattern, leading to a one-dimensional network running along the a axis (Fig. 10 and Table 7). This arrangement is similar to that observed in (IV), but in contrast the two DMF molecules adopt different orientations, i.e. in the A/X molecule pair, the H atom at C1X points towards S21A, while that at C1Y in the B/Y molecule pair points towards C61B.

6-Methyl-2-thio­uracil–6-amino-(3H)-isocytosine–N,N-di­methyl­formamide (1/1/1), (VI), is also monoclinic (space group P21/n), with one MTU molecule (A), one AICT molecule (B) and one DMF molecule (X) in the asymmetric unit. A and B are connected to dimers by the ADA/DAD inter­action and A and X are linked via a single N—H···O hydrogen bond (Fig. 11). In the crystal packing, three further N—H···O hydrogen bonds are formed yielding R43(14) and R21(6) patterns which connect each the AB heterodimer with four adjacent dimers. As a result, layer-like ribbons are formed, with the mean plane through all non-H atoms oriented parallel to (101) (Fig. 12 and Table 8).

The component molecules of the second cocrystal formed between MTU and AICT, 6-methyl-2-thio­uracil–6-amino-3H-isocytosine–di­methyl sulfoxide (1/1/1), (VII), show the same hydrogen-bonding pattern as observed in (VI), but the crystal packing is somewhat different. The space group is P21/c and the asymmetric unit comprises one MTU molecule (A) and one AICT molecule (B), which are connected to a dimer via the ADA/DAD inter­action, together with one solvent molecule (X), linked to A by a single N—H···O hydrogen bond (Fig. 13). As in (VI), three additional N—H···O hydrogen bonds form R43(14) and R21(6) patterns connecting the AB heterodimer with four adjacent dimers (Fig. 14 and Table 9). In contrast to (VI), the resulting ribbons show a vaulted shape, with a dihedral angle of 71.80 (3)° between the molecular planes of MTU molecules A and Ai. As a result, in the crystal packing, a wave-like arrangement is observed (see Figs. S2 and S3 in the Supporting information), with the one-dimensional hydrogen bonding extending in the c-axis direction.

A comparison of the structures of the seven cocrystals reveals that only in (I) is the desired ADA/DAD N—H···S/N—H···N/N—H···O synthon not formed. In (III) and (IV), surprisingly, a 2:1 ratio of MTU and DAPY is found and due to an orientational disorder of DAPY a double ADA/DAD inter­action is simulated. Also, in structure (V), a 2:1 ratio of MTU and the coformer is observed, but in this case a `true' double ADA/DAD inter­action is expected since the coformer TAPY possesses two DAD binding sites. However, only one ADA/DAD inter­action is observed, while the second motif is changed into AAA/DDD due to proton transfer from MTU to TAPY. In (III) and (IV), the solvent molecules show the same orientation with respect to the S atom of the MTU molecules, while in (V) the solvent molecules show two different orientations. Another difference becomes obvious when comparing the orientation of the CS groups in adjacent ribbons. While these groups show a parallel orientation in (IV) and (V) they are anti­parallel in (III). Structures (VI) and (VII) show identical hydrogen-bonding inter­actions and differ only in the packing of the resulting ribbons. In all structures exhibiting an ADA/DAD inter­action [i.e. (II)–(VII)], one-dimensional networks are formed; in (III)–(VI), a layer-like arrangement is found and in (VII) undulated layers are observed.

In conclusion, six of the seven cocrystal structures contain the ADA/DAD N—H···S/N—H···N/N—H···O synthon and only in one structure a heterodimer with an AD/DA inter­action is formed instead. Hence, it is shown that the ADA/DAD synthon is a feasible building block for the design of cocrystals of MTU, leading to hydrogen-bonded one-dimensional networks with either chains or a layer-like arrangement of the molecules.

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (IV), (V), (VI), (VII); SHELXD (Sheldrick, 2008) for (II), (III). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015) for (I), (II), (III), (IV), (V), (VII); SHELXL3013 (Sheldrick, 2015) for (VI). For all compounds, molecular graphics: Mercury (Macrae et al., 2008) and XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A partial packing diagram for (I). Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x+1, y, -z+1/2; (ii) x+1/2, y+1/2, z.]
[Figure 3] Fig. 3. A perspective view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Atoms without labels are displayed for the sake of clarity but are not part of the asymmetric unit. Atoms N41B and N41C are disordered and for each only one of the two equally occupied positions is shown.
[Figure 4] Fig. 4. A partial packing diagram for (II). Hydrogen bonds are shown as dashed lines. Only one position for each of disordered atoms N41B and N41C is shown. [Symmetry code: (i) -x+1, -y+1, -z+1].
[Figure 5] Fig. 5. A perspective view of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Molecules C, X and Y are disordered and only the major occupied sites are shown.
[Figure 6] Fig. 6. A partial packing diagram for (III). Hydrogen bonds are shown as dashed lines. For disordered molecules C, X and Y, only the major occupied sites are displayed. [Symmetry code: (i) x-1, y, z.]
[Figure 7] Fig. 7. A perspective view of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Atoms without labels are displayed for the sake of clarity but are not part of the asymmetric unit. Atom N41B adopts two equally occupied positions of which only one is shown.
[Figure 8] Fig. 8. A partial packing diagram for (IV). Hydrogen bonds are shown as dashed lines. Only one position is shown for disordered atom N41B. [Symmetry code: (i) x, y+1, z.]
[Figure 9] Fig. 9. A perspective view of (V), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 10] Fig. 10. A partial packing diagram for (V). Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) x+1, y, z.]
[Figure 11] Fig. 11. A perspective view of (VI), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 12] Fig. 12. A partial packing diagram for (VI). Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) x+1, y, z+1.]
[Figure 13] Fig. 13. A perspective view of (VII), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 14] Fig. 14. A partial packing diagram for (VII). Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, y, z+1.]
(I) 6-Methyl-2-thiouracil–2,4-diaminopyrimidine–1-methylpyrrolidin-2-one (1/1/2) top
Crystal data top
C5H6N2OS·C4H6N4·2C5H9NOF(000) = 1920
Mr = 450.57Dx = 1.298 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.9475 (5) ÅCell parameters from 20467 reflections
b = 8.1618 (3) Åθ = 2.0–26.6°
c = 40.9157 (14) ŵ = 0.18 mm1
β = 98.148 (3)°T = 173 K
V = 4610.7 (3) Å3Block, colourless
Z = 80.38 × 0.28 × 0.24 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3920 reflections with I > 2σ(I)
ω scansRint = 0.059
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
θmax = 25.9°, θmin = 2.0°
Tmin = 0.940, Tmax = 0.959h = 1717
17630 measured reflectionsk = 1010
4449 independent reflectionsl = 5050
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0661P)2 + 2.2641P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.26 e Å3
4449 reflectionsΔρmin = 0.22 e Å3
302 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0153 (12)
Crystal data top
C5H6N2OS·C4H6N4·2C5H9NOV = 4610.7 (3) Å3
Mr = 450.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.9475 (5) ŵ = 0.18 mm1
b = 8.1618 (3) ÅT = 173 K
c = 40.9157 (14) Å0.38 × 0.28 × 0.24 mm
β = 98.148 (3)°
Data collection top
Stoe IPDS II two-circle
diffractometer
4449 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
3920 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.959Rint = 0.059
17630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
4449 reflectionsΔρmin = 0.22 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.20053 (9)0.38539 (16)0.03379 (3)0.0399 (3)
H1A0.2103 (12)0.424 (2)0.0145 (4)0.048*
C2A0.27205 (10)0.41254 (18)0.05938 (3)0.0388 (3)
S21A0.37186 (3)0.51727 (5)0.05458 (2)0.04795 (17)
N3A0.25643 (9)0.35139 (16)0.08908 (3)0.0402 (3)
H3A0.3035 (11)0.361 (2)0.1066 (4)0.048*
C4A0.17400 (11)0.2659 (2)0.09475 (4)0.0439 (4)
O41A0.16813 (9)0.21340 (17)0.12273 (3)0.0569 (3)
C5A0.10174 (11)0.2464 (2)0.06674 (4)0.0458 (4)
H5A0.04290.19210.06910.055*
C6A0.11602 (11)0.30425 (19)0.03690 (4)0.0418 (3)
C61A0.04551 (12)0.2816 (2)0.00623 (4)0.0523 (4)
H61A0.06680.19100.00670.078*
H61B0.04190.38240.00690.078*
H61C0.01860.25660.01210.078*
N1B0.39775 (9)0.38963 (16)0.14669 (3)0.0429 (3)
C2B0.39090 (11)0.32839 (18)0.17693 (3)0.0405 (3)
N21B0.31472 (11)0.2322 (2)0.18013 (3)0.0533 (4)
H21B0.2685 (13)0.221 (3)0.1632 (4)0.064*
H22B0.3088 (14)0.195 (3)0.1996 (4)0.064*
N3B0.45418 (9)0.35313 (16)0.20450 (3)0.0406 (3)
C4B0.53318 (11)0.44281 (19)0.20177 (4)0.0403 (3)
N41B0.59609 (10)0.4652 (2)0.22930 (3)0.0495 (3)
H41B0.5859 (14)0.416 (2)0.2477 (4)0.059*
H42B0.6495 (12)0.521 (2)0.2290 (5)0.059*
C5B0.54775 (12)0.51074 (19)0.17109 (4)0.0444 (4)
H5B0.60350.57420.16870.053*
C6B0.47774 (12)0.48045 (19)0.14504 (4)0.0446 (4)
H6B0.48580.52650.12430.054*
N1X0.20113 (12)0.57152 (19)0.08256 (3)0.0557 (4)
C11X0.10974 (16)0.5073 (3)0.09833 (5)0.0722 (6)
H11A0.08000.44140.08250.108*
H11B0.12060.43870.11710.108*
H11C0.06660.59820.10610.108*
C2X0.23073 (13)0.5613 (2)0.05053 (4)0.0498 (4)
O21X0.18904 (10)0.48554 (17)0.03060 (3)0.0636 (4)
C3X0.32337 (14)0.6574 (2)0.04226 (5)0.0616 (5)
H3X10.37470.58860.02990.074*
H3X20.31300.75480.02880.074*
C4X0.35085 (17)0.7080 (3)0.07539 (6)0.0767 (6)
H4X10.40620.64220.08080.092*
H4X20.36870.82540.07530.092*
C5X0.25957 (18)0.6753 (3)0.10055 (5)0.0703 (6)
H5X10.22540.77880.10740.084*
H5X20.27630.61880.12040.084*
N1Y0.28744 (13)0.1377 (2)0.30168 (4)0.0636 (4)
C11Y0.20338 (19)0.2384 (3)0.30255 (6)0.0819 (6)
H11D0.22280.34260.31340.123*
H11E0.15790.18180.31490.123*
H11F0.17210.25950.28000.123*
C2Y0.31855 (15)0.0906 (3)0.27389 (4)0.0627 (5)
O21Y0.27970 (11)0.1220 (2)0.24569 (3)0.0788 (5)
C3Y0.4097 (2)0.0074 (4)0.28289 (7)0.0910 (8)
H3Y10.46480.04610.27430.109*
H3Y20.40170.11920.27350.109*
C4Y0.4271 (2)0.0142 (3)0.32012 (7)0.0866 (7)
H4Y10.49150.03200.32870.104*
H4Y20.42440.12870.32790.104*
C5Y0.34745 (19)0.0870 (3)0.33169 (5)0.0731 (6)
H5Y10.30980.02070.34560.088*
H5Y20.37470.18330.34450.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0421 (6)0.0453 (7)0.0317 (6)0.0052 (5)0.0033 (5)0.0009 (5)
C2A0.0424 (7)0.0413 (7)0.0326 (7)0.0015 (6)0.0050 (6)0.0007 (6)
S21A0.0447 (2)0.0607 (3)0.0382 (2)0.01528 (17)0.00502 (16)0.00312 (16)
N3A0.0407 (6)0.0472 (7)0.0324 (6)0.0082 (5)0.0037 (5)0.0005 (5)
C4A0.0455 (8)0.0500 (8)0.0366 (8)0.0103 (6)0.0077 (6)0.0017 (6)
O41A0.0594 (7)0.0770 (8)0.0344 (6)0.0257 (6)0.0072 (5)0.0039 (5)
C5A0.0421 (8)0.0551 (9)0.0402 (8)0.0120 (7)0.0061 (6)0.0029 (7)
C6A0.0410 (7)0.0447 (8)0.0391 (8)0.0045 (6)0.0032 (6)0.0039 (6)
C61A0.0483 (9)0.0633 (10)0.0431 (9)0.0106 (8)0.0012 (7)0.0018 (7)
N1B0.0463 (7)0.0509 (7)0.0312 (6)0.0070 (6)0.0045 (5)0.0020 (5)
C2B0.0441 (7)0.0444 (8)0.0332 (7)0.0026 (6)0.0058 (6)0.0005 (6)
N21B0.0533 (8)0.0706 (9)0.0343 (7)0.0214 (7)0.0010 (6)0.0074 (6)
N3B0.0416 (6)0.0474 (7)0.0324 (6)0.0033 (5)0.0035 (5)0.0010 (5)
C4B0.0417 (7)0.0441 (8)0.0348 (7)0.0005 (6)0.0042 (6)0.0004 (6)
N41B0.0441 (7)0.0658 (9)0.0367 (7)0.0097 (6)0.0005 (6)0.0062 (6)
C5B0.0450 (8)0.0511 (9)0.0370 (8)0.0081 (6)0.0056 (6)0.0032 (6)
C6B0.0498 (8)0.0505 (9)0.0338 (7)0.0058 (7)0.0065 (6)0.0044 (6)
N1X0.0709 (9)0.0575 (8)0.0378 (7)0.0031 (7)0.0045 (6)0.0025 (6)
C11X0.0699 (13)0.0812 (14)0.0585 (12)0.0098 (10)0.0149 (10)0.0131 (10)
C2X0.0597 (10)0.0492 (9)0.0394 (8)0.0011 (7)0.0026 (7)0.0034 (7)
O21X0.0746 (9)0.0735 (9)0.0404 (7)0.0183 (7)0.0006 (6)0.0106 (6)
C3X0.0630 (11)0.0525 (10)0.0665 (12)0.0059 (8)0.0012 (9)0.0012 (8)
C4X0.0746 (13)0.0655 (12)0.0964 (17)0.0024 (10)0.0339 (12)0.0077 (11)
C5X0.1026 (16)0.0615 (11)0.0524 (11)0.0082 (11)0.0300 (11)0.0102 (9)
N1Y0.0876 (11)0.0638 (9)0.0387 (8)0.0133 (8)0.0066 (7)0.0045 (7)
C11Y0.0978 (17)0.0765 (14)0.0734 (14)0.0014 (13)0.0193 (12)0.0106 (12)
C2Y0.0734 (12)0.0738 (12)0.0404 (9)0.0335 (10)0.0060 (8)0.0041 (8)
O21Y0.0838 (10)0.1152 (12)0.0363 (7)0.0523 (9)0.0042 (6)0.0009 (7)
C3Y0.0838 (16)0.1028 (19)0.0854 (17)0.0163 (14)0.0084 (13)0.0299 (14)
C4Y0.0903 (17)0.0787 (15)0.0865 (17)0.0133 (13)0.0024 (14)0.0153 (12)
C5Y0.1074 (17)0.0653 (12)0.0416 (10)0.0170 (12)0.0061 (10)0.0046 (8)
Geometric parameters (Å, º) top
N1A—C2A1.3582 (18)N1X—C5X1.447 (3)
N1A—C6A1.3736 (19)C11X—H11A0.9800
N1A—H1A0.877 (14)C11X—H11B0.9800
C2A—N3A1.3595 (19)C11X—H11C0.9800
C2A—S21A1.6686 (15)C2X—O21X1.233 (2)
N3A—C4A1.3920 (19)C2X—C3X1.508 (3)
N3A—H3A0.906 (14)C3X—C4X1.517 (3)
C4A—O41A1.2361 (18)C3X—H3X10.9900
C4A—C5A1.424 (2)C3X—H3X20.9900
C5A—C6A1.350 (2)C4X—C5X1.543 (3)
C5A—H5A0.9500C4X—H4X10.9900
C6A—C61A1.492 (2)C4X—H4X20.9900
C61A—H61A0.9800C5X—H5X10.9900
C61A—H61B0.9800C5X—H5X20.9900
C61A—H61C0.9800N1Y—C2Y1.330 (2)
N1B—C6B1.349 (2)N1Y—C11Y1.436 (3)
N1B—C2B1.3506 (19)N1Y—C5Y1.445 (3)
C2B—N21B1.342 (2)C11Y—H11D0.9800
C2B—N3B1.3453 (19)C11Y—H11E0.9800
N21B—H21B0.880 (15)C11Y—H11F0.9800
N21B—H22B0.869 (15)C2Y—O21Y1.230 (2)
N3B—C4B1.3406 (19)C2Y—C3Y1.503 (4)
C4B—N41B1.339 (2)C3Y—C4Y1.509 (4)
C4B—C5B1.413 (2)C3Y—H3Y10.9900
N41B—H41B0.882 (15)C3Y—H3Y20.9900
N41B—H42B0.874 (15)C4Y—C5Y1.514 (4)
C5B—C6B1.362 (2)C4Y—H4Y10.9900
C5B—H5B0.9500C4Y—H4Y20.9900
C6B—H6B0.9500C5Y—H5Y10.9900
N1X—C2X1.320 (2)C5Y—H5Y20.9900
N1X—C11X1.443 (3)
C2A—N1A—C6A123.60 (13)H11B—C11X—H11C109.5
C2A—N1A—H1A116.5 (12)O21X—C2X—N1X125.32 (17)
C6A—N1A—H1A119.9 (12)O21X—C2X—C3X125.58 (16)
N1A—C2A—N3A115.84 (13)N1X—C2X—C3X109.10 (16)
N1A—C2A—S21A121.79 (11)C2X—C3X—C4X104.95 (16)
N3A—C2A—S21A122.36 (11)C2X—C3X—H3X1110.8
C2A—N3A—C4A125.01 (13)C4X—C3X—H3X1110.8
C2A—N3A—H3A119.1 (11)C2X—C3X—H3X2110.8
C4A—N3A—H3A115.8 (11)C4X—C3X—H3X2110.8
O41A—C4A—N3A119.53 (14)H3X1—C3X—H3X2108.8
O41A—C4A—C5A125.04 (14)C3X—C4X—C5X105.08 (16)
N3A—C4A—C5A115.42 (13)C3X—C4X—H4X1110.7
C6A—C5A—C4A120.69 (14)C5X—C4X—H4X1110.7
C6A—C5A—H5A119.7C3X—C4X—H4X2110.7
C4A—C5A—H5A119.7C5X—C4X—H4X2110.7
C5A—C6A—N1A119.41 (13)H4X1—C4X—H4X2108.8
C5A—C6A—C61A123.59 (14)N1X—C5X—C4X103.45 (16)
N1A—C6A—C61A116.98 (13)N1X—C5X—H5X1111.1
C6A—C61A—H61A109.5C4X—C5X—H5X1111.1
C6A—C61A—H61B109.5N1X—C5X—H5X2111.1
H61A—C61A—H61B109.5C4X—C5X—H5X2111.1
C6A—C61A—H61C109.5H5X1—C5X—H5X2109.0
H61A—C61A—H61C109.5C2Y—N1Y—C11Y123.57 (18)
H61B—C61A—H61C109.5C2Y—N1Y—C5Y115.09 (19)
C6B—N1B—C2B114.55 (13)C11Y—N1Y—C5Y121.28 (18)
N21B—C2B—N3B116.12 (13)N1Y—C11Y—H11D109.5
N21B—C2B—N1B117.75 (13)N1Y—C11Y—H11E109.5
N3B—C2B—N1B126.12 (13)H11D—C11Y—H11E109.5
C2B—N21B—H21B119.0 (14)N1Y—C11Y—H11F109.5
C2B—N21B—H22B118.3 (14)H11D—C11Y—H11F109.5
H21B—N21B—H22B122.1 (19)H11E—C11Y—H11F109.5
C4B—N3B—C2B117.48 (12)O21Y—C2Y—N1Y126.0 (2)
N41B—C4B—N3B116.92 (13)O21Y—C2Y—C3Y125.8 (2)
N41B—C4B—C5B122.31 (14)N1Y—C2Y—C3Y108.14 (19)
N3B—C4B—C5B120.77 (13)C2Y—C3Y—C4Y106.1 (2)
C4B—N41B—H41B119.3 (13)C2Y—C3Y—H3Y1110.5
C4B—N41B—H42B121.2 (14)C4Y—C3Y—H3Y1110.5
H41B—N41B—H42B119.3 (19)C2Y—C3Y—H3Y2110.5
C6B—C5B—C4B116.52 (14)C4Y—C3Y—H3Y2110.5
C6B—C5B—H5B121.7H3Y1—C3Y—H3Y2108.7
C4B—C5B—H5B121.7C3Y—C4Y—C5Y106.0 (2)
N1B—C6B—C5B124.53 (14)C3Y—C4Y—H4Y1110.5
N1B—C6B—H6B117.7C5Y—C4Y—H4Y1110.5
C5B—C6B—H6B117.7C3Y—C4Y—H4Y2110.5
C2X—N1X—C11X123.59 (17)C5Y—C4Y—H4Y2110.5
C2X—N1X—C5X115.02 (16)H4Y1—C4Y—H4Y2108.7
C11X—N1X—C5X120.70 (17)N1Y—C5Y—C4Y104.64 (18)
N1X—C11X—H11A109.5N1Y—C5Y—H5Y1110.8
N1X—C11X—H11B109.5C4Y—C5Y—H5Y1110.8
H11A—C11X—H11B109.5N1Y—C5Y—H5Y2110.8
N1X—C11X—H11C109.5C4Y—C5Y—H5Y2110.8
H11A—C11X—H11C109.5H5Y1—C5Y—H5Y2108.9
C6A—N1A—C2A—N3A1.1 (2)C4B—C5B—C6B—N1B0.9 (2)
C6A—N1A—C2A—S21A177.92 (12)C11X—N1X—C2X—O21X6.2 (3)
N1A—C2A—N3A—C4A0.3 (2)C5X—N1X—C2X—O21X176.65 (18)
S21A—C2A—N3A—C4A178.71 (12)C11X—N1X—C2X—C3X173.63 (17)
C2A—N3A—C4A—O41A178.83 (15)C5X—N1X—C2X—C3X3.2 (2)
C2A—N3A—C4A—C5A1.1 (2)O21X—C2X—C3X—C4X173.00 (19)
O41A—C4A—C5A—C6A178.08 (17)N1X—C2X—C3X—C4X7.2 (2)
N3A—C4A—C5A—C6A1.9 (2)C2X—C3X—C4X—C5X13.7 (2)
C4A—C5A—C6A—N1A1.2 (2)C2X—N1X—C5X—C4X11.9 (2)
C4A—C5A—C6A—C61A177.14 (15)C11X—N1X—C5X—C4X177.36 (17)
C2A—N1A—C6A—C5A0.4 (2)C3X—C4X—C5X—N1X15.2 (2)
C2A—N1A—C6A—C61A178.81 (14)C11Y—N1Y—C2Y—O21Y1.9 (3)
C6B—N1B—C2B—N21B177.82 (15)C5Y—N1Y—C2Y—O21Y178.88 (18)
C6B—N1B—C2B—N3B1.5 (2)C11Y—N1Y—C2Y—C3Y177.9 (2)
N21B—C2B—N3B—C4B177.17 (14)C5Y—N1Y—C2Y—C3Y1.0 (2)
N1B—C2B—N3B—C4B2.1 (2)O21Y—C2Y—C3Y—C4Y179.16 (19)
C2B—N3B—C4B—N41B179.33 (14)N1Y—C2Y—C3Y—C4Y1.0 (3)
C2B—N3B—C4B—C5B1.2 (2)C2Y—C3Y—C4Y—C5Y2.4 (3)
N41B—C4B—C5B—C6B179.26 (16)C2Y—N1Y—C5Y—C4Y2.5 (2)
N3B—C4B—C5B—C6B0.2 (2)C11Y—N1Y—C5Y—C4Y179.54 (19)
C2B—N1B—C6B—C5B0.1 (2)C3Y—C4Y—C5Y—N1Y2.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.88 (1)1.90 (2)2.7413 (17)162 (2)
N3A—H3A···N1B0.91 (1)1.96 (1)2.8674 (18)175 (2)
N21B—H21B···O41A0.88 (2)2.01 (2)2.8914 (18)175 (2)
N21B—H22B···O21Y0.87 (2)2.07 (2)2.9351 (19)173 (2)
N41B—H41B···N3Bi0.88 (2)2.17 (2)3.0334 (19)166 (2)
N41B—H42B···O21Yii0.87 (2)2.02 (2)2.8565 (19)159 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z.
(II) 6-Methyl-2-thiouracil–2,4-diaminopyrimidine (1/1) top
Crystal data top
C5H6N2OS·C4H6N4Dx = 1.453 Mg m3
Mr = 252.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4338 reflections
a = 6.9996 (8) Åθ = 3.3–25.9°
b = 19.223 (2) ŵ = 0.28 mm1
c = 17.143 (2) ÅT = 173 K
V = 2306.6 (4) Å3Plate, colourless
Z = 80.14 × 0.10 × 0.09 mm
F(000) = 1056
Data collection top
Stoe IPDS II two-circle
diffractometer
1279 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.103
ω scansθmax = 25.7°, θmin = 3.3°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 87
Tmin = 0.965, Tmax = 0.977k = 2323
11786 measured reflectionsl = 1720
2234 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
2234 reflectionsΔρmax = 0.26 e Å3
197 parametersΔρmin = 0.23 e Å3
Crystal data top
C5H6N2OS·C4H6N4V = 2306.6 (4) Å3
Mr = 252.31Z = 8
Orthorhombic, PnmaMo Kα radiation
a = 6.9996 (8) ŵ = 0.28 mm1
b = 19.223 (2) ÅT = 173 K
c = 17.143 (2) Å0.14 × 0.10 × 0.09 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2234 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
1279 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.977Rint = 0.103
11786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0528 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.26 e Å3
2234 reflectionsΔρmin = 0.23 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.2237 (4)0.44072 (12)0.55117 (17)0.0328 (7)
H1A0.218 (5)0.4007 (11)0.5768 (17)0.039*
C2A0.2346 (4)0.49946 (16)0.59457 (17)0.0310 (6)
S21A0.21417 (15)0.49976 (5)0.69140 (5)0.0503 (3)
N3A0.2653 (4)0.55891 (12)0.55375 (16)0.0279 (6)
H3A0.283 (4)0.5981 (11)0.5821 (16)0.033*
C4A0.2883 (5)0.56398 (14)0.4742 (2)0.0314 (7)
O41A0.3216 (3)0.62137 (10)0.44443 (12)0.0399 (6)
C5A0.2679 (5)0.49955 (17)0.43221 (17)0.0327 (7)
H5A0.27570.49920.37690.039*
C6A0.2378 (4)0.43998 (15)0.4713 (2)0.0301 (8)
C61A0.2194 (5)0.37000 (15)0.4343 (2)0.0403 (9)
H61A0.22780.37470.37750.061*
H61B0.09570.34960.44830.061*
H61C0.32250.33970.45290.061*
C2B0.2918 (6)0.75000.6008 (3)0.0280 (10)
N21B0.2073 (6)0.75000.5310 (2)0.0319 (9)
H21B0.217 (5)0.7139 (12)0.5017 (16)0.038*
N3B0.3282 (4)0.68777 (11)0.63403 (15)0.0317 (6)
C4B0.4142 (5)0.68906 (17)0.7040 (2)0.0388 (8)
H4B0.44310.64610.72870.047*0.5
N41B0.4704 (9)0.6345 (3)0.7398 (4)0.0409 (14)0.5
H41B0.446 (10)0.5924 (17)0.724 (4)0.049*0.5
H42B0.534 (9)0.635 (4)0.783 (2)0.049*0.5
C5B0.4626 (7)0.75000.7420 (3)0.0461 (13)
H5B0.52530.75000.79110.055*
C2C0.2411 (6)0.25000.6172 (3)0.0271 (10)
N21C0.4098 (6)0.25000.5813 (3)0.0402 (11)
H21C0.474 (5)0.2879 (12)0.590 (2)0.048*
N3C0.1610 (4)0.31182 (11)0.63317 (17)0.0370 (7)
C4C0.0051 (5)0.31044 (17)0.6716 (2)0.0449 (9)
H4C0.06130.35350.68640.054*0.5
N41C0.0641 (8)0.3658 (3)0.7131 (4)0.0402 (15)0.5
H41C0.014 (8)0.402 (2)0.713 (4)0.048*0.5
H42C0.169 (7)0.369 (3)0.742 (4)0.048*0.5
C5C0.0986 (7)0.25000.6909 (3)0.0393 (11)
H5C0.21970.25000.71590.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0342 (17)0.0237 (14)0.0405 (19)0.0028 (11)0.0034 (14)0.0034 (11)
C2A0.0294 (16)0.0250 (12)0.0385 (15)0.0010 (12)0.0009 (15)0.0055 (16)
S21A0.0831 (7)0.0352 (4)0.0326 (4)0.0001 (5)0.0087 (6)0.0047 (4)
N3A0.0310 (16)0.0243 (13)0.0282 (16)0.0003 (10)0.0001 (12)0.0011 (10)
C4A0.0272 (17)0.0318 (17)0.035 (2)0.0013 (12)0.0018 (16)0.0008 (13)
O41A0.0522 (16)0.0291 (11)0.0384 (14)0.0002 (10)0.0035 (13)0.0087 (9)
C5A0.0306 (18)0.0367 (14)0.0306 (15)0.0036 (13)0.0007 (14)0.0023 (16)
C6A0.0200 (17)0.0330 (16)0.0374 (19)0.0043 (11)0.0011 (15)0.0050 (14)
C61A0.039 (2)0.0333 (17)0.049 (2)0.0009 (14)0.0036 (18)0.0099 (14)
C2B0.020 (2)0.033 (2)0.030 (3)0.0000.010 (2)0.000
N21B0.038 (2)0.0302 (18)0.028 (2)0.0000.000 (2)0.000
N3B0.0312 (16)0.0319 (13)0.0321 (15)0.0059 (11)0.0026 (14)0.0029 (11)
C4B0.0272 (18)0.0522 (19)0.037 (2)0.0118 (14)0.0037 (16)0.0097 (16)
N41B0.046 (4)0.035 (3)0.042 (4)0.008 (2)0.007 (3)0.009 (3)
C5B0.031 (3)0.079 (4)0.029 (3)0.0000.006 (2)0.000
C2C0.027 (3)0.026 (2)0.029 (2)0.0000.004 (2)0.000
N21C0.033 (2)0.029 (2)0.058 (3)0.0000.018 (2)0.000
N3C0.0306 (16)0.0253 (13)0.0553 (19)0.0011 (10)0.0091 (15)0.0048 (12)
C4C0.035 (2)0.0377 (17)0.062 (3)0.0060 (14)0.0078 (19)0.0164 (16)
N41C0.034 (3)0.035 (3)0.052 (4)0.004 (2)0.012 (3)0.015 (3)
C5C0.030 (3)0.053 (3)0.035 (3)0.0000.010 (3)0.000
Geometric parameters (Å, º) top
N1A—C2A1.354 (4)C4B—N41B1.277 (6)
N1A—C6A1.373 (5)C4B—C5B1.382 (4)
N1A—H1A0.887 (18)C4B—H4B0.9500
C2A—N3A1.357 (4)N41B—H41B0.87 (2)
C2A—S21A1.666 (3)N41B—H42B0.87 (2)
N3A—C4A1.376 (4)C5B—C4Bi1.382 (4)
N3A—H3A0.904 (17)C5B—H5B0.9500
C4A—O41A1.238 (4)C2C—N21C1.331 (6)
C4A—C5A1.440 (4)C2C—N3Cii1.342 (3)
C5A—C6A1.343 (4)C2C—N3C1.342 (3)
C5A—H5A0.9500N21C—H21C0.870 (18)
C6A—C61A1.493 (4)N3C—C4C1.337 (4)
C61A—H61A0.9800C4C—N41C1.346 (6)
C61A—H61B0.9800C4C—C5C1.374 (4)
C61A—H61C0.9800C4C—H4C0.9500
C2B—N21B1.336 (6)N41C—H41C0.89 (2)
C2B—N3Bi1.349 (3)N41C—H42C0.89 (2)
C2B—N3B1.349 (3)C5C—C4Cii1.374 (4)
N21B—H21B0.859 (17)C5C—H5C0.9500
N3B—C4B1.343 (4)
C2A—N1A—C6A123.5 (2)C4B—N3B—C2B116.4 (3)
C2A—N1A—H1A117 (2)N41B—C4B—N3B123.5 (4)
C6A—N1A—H1A119 (2)N41B—C4B—C5B113.2 (4)
N1A—C2A—N3A115.3 (3)N3B—C4B—C5B123.1 (3)
N1A—C2A—S21A123.0 (2)N3B—C4B—H4B118.5
N3A—C2A—S21A121.6 (2)C5B—C4B—H4B118.5
C2A—N3A—C4A126.1 (2)C4B—N41B—H41B123 (5)
C2A—N3A—H3A117 (2)C4B—N41B—H42B124 (5)
C4A—N3A—H3A117 (2)H41B—N41B—H42B112 (7)
O41A—C4A—N3A119.6 (3)C4B—C5B—C4Bi115.9 (5)
O41A—C4A—C5A125.4 (3)C4B—C5B—H5B122.0
N3A—C4A—C5A115.0 (3)C4Bi—C5B—H5B122.0
C6A—C5A—C4A120.0 (3)N21C—C2C—N3Cii117.7 (2)
C6A—C5A—H5A120.0N21C—C2C—N3C117.7 (2)
C4A—C5A—H5A120.0N3Cii—C2C—N3C124.6 (4)
C5A—C6A—N1A120.0 (3)C2C—N21C—H21C112 (2)
C5A—C6A—C61A124.8 (3)C4C—N3C—C2C116.5 (3)
N1A—C6A—C61A115.2 (3)N3C—C4C—N41C120.8 (4)
C6A—C61A—H61A109.5N3C—C4C—C5C123.3 (3)
C6A—C61A—H61B109.5N41C—C4C—C5C113.3 (4)
H61A—C61A—H61B109.5N3C—C4C—H4C118.3
C6A—C61A—H61C109.5C5C—C4C—H4C118.3
H61A—C61A—H61C109.5C4C—N41C—H41C116 (5)
H61B—C61A—H61C109.5C4C—N41C—H42C127 (4)
N21B—C2B—N3Bi117.5 (2)H41C—N41C—H42C117 (6)
N21B—C2B—N3B117.5 (2)C4C—C5C—C4Cii115.5 (4)
N3Bi—C2B—N3B125.0 (4)C4C—C5C—H5C122.3
C2B—N21B—H21B119 (2)C4Cii—C5C—H5C122.3
C6A—N1A—C2A—N3A1.5 (5)N21B—C2B—N3B—C4B179.7 (4)
C6A—N1A—C2A—S21A179.1 (2)N3Bi—C2B—N3B—C4B2.8 (6)
N1A—C2A—N3A—C4A0.9 (5)C2B—N3B—C4B—N41B174.6 (4)
S21A—C2A—N3A—C4A178.5 (3)C2B—N3B—C4B—C5B0.7 (5)
C2A—N3A—C4A—O41A177.7 (3)N41B—C4B—C5B—C4Bi176.8 (4)
C2A—N3A—C4A—C5A3.1 (5)N3B—C4B—C5B—C4Bi1.1 (7)
O41A—C4A—C5A—C6A177.9 (3)N21C—C2C—N3C—C4C177.8 (4)
N3A—C4A—C5A—C6A3.0 (5)N3Cii—C2C—N3C—C4C3.9 (6)
C4A—C5A—C6A—N1A0.9 (5)C2C—N3C—C4C—N41C157.1 (5)
C4A—C5A—C6A—C61A178.4 (3)C2C—N3C—C4C—C5C3.6 (6)
C2A—N1A—C6A—C5A1.4 (5)N3C—C4C—C5C—C4Cii3.3 (7)
C2A—N1A—C6A—C61A179.2 (3)N41C—C4C—C5C—C4Cii158.7 (4)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N3C0.89 (2)2.00 (2)2.883 (4)171 (3)
N3A—H3A···N3B0.90 (2)1.97 (2)2.868 (3)174 (3)
N21B—H21B···O41A0.86 (2)2.16 (2)2.993 (3)164 (3)
N41B—H41B···S21A0.87 (2)2.47 (4)3.258 (6)150 (6)
N21C—H21C···O41Aiii0.87 (2)2.33 (2)3.137 (3)154 (3)
N41C—H41C···S21A0.89 (2)2.37 (2)3.250 (6)170 (6)
Symmetry code: (iii) x+1, y+1, z+1.
(III) 6-Methyl-2-thiouracil–2,4-diaminopyrimidine–dimethylacetamide (2/1/2) top
Crystal data top
2C5H6N2OS·C4H6N4·2C4H9NOZ = 2
Mr = 568.73F(000) = 604
Triclinic, P1Dx = 1.299 Mg m3
a = 8.2095 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8069 (11) ÅCell parameters from 12180 reflections
c = 14.3391 (13) Åθ = 3.2–26.0°
α = 89.914 (7)°µ = 0.23 mm1
β = 76.230 (7)°T = 173 K
γ = 83.418 (7)°Block, colourless
V = 1454.1 (2) Å30.30 × 0.22 × 0.18 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4514 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.030
ω scansθmax = 25.6°, θmin = 3.3°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 99
Tmin = 0.939, Tmax = 0.961k = 1515
11080 measured reflectionsl = 1417
5400 independent reflections
Refinement top
Refinement on F2264 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.3449P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5400 reflectionsΔρmax = 0.34 e Å3
417 parametersΔρmin = 0.26 e Å3
Crystal data top
2C5H6N2OS·C4H6N4·2C4H9NOγ = 83.418 (7)°
Mr = 568.73V = 1454.1 (2) Å3
Triclinic, P1Z = 2
a = 8.2095 (7) ÅMo Kα radiation
b = 12.8069 (11) ŵ = 0.23 mm1
c = 14.3391 (13) ÅT = 173 K
α = 89.914 (7)°0.30 × 0.22 × 0.18 mm
β = 76.230 (7)°
Data collection top
Stoe IPDS II two-circle
diffractometer
5400 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
4514 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.961Rint = 0.030
11080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039264 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
5400 reflectionsΔρmin = 0.26 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.45478 (17)0.96529 (11)0.63713 (10)0.0274 (3)
H1A0.410 (2)1.0264 (13)0.6207 (14)0.033*
C2A0.3567 (2)0.88686 (12)0.66301 (11)0.0262 (3)
S21A0.15266 (5)0.90090 (3)0.66124 (3)0.03432 (13)
N3A0.43471 (17)0.79672 (11)0.69065 (10)0.0279 (3)
H3A0.377 (2)0.7436 (13)0.7066 (14)0.034*
C4A0.6030 (2)0.78048 (13)0.69412 (12)0.0296 (4)
O41A0.66039 (15)0.69456 (9)0.71935 (10)0.0400 (3)
C5A0.6972 (2)0.86709 (13)0.66526 (12)0.0309 (4)
H5A0.81310.86150.66640.037*
C6A0.6232 (2)0.95624 (13)0.63654 (12)0.0287 (3)
C61A0.7149 (2)1.04783 (14)0.60124 (14)0.0366 (4)
H61A0.82491.03980.61760.055*
H61B0.64851.11270.63150.055*
H61C0.73171.05120.53140.055*
N1B0.53903 (17)0.04939 (11)0.86396 (10)0.0296 (3)
H1B0.501 (2)0.0102 (13)0.8852 (14)0.036*
C2B0.4328 (2)0.12959 (13)0.84211 (12)0.0282 (3)
S21B0.22937 (5)0.11895 (3)0.85068 (4)0.03592 (13)
N3B0.50420 (17)0.21859 (11)0.81230 (11)0.0301 (3)
H3B0.439 (2)0.2708 (13)0.8008 (14)0.036*
C4B0.6731 (2)0.23176 (14)0.80270 (14)0.0350 (4)
O41B0.72348 (16)0.31615 (10)0.77527 (12)0.0485 (4)
C5B0.7756 (2)0.14273 (14)0.82645 (13)0.0349 (4)
H5B0.89280.14580.82040.042*
C6B0.7077 (2)0.05468 (13)0.85730 (12)0.0310 (4)
C61B0.8046 (2)0.04043 (15)0.88667 (14)0.0395 (4)
H61D0.92550.03310.86860.059*
H61E0.78330.10300.85430.059*
H61F0.76860.04760.95640.059*
N1C0.29400 (18)0.40736 (12)0.77383 (11)0.0361 (3)
C2C0.3541 (2)0.50040 (13)0.75200 (13)0.0324 (4)
N21C0.51981 (19)0.50244 (13)0.74292 (15)0.0453 (4)
H21C0.586 (3)0.4483 (15)0.7502 (17)0.054*
H22C0.562 (3)0.5620 (15)0.7349 (17)0.054*
N3C0.26437 (18)0.59105 (12)0.73741 (12)0.0369 (3)
C4C0.0981 (2)0.58694 (16)0.74605 (15)0.0426 (4)
H4C0.02900.64880.73640.051*0.182 (5)
C5C0.0240 (2)0.49327 (17)0.76904 (16)0.0481 (5)
H5C0.09330.49070.77550.058*
C6C0.1277 (2)0.40755 (16)0.78137 (15)0.0408 (4)
H6C0.08040.34350.79630.049*0.818 (5)
N41C0.0045 (3)0.67242 (17)0.7335 (2)0.0594 (9)0.818 (5)
H41C0.054 (4)0.7283 (19)0.713 (2)0.071*0.818 (5)
H42C0.103 (3)0.675 (3)0.729 (2)0.071*0.818 (5)
N41'0.0469 (11)0.3370 (7)0.7899 (8)0.052 (3)0.182 (5)
H41'0.09540.27240.79210.062*0.182 (5)
H42'0.06240.34860.79400.062*0.182 (5)
C1X0.0801 (3)1.2088 (2)0.5787 (2)0.0658 (7)
H1XA0.01251.25340.63290.099*0.898 (4)
H1XB0.07191.13470.59400.099*0.898 (4)
H1XC0.03771.22500.52140.099*0.898 (4)
H1XD0.03611.23500.57720.099*0.102 (4)
H1XE0.08451.19060.64460.099*0.102 (4)
H1XF0.11841.14630.53650.099*0.102 (4)
O21X0.37568 (18)1.16082 (10)0.57009 (11)0.0451 (3)
C31X0.4755 (4)1.34632 (19)0.51789 (19)0.0666 (7)
H3XA0.55011.28000.51290.100*0.898 (4)
H3XB0.48511.38810.57310.100*0.898 (4)
H3XC0.50851.38570.45910.100*0.898 (4)
H3XD0.41061.41110.50400.100*0.102 (4)
H3XE0.56471.32280.46080.100*0.102 (4)
H3XF0.52661.35980.57130.100*0.102 (4)
C32X0.1741 (5)1.4083 (2)0.5147 (2)0.0883 (10)
H4XA0.19831.42550.44660.132*0.898 (4)
H4XB0.17721.47090.55330.132*0.898 (4)
H4XC0.06181.38460.53380.132*0.898 (4)
H4XD0.05581.43000.51460.132*0.102 (4)
H4XE0.24551.41530.45020.132*0.102 (4)
H4XF0.20821.45300.56040.132*0.102 (4)
C1Y0.1704 (3)0.1831 (2)0.93008 (18)0.0604 (6)
H1YA0.15100.22340.87650.091*0.615 (6)
H1YB0.14850.10780.91930.091*0.615 (6)
H1YC0.09430.20120.99010.091*0.615 (6)
H1YD0.05840.20590.93650.091*0.385 (6)
H1YE0.21120.15810.86500.091*0.385 (6)
H1YF0.16310.12610.97690.091*0.385 (6)
O21Y0.46831 (18)0.15098 (10)0.91848 (11)0.0472 (3)
C31Y0.5723 (4)0.3364 (2)0.9634 (2)0.0738 (8)
H3YA0.62030.39570.91840.111*0.615 (6)
H3YB0.58070.35651.02830.111*0.615 (6)
H3YC0.63460.27600.94410.111*0.615 (6)
H3YD0.51600.40010.97720.111*0.385 (6)
H3YE0.61130.31601.01950.111*0.385 (6)
H3YF0.66920.35010.90820.111*0.385 (6)
C32Y0.2586 (4)0.38080 (18)0.9845 (2)0.0726 (8)
H4YA0.30800.45150.95940.109*0.615 (6)
H4YB0.16680.35600.95400.109*0.615 (6)
H4YC0.21400.38291.05410.109*0.615 (6)
H4YD0.14130.39120.98690.109*0.385 (6)
H4YE0.27870.38731.04900.109*0.385 (6)
H4YF0.33480.43410.94120.109*0.385 (6)
C2X0.2632 (3)1.22962 (17)0.56005 (16)0.0411 (6)0.898 (4)
N3X0.3016 (3)1.32414 (15)0.53055 (15)0.0519 (6)0.898 (4)
C2X'0.3546 (12)1.2584 (7)0.5462 (14)0.039 (4)0.102 (4)
N3X'0.1943 (12)1.2935 (7)0.5445 (12)0.047 (4)0.102 (4)
C2Y0.3552 (5)0.2100 (3)0.9370 (2)0.0399 (10)0.615 (6)
N3Y0.3913 (5)0.3077 (2)0.9629 (2)0.0533 (11)0.615 (6)
C2Y'0.4457 (7)0.2458 (4)0.9403 (4)0.0376 (14)0.385 (6)
N3Y'0.2906 (6)0.2740 (3)0.9483 (3)0.0394 (14)0.385 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0250 (7)0.0263 (7)0.0307 (7)0.0047 (5)0.0057 (6)0.0029 (5)
C2A0.0243 (8)0.0278 (8)0.0260 (8)0.0042 (6)0.0045 (6)0.0012 (6)
S21A0.0208 (2)0.0362 (2)0.0467 (3)0.00462 (16)0.00888 (17)0.01143 (18)
N3A0.0217 (6)0.0281 (7)0.0352 (8)0.0068 (5)0.0075 (6)0.0051 (6)
C4A0.0231 (8)0.0316 (8)0.0349 (9)0.0047 (6)0.0083 (7)0.0013 (7)
O41A0.0268 (6)0.0334 (6)0.0644 (9)0.0068 (5)0.0187 (6)0.0130 (6)
C5A0.0226 (8)0.0370 (9)0.0355 (9)0.0094 (7)0.0088 (7)0.0033 (7)
C6A0.0271 (8)0.0333 (8)0.0270 (8)0.0101 (7)0.0058 (6)0.0006 (6)
C61A0.0344 (9)0.0376 (9)0.0412 (10)0.0166 (7)0.0101 (8)0.0078 (8)
N1B0.0261 (7)0.0292 (7)0.0326 (8)0.0000 (6)0.0066 (6)0.0031 (6)
C2B0.0258 (8)0.0303 (8)0.0272 (8)0.0004 (6)0.0054 (6)0.0006 (6)
S21B0.0236 (2)0.0369 (2)0.0488 (3)0.00511 (16)0.01088 (18)0.00844 (19)
N3B0.0216 (7)0.0285 (7)0.0401 (8)0.0006 (5)0.0087 (6)0.0045 (6)
C4B0.0252 (8)0.0378 (9)0.0415 (10)0.0025 (7)0.0078 (7)0.0048 (8)
O41B0.0280 (6)0.0389 (7)0.0796 (11)0.0065 (5)0.0136 (7)0.0181 (7)
C5B0.0208 (8)0.0440 (10)0.0395 (10)0.0002 (7)0.0085 (7)0.0061 (8)
C6B0.0257 (8)0.0371 (9)0.0280 (8)0.0036 (7)0.0057 (7)0.0015 (7)
C61B0.0312 (9)0.0447 (10)0.0403 (10)0.0057 (8)0.0091 (8)0.0080 (8)
N1C0.0268 (7)0.0376 (8)0.0449 (9)0.0103 (6)0.0072 (6)0.0021 (7)
C2C0.0244 (8)0.0352 (9)0.0382 (10)0.0030 (7)0.0087 (7)0.0001 (7)
N21C0.0238 (8)0.0297 (8)0.0857 (14)0.0057 (6)0.0184 (8)0.0122 (8)
N3C0.0239 (7)0.0400 (8)0.0488 (9)0.0042 (6)0.0122 (6)0.0047 (7)
C4C0.0268 (9)0.0505 (11)0.0528 (12)0.0008 (8)0.0158 (8)0.0018 (9)
C5C0.0245 (9)0.0611 (13)0.0605 (13)0.0124 (9)0.0103 (9)0.0022 (10)
C6C0.0278 (9)0.0450 (10)0.0503 (12)0.0117 (8)0.0070 (8)0.0010 (8)
N41C0.0265 (11)0.0376 (12)0.122 (2)0.0090 (8)0.0305 (12)0.0301 (12)
N41'0.033 (5)0.027 (5)0.097 (9)0.014 (4)0.015 (5)0.014 (4)
C1X0.0441 (12)0.0692 (15)0.0753 (17)0.0042 (11)0.0017 (12)0.0036 (13)
O21X0.0471 (8)0.0323 (7)0.0557 (9)0.0048 (6)0.0115 (7)0.0110 (6)
C31X0.0923 (19)0.0496 (13)0.0565 (14)0.0365 (13)0.0017 (13)0.0040 (11)
C32X0.129 (3)0.0474 (14)0.0687 (17)0.0378 (15)0.0078 (17)0.0070 (12)
C1Y0.0478 (12)0.0782 (16)0.0502 (13)0.0146 (11)0.0123 (10)0.0041 (12)
O21Y0.0451 (8)0.0361 (7)0.0594 (9)0.0040 (6)0.0108 (7)0.0090 (6)
C31Y0.0840 (18)0.0663 (15)0.0636 (16)0.0371 (14)0.0245 (14)0.0060 (12)
C32Y0.106 (2)0.0439 (13)0.0626 (16)0.0259 (13)0.0004 (15)0.0096 (11)
C2X0.0498 (14)0.0354 (12)0.0348 (12)0.0018 (10)0.0049 (10)0.0011 (9)
N3X0.0697 (15)0.0302 (10)0.0496 (12)0.0008 (10)0.0053 (11)0.0049 (8)
C2X'0.047 (7)0.033 (7)0.035 (9)0.008 (6)0.002 (8)0.002 (7)
N3X'0.053 (7)0.035 (7)0.045 (9)0.016 (5)0.005 (8)0.004 (6)
C2Y0.049 (2)0.034 (2)0.0328 (17)0.0020 (17)0.0048 (15)0.0006 (13)
N3Y0.070 (2)0.0334 (18)0.0508 (18)0.0018 (16)0.0063 (16)0.0079 (13)
C2Y'0.045 (3)0.026 (3)0.036 (3)0.008 (2)0.005 (2)0.003 (2)
N3Y'0.047 (3)0.028 (2)0.040 (2)0.005 (2)0.003 (2)0.0068 (17)
Geometric parameters (Å, º) top
N1A—C2A1.355 (2)C1X—H1XC0.9800
N1A—C6A1.372 (2)C1X—H1XD0.9800
N1A—H1A0.882 (15)C1X—H1XE0.9800
C2A—N3A1.360 (2)C1X—H1XF0.9800
C2A—S21A1.6707 (16)O21X—C2X1.236 (3)
N3A—C4A1.386 (2)O21X—C2X'1.298 (8)
N3A—H3A0.872 (15)C31X—N3X1.457 (3)
C4A—O41A1.235 (2)C31X—C2X'1.575 (8)
C4A—C5A1.429 (2)C31X—H3XA0.9800
C5A—C6A1.342 (2)C31X—H3XB0.9800
C5A—H5A0.9500C31X—H3XC0.9800
C6A—C61A1.490 (2)C31X—H3XD0.9800
C61A—H61A0.9800C31X—H3XE0.9800
C61A—H61B0.9800C31X—H3XF0.9800
C61A—H61C0.9800C32X—N3X1.470 (3)
N1B—C2B1.355 (2)C32X—N3X'1.532 (7)
N1B—C6B1.374 (2)C32X—H4XA0.9800
N1B—H1B0.883 (15)C32X—H4XB0.9800
C2B—N3B1.363 (2)C32X—H4XC0.9800
C2B—S21B1.6668 (17)C32X—H4XD0.9800
N3B—C4B1.390 (2)C32X—H4XE0.9800
N3B—H3B0.850 (15)C32X—H4XF0.9800
C4B—O41B1.232 (2)C1Y—N3Y'1.502 (5)
C4B—C5B1.428 (2)C1Y—C2Y1.543 (4)
C5B—C6B1.343 (3)C1Y—H1YA0.9800
C5B—H5B0.9500C1Y—H1YB0.9800
C6B—C61B1.493 (2)C1Y—H1YC0.9800
C61B—H61D0.9800C1Y—H1YD0.9800
C61B—H61E0.9800C1Y—H1YE0.9800
C61B—H61F0.9800C1Y—H1YF0.9800
N1C—C6C1.343 (2)O21Y—C2Y1.243 (4)
N1C—C2C1.349 (2)O21Y—C2Y'1.277 (5)
C2C—N21C1.339 (2)C31Y—N3Y1.491 (4)
C2C—N3C1.346 (2)C31Y—C2Y'1.556 (5)
N21C—H21C0.853 (16)C31Y—H3YA0.9800
N21C—H22C0.870 (16)C31Y—H3YB0.9800
N3C—C4C1.348 (2)C31Y—H3YC0.9800
C4C—N41C1.301 (3)C31Y—H3YD0.9800
C4C—C5C1.410 (3)C31Y—H3YE0.9800
C4C—H4C0.9500C31Y—H3YF0.9800
C5C—C6C1.348 (3)C32Y—N3Y'1.491 (4)
C5C—H5C0.9500C32Y—N3Y1.494 (4)
C6C—N41'1.170 (8)C32Y—H4YA0.9800
C6C—H6C0.9500C32Y—H4YB0.9800
N41C—H41C0.880 (18)C32Y—H4YC0.9800
N41C—H42C0.895 (18)C32Y—H4YD0.9800
N41'—H41'0.8800C32Y—H4YE0.9800
N41'—H42'0.8800C32Y—H4YF0.9800
C1X—N3X'1.519 (8)C2X—N3X1.329 (3)
C1X—C2X1.517 (3)C2X'—N3X'1.348 (9)
C1X—H1XA0.9800C2Y—N3Y1.326 (5)
C1X—H1XB0.9800C2Y'—N3Y'1.342 (7)
C2A—N1A—C6A123.42 (14)H1XE—C1X—H1XF109.5
C2A—N1A—H1A119.9 (13)N3X—C31X—H3XA109.5
C6A—N1A—H1A116.7 (13)N3X—C31X—H3XB109.5
N1A—C2A—N3A115.86 (14)H3XA—C31X—H3XB109.5
N1A—C2A—S21A121.76 (12)N3X—C31X—H3XC109.5
N3A—C2A—S21A122.39 (12)H3XA—C31X—H3XC109.5
C2A—N3A—C4A125.09 (14)H3XB—C31X—H3XC109.5
C2A—N3A—H3A119.0 (13)C2X'—C31X—H3XD109.5
C4A—N3A—H3A115.9 (13)C2X'—C31X—H3XE109.5
O41A—C4A—N3A119.27 (15)H3XD—C31X—H3XE109.5
O41A—C4A—C5A125.37 (15)C2X'—C31X—H3XF109.5
N3A—C4A—C5A115.34 (14)H3XD—C31X—H3XF109.5
C6A—C5A—C4A120.49 (15)H3XE—C31X—H3XF109.5
C6A—C5A—H5A119.8N3X—C32X—H4XA109.5
C4A—C5A—H5A119.8N3X—C32X—H4XB109.5
C5A—C6A—N1A119.78 (15)H4XA—C32X—H4XB109.5
C5A—C6A—C61A123.54 (15)N3X—C32X—H4XC109.5
N1A—C6A—C61A116.67 (15)H4XA—C32X—H4XC109.5
C6A—C61A—H61A109.5H4XB—C32X—H4XC109.5
C6A—C61A—H61B109.5N3X'—C32X—H4XD109.5
H61A—C61A—H61B109.5N3X'—C32X—H4XE109.5
C6A—C61A—H61C109.5H4XD—C32X—H4XE109.5
H61A—C61A—H61C109.5N3X'—C32X—H4XF109.5
H61B—C61A—H61C109.5H4XD—C32X—H4XF109.5
C2B—N1B—C6B123.75 (15)H4XE—C32X—H4XF109.5
C2B—N1B—H1B120.7 (13)C2Y—C1Y—H1YA109.5
C6B—N1B—H1B115.6 (13)C2Y—C1Y—H1YB109.5
N1B—C2B—N3B115.42 (14)H1YA—C1Y—H1YB109.5
N1B—C2B—S21B121.90 (13)C2Y—C1Y—H1YC109.5
N3B—C2B—S21B122.67 (12)H1YA—C1Y—H1YC109.5
C2B—N3B—C4B125.31 (14)H1YB—C1Y—H1YC109.5
C2B—N3B—H3B116.8 (14)N3Y'—C1Y—H1YD109.5
C4B—N3B—H3B117.8 (14)N3Y'—C1Y—H1YE109.5
O41B—C4B—N3B119.61 (15)H1YD—C1Y—H1YE109.5
O41B—C4B—C5B125.10 (16)N3Y'—C1Y—H1YF109.5
N3B—C4B—C5B115.29 (15)H1YD—C1Y—H1YF109.5
C6B—C5B—C4B120.47 (16)H1YE—C1Y—H1YF109.5
C6B—C5B—H5B119.8N3Y—C31Y—H3YA109.5
C4B—C5B—H5B119.8N3Y—C31Y—H3YB109.5
C5B—C6B—N1B119.74 (15)H3YA—C31Y—H3YB109.5
C5B—C6B—C61B123.85 (16)N3Y—C31Y—H3YC109.5
N1B—C6B—C61B116.40 (15)H3YA—C31Y—H3YC109.5
C6B—C61B—H61D109.5H3YB—C31Y—H3YC109.5
C6B—C61B—H61E109.5C2Y'—C31Y—H3YD109.5
H61D—C61B—H61E109.5C2Y'—C31Y—H3YE109.5
C6B—C61B—H61F109.5H3YD—C31Y—H3YE109.5
H61D—C61B—H61F109.5C2Y'—C31Y—H3YF109.5
H61E—C61B—H61F109.5H3YD—C31Y—H3YF109.5
C6C—N1C—C2C115.34 (15)H3YE—C31Y—H3YF109.5
N21C—C2C—N3C116.74 (16)N3Y—C32Y—H4YA109.5
N21C—C2C—N1C116.75 (15)N3Y—C32Y—H4YB109.5
N3C—C2C—N1C126.51 (16)H4YA—C32Y—H4YB109.5
C2C—N21C—H21C122.8 (16)N3Y—C32Y—H4YC109.5
C2C—N21C—H22C119.7 (16)H4YA—C32Y—H4YC109.5
H21C—N21C—H22C117 (2)H4YB—C32Y—H4YC109.5
C2C—N3C—C4C115.73 (16)N3Y'—C32Y—H4YD109.5
N41C—C4C—N3C118.55 (19)N3Y'—C32Y—H4YE109.5
N41C—C4C—C5C119.70 (18)H4YD—C32Y—H4YE109.5
N3C—C4C—C5C121.75 (17)N3Y'—C32Y—H4YF109.5
N3C—C4C—H4C119.1H4YD—C32Y—H4YF109.5
C5C—C4C—H4C119.1H4YE—C32Y—H4YF109.5
C6C—C5C—C4C116.82 (17)O21X—C2X—N3X120.0 (2)
C6C—C5C—H5C121.6O21X—C2X—C1X121.7 (2)
C4C—C5C—H5C121.6N3X—C2X—C1X118.3 (2)
N41'—C6C—N1C129.6 (5)C2X—N3X—C31X118.4 (2)
N41'—C6C—C5C106.2 (5)C2X—N3X—C32X122.6 (2)
N1C—C6C—C5C123.86 (18)C31X—N3X—C32X119.0 (2)
N1C—C6C—H6C118.1O21X—C2X'—N3X'113.9 (7)
C5C—C6C—H6C118.1O21X—C2X'—C31X134.3 (7)
C4C—N41C—H41C119 (2)N3X'—C2X'—C31X111.8 (6)
C4C—N41C—H42C124 (2)C2X'—N3X'—C1X110.0 (6)
H41C—N41C—H42C115 (3)C2X'—N3X'—C32X112.6 (6)
C6C—N41'—H41'120.0C1X—N3X'—C32X137.2 (7)
C6C—N41'—H42'120.0O21Y—C2Y—N3Y119.5 (4)
H41'—N41'—H42'120.0O21Y—C2Y—C1Y126.6 (3)
C2X—C1X—H1XA109.5N3Y—C2Y—C1Y113.9 (3)
C2X—C1X—H1XB109.5C2Y—N3Y—C31Y114.2 (3)
H1XA—C1X—H1XB109.5C2Y—N3Y—C32Y120.8 (3)
C2X—C1X—H1XC109.5C31Y—N3Y—C32Y125.0 (3)
H1XA—C1X—H1XC109.5O21Y—C2Y'—N3Y'117.7 (5)
H1XB—C1X—H1XC109.5O21Y—C2Y'—C31Y129.4 (4)
N3X'—C1X—H1XD109.5N3Y'—C2Y'—C31Y112.9 (4)
N3X'—C1X—H1XE109.5C2Y'—N3Y'—C32Y117.8 (4)
H1XD—C1X—H1XE109.5C2Y'—N3Y'—C1Y111.2 (4)
N3X'—C1X—H1XF109.5C32Y—N3Y'—C1Y130.4 (4)
H1XD—C1X—H1XF109.5
C6A—N1A—C2A—N3A1.0 (2)O21X—C2X—N3X—C32X178.3 (2)
C6A—N1A—C2A—S21A179.18 (13)C1X—C2X—N3X—C32X0.5 (3)
N1A—C2A—N3A—C4A0.1 (2)C2X'—C31X—N3X—C2X1.7 (12)
S21A—C2A—N3A—C4A179.65 (13)C2X'—C31X—N3X—C32X178.8 (12)
C2A—N3A—C4A—O41A179.10 (16)N3X'—C32X—N3X—C2X1.5 (11)
C2A—N3A—C4A—C5A0.4 (2)N3X'—C32X—N3X—C31X178.5 (12)
O41A—C4A—C5A—C6A178.13 (17)C2X—O21X—C2X'—N3X'2.4 (9)
N3A—C4A—C5A—C6A0.5 (2)C2X—O21X—C2X'—C31X178 (3)
C4A—C5A—C6A—N1A1.6 (3)N3X—C31X—C2X'—O21X179 (3)
C4A—C5A—C6A—C61A177.10 (16)N3X—C31X—C2X'—N3X'0.9 (9)
C2A—N1A—C6A—C5A1.9 (3)O21X—C2X'—N3X'—C1X4 (2)
C2A—N1A—C6A—C61A176.85 (15)C31X—C2X'—N3X'—C1X176.1 (11)
C6B—N1B—C2B—N3B0.0 (2)O21X—C2X'—N3X'—C32X179.2 (12)
C6B—N1B—C2B—S21B179.57 (13)C31X—C2X'—N3X'—C32X0 (2)
N1B—C2B—N3B—C4B0.3 (3)C2X—C1X—N3X'—C2X'0.8 (9)
S21B—C2B—N3B—C4B179.26 (14)C2X—C1X—N3X'—C32X176 (3)
C2B—N3B—C4B—O41B179.81 (17)N3X—C32X—N3X'—C2X'0.5 (9)
C2B—N3B—C4B—C5B0.2 (3)N3X—C32X—N3X'—C1X176 (3)
O41B—C4B—C5B—C6B178.87 (19)C2Y'—O21Y—C2Y—N3Y4.4 (4)
N3B—C4B—C5B—C6B1.2 (3)C2Y'—O21Y—C2Y—C1Y173.5 (6)
C4B—C5B—C6B—N1B1.5 (3)N3Y'—C1Y—C2Y—O21Y173.4 (5)
C4B—C5B—C6B—C61B177.88 (17)N3Y'—C1Y—C2Y—N3Y4.6 (3)
C2B—N1B—C6B—C5B0.9 (3)O21Y—C2Y—N3Y—C31Y1.9 (4)
C2B—N1B—C6B—C61B178.53 (16)C1Y—C2Y—N3Y—C31Y176.2 (2)
C6C—N1C—C2C—N21C179.27 (18)O21Y—C2Y—N3Y—C32Y179.3 (3)
C6C—N1C—C2C—N3C0.1 (3)C1Y—C2Y—N3Y—C32Y1.2 (4)
N21C—C2C—N3C—C4C179.41 (18)C2Y'—C31Y—N3Y—C2Y2.5 (4)
N1C—C2C—N3C—C4C0.2 (3)C2Y'—C31Y—N3Y—C32Y174.8 (5)
C2C—N3C—C4C—N41C179.5 (2)N3Y'—C32Y—N3Y—C2Y5.8 (3)
C2C—N3C—C4C—C5C0.1 (3)N3Y'—C32Y—N3Y—C31Y171.3 (5)
N41C—C4C—C5C—C6C179.8 (2)C2Y—O21Y—C2Y'—N3Y'3.9 (3)
N3C—C4C—C5C—C6C0.5 (3)C2Y—O21Y—C2Y'—C31Y173.6 (8)
C2C—N1C—C6C—N41'171.6 (8)N3Y—C31Y—C2Y'—O21Y172.3 (7)
C2C—N1C—C6C—C5C0.4 (3)N3Y—C31Y—C2Y'—N3Y'5.2 (3)
C4C—C5C—C6C—N41'172.9 (6)O21Y—C2Y'—N3Y'—C32Y173.2 (4)
C4C—C5C—C6C—N1C0.6 (3)C31Y—C2Y'—N3Y'—C32Y4.7 (6)
C2X'—O21X—C2X—N3X1.5 (14)O21Y—C2Y'—N3Y'—C1Y0.6 (6)
C2X'—O21X—C2X—C1X179.7 (14)C31Y—C2Y'—N3Y'—C1Y177.2 (3)
N3X'—C1X—C2X—O21X176.9 (11)N3Y—C32Y—N3Y'—C2Y'1.6 (3)
N3X'—C1X—C2X—N3X1.9 (11)N3Y—C32Y—N3Y'—C1Y169.2 (6)
O21X—C2X—N3X—C31X4.7 (3)C2Y—C1Y—N3Y'—C2Y'2.7 (3)
C1X—C2X—N3X—C31X176.5 (2)C2Y—C1Y—N3Y'—C32Y168.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.88 (2)1.89 (2)2.7447 (19)165 (2)
N3A—H3A···N3C0.87 (2)2.26 (2)3.120 (2)171 (2)
N1B—H1B···O21Y0.88 (2)1.90 (2)2.766 (2)168 (2)
N3B—H3B···N1C0.85 (2)2.09 (2)2.936 (2)175 (2)
N21C—H21C···O41B0.85 (2)2.01 (2)2.856 (2)175 (2)
N21C—H22C···O41A0.87 (2)1.95 (2)2.822 (2)178 (2)
N41C—H41C···S21A0.88 (2)2.49 (2)3.365 (2)172 (3)
N41C—H42C···O41Ai0.90 (2)1.97 (2)2.862 (2)174 (3)
N41—H41···S21B0.882.393.234 (9)161
N41—H42···O41Bi0.881.932.755 (9)155
Symmetry code: (i) x1, y, z.
(IV) 6-Methyl-2-thiouracil–2,4-diaminopyrimidine–dimethylformamide (2/1/2) top
Crystal data top
C5H6N2OS·0.5C4H6N4·C3H7NOF(000) = 1144
Mr = 270.34Dx = 1.315 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.9786 (15) ÅCell parameters from 10267 reflections
b = 8.2010 (11) Åθ = 3.5–26.3°
c = 22.568 (2) ŵ = 0.24 mm1
β = 99.899 (8)°T = 173 K
V = 2731.0 (5) Å3Needle, colourless
Z = 80.55 × 0.15 × 0.09 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2026 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.047
ω scansθmax = 25.9°, θmin = 3.5°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1818
Tmin = 0.957, Tmax = 0.980k = 1010
10452 measured reflectionsl = 2427
2624 independent reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.6173P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2624 reflectionsΔρmax = 0.19 e Å3
188 parametersΔρmin = 0.18 e Å3
Crystal data top
C5H6N2OS·0.5C4H6N4·C3H7NOV = 2731.0 (5) Å3
Mr = 270.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.9786 (15) ŵ = 0.24 mm1
b = 8.2010 (11) ÅT = 173 K
c = 22.568 (2) Å0.55 × 0.15 × 0.09 mm
β = 99.899 (8)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2624 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2026 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.980Rint = 0.047
10452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0405 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
2624 reflectionsΔρmin = 0.18 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.62272 (9)0.34325 (19)0.50684 (7)0.0338 (3)
H1A0.6395 (13)0.389 (2)0.4755 (8)0.041*
C2A0.60075 (11)0.4457 (2)0.54928 (9)0.0313 (4)
S21A0.61329 (3)0.64761 (6)0.54377 (2)0.03786 (15)
N3A0.56941 (10)0.37360 (17)0.59575 (7)0.0331 (3)
H3A0.5556 (13)0.437 (2)0.6244 (8)0.040*
C4A0.55733 (13)0.2068 (2)0.60169 (10)0.0400 (5)
O41A0.52625 (12)0.15493 (18)0.64540 (7)0.0580 (4)
C5A0.58231 (13)0.1089 (2)0.55504 (10)0.0410 (5)
H5A0.57630.00630.55650.049*
C6A0.61419 (11)0.1779 (2)0.50923 (9)0.0358 (4)
C61A0.64137 (14)0.0844 (3)0.45808 (11)0.0466 (5)
H61A0.64090.03270.46680.070*0.66 (3)
H61B0.70240.11730.45290.070*0.66 (3)
H61C0.59850.10730.42110.070*0.66 (3)
H61D0.59350.00630.44240.070*0.34 (3)
H61E0.69790.02550.47230.070*0.34 (3)
H61F0.65040.16020.42610.070*0.34 (3)
C2B0.50000.4900 (3)0.75000.0380 (6)
N21B0.50000.3266 (3)0.75000.0427 (6)
H21B0.5127 (15)0.277 (3)0.7184 (8)0.051*
N3B0.52076 (11)0.5639 (2)0.70080 (9)0.0435 (4)
C4B0.51911 (14)0.7282 (3)0.70231 (12)0.0536 (6)
H4B0.53200.78610.66830.064*0.5
N41B0.5344 (3)0.8133 (4)0.66147 (17)0.0455 (8)0.5
H41B0.551 (3)0.756 (5)0.6331 (16)0.055*0.5
H42B0.532 (3)0.920 (2)0.662 (2)0.055*0.5
C5B0.50000.8159 (4)0.75000.0678 (11)
H5B0.50000.93180.75000.081*
C1X0.68279 (14)0.5927 (3)0.39205 (10)0.0460 (5)
H1X0.66300.67150.41780.055*
O11X0.68408 (10)0.4498 (2)0.40787 (7)0.0516 (4)
N2X0.70698 (11)0.6454 (2)0.34158 (8)0.0484 (4)
C3X0.73637 (17)0.5313 (4)0.29970 (12)0.0666 (7)
H3X10.72820.41950.31310.100*
H3X20.80050.54990.29810.100*
H3X30.70030.54750.25960.100*
C4X0.70508 (18)0.8165 (3)0.32632 (12)0.0634 (7)
H4X10.67910.87850.35640.095*
H4X20.66790.83250.28660.095*
H4X30.76690.85460.32570.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0355 (7)0.0297 (8)0.0371 (9)0.0013 (6)0.0091 (6)0.0058 (7)
C2A0.0314 (8)0.0275 (9)0.0340 (10)0.0002 (7)0.0026 (7)0.0044 (8)
S21A0.0507 (3)0.0242 (2)0.0401 (3)0.0029 (2)0.0118 (2)0.0011 (2)
N3A0.0456 (8)0.0205 (8)0.0343 (9)0.0013 (6)0.0102 (7)0.0038 (7)
C4A0.0531 (11)0.0250 (9)0.0430 (12)0.0002 (8)0.0115 (9)0.0037 (9)
O41A0.1016 (12)0.0265 (7)0.0541 (10)0.0058 (7)0.0366 (9)0.0036 (7)
C5A0.0503 (10)0.0235 (9)0.0500 (13)0.0018 (7)0.0112 (9)0.0071 (8)
C6A0.0332 (8)0.0288 (9)0.0447 (12)0.0013 (7)0.0051 (8)0.0107 (8)
C61A0.0488 (11)0.0407 (11)0.0528 (14)0.0012 (9)0.0155 (10)0.0167 (10)
C2B0.0381 (13)0.0214 (13)0.0498 (18)0.0000.0056 (12)0.000
N21B0.0738 (16)0.0206 (11)0.0343 (14)0.0000.0111 (12)0.000
N3B0.0463 (9)0.0239 (8)0.0563 (12)0.0015 (6)0.0020 (8)0.0096 (8)
C4B0.0505 (12)0.0244 (10)0.0792 (18)0.0050 (8)0.0080 (11)0.0150 (11)
N41B0.079 (2)0.0212 (17)0.042 (2)0.0013 (15)0.0258 (18)0.0043 (15)
C5B0.067 (2)0.0153 (15)0.110 (3)0.0000.015 (2)0.000
C1X0.0486 (11)0.0559 (14)0.0358 (12)0.0037 (9)0.0136 (9)0.0060 (10)
O11X0.0609 (9)0.0505 (10)0.0462 (9)0.0003 (7)0.0175 (7)0.0010 (7)
N2X0.0528 (9)0.0610 (12)0.0338 (10)0.0094 (9)0.0145 (8)0.0070 (9)
C3X0.0637 (14)0.094 (2)0.0473 (15)0.0027 (14)0.0253 (12)0.0166 (14)
C4X0.0738 (15)0.0708 (18)0.0463 (14)0.0179 (13)0.0122 (11)0.0082 (12)
Geometric parameters (Å, º) top
N1A—C2A1.356 (2)N21B—H21B0.868 (15)
N1A—C6A1.364 (2)N3B—C4B1.348 (3)
N1A—H1A0.874 (15)C4B—N41B1.209 (4)
C2A—N3A1.356 (2)C4B—C5B1.365 (3)
C2A—S21A1.6735 (18)C4B—H4B0.9500
N3A—C4A1.390 (2)N41B—H41B0.870 (19)
N3A—H3A0.882 (15)N41B—H42B0.878 (19)
C4A—O41A1.236 (2)C5B—C4Bi1.365 (3)
C4A—C5A1.424 (3)C5B—H5B0.9500
C5A—C6A1.337 (3)C1X—O11X1.225 (3)
C5A—H5A0.9500C1X—N2X1.326 (3)
C6A—C61A1.499 (3)C1X—H1X0.9500
C61A—H61A0.9800N2X—C4X1.444 (3)
C61A—H61B0.9800N2X—C3X1.451 (3)
C61A—H61C0.9800C3X—H3X10.9800
C61A—H61D0.9800C3X—H3X20.9800
C61A—H61E0.9800C3X—H3X30.9800
C61A—H61F0.9800C4X—H4X10.9800
C2B—N21B1.340 (3)C4X—H4X20.9800
C2B—N3Bi1.347 (2)C4X—H4X30.9800
C2B—N3B1.347 (2)
C2A—N1A—C6A123.52 (17)N3Bi—C2B—N3B126.5 (3)
C2A—N1A—H1A116.4 (14)C2B—N21B—H21B117.7 (16)
C6A—N1A—H1A120.0 (14)C2B—N3B—C4B114.9 (2)
N1A—C2A—N3A115.73 (16)N41B—C4B—N3B123.5 (3)
N1A—C2A—S21A121.10 (15)N41B—C4B—C5B112.9 (2)
N3A—C2A—S21A123.17 (14)N3B—C4B—C5B123.6 (2)
C2A—N3A—C4A124.90 (16)N3B—C4B—H4B118.2
C2A—N3A—H3A117.9 (14)C5B—C4B—H4B118.2
C4A—N3A—H3A117.2 (14)C4B—N41B—H41B111 (3)
O41A—C4A—N3A119.26 (18)C4B—N41B—H42B124 (3)
O41A—C4A—C5A125.37 (18)H41B—N41B—H42B125 (5)
N3A—C4A—C5A115.36 (18)C4B—C5B—C4Bi116.4 (3)
C6A—C5A—C4A120.51 (18)C4B—C5B—H5B121.8
C6A—C5A—H5A119.7C4Bi—C5B—H5B121.8
C4A—C5A—H5A119.7O11X—C1X—N2X124.7 (2)
C5A—C6A—N1A119.97 (17)O11X—C1X—H1X117.6
C5A—C6A—C61A124.02 (18)N2X—C1X—H1X117.6
N1A—C6A—C61A116.01 (18)C1X—N2X—C4X121.65 (19)
C6A—C61A—H61A109.5C1X—N2X—C3X120.5 (2)
C6A—C61A—H61B109.5C4X—N2X—C3X117.8 (2)
H61A—C61A—H61B109.5N2X—C3X—H3X1109.5
C6A—C61A—H61C109.5N2X—C3X—H3X2109.5
H61A—C61A—H61C109.5H3X1—C3X—H3X2109.5
H61B—C61A—H61C109.5N2X—C3X—H3X3109.5
C6A—C61A—H61D109.5H3X1—C3X—H3X3109.5
C6A—C61A—H61E109.5H3X2—C3X—H3X3109.5
H61D—C61A—H61E109.5N2X—C4X—H4X1109.5
C6A—C61A—H61F109.5N2X—C4X—H4X2109.5
H61D—C61A—H61F109.5H4X1—C4X—H4X2109.5
H61E—C61A—H61F109.5N2X—C4X—H4X3109.5
N21B—C2B—N3Bi116.74 (13)H4X1—C4X—H4X3109.5
N21B—C2B—N3B116.74 (13)H4X2—C4X—H4X3109.5
C6A—N1A—C2A—N3A0.3 (3)C2A—N1A—C6A—C5A0.3 (3)
C6A—N1A—C2A—S21A179.73 (14)C2A—N1A—C6A—C61A179.69 (16)
N1A—C2A—N3A—C4A1.2 (3)N21B—C2B—N3B—C4B179.35 (13)
S21A—C2A—N3A—C4A179.43 (15)N3Bi—C2B—N3B—C4B0.65 (13)
C2A—N3A—C4A—O41A178.34 (19)C2B—N3B—C4B—N41B178.6 (3)
C2A—N3A—C4A—C5A1.3 (3)C2B—N3B—C4B—C5B1.4 (3)
O41A—C4A—C5A—C6A179.1 (2)N41B—C4B—C5B—C4Bi179.2 (3)
N3A—C4A—C5A—C6A0.5 (3)N3B—C4B—C5B—C4Bi0.73 (14)
C4A—C5A—C6A—N1A0.2 (3)O11X—C1X—N2X—C4X179.0 (2)
C4A—C5A—C6A—C61A179.52 (18)O11X—C1X—N2X—C3X1.1 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11X0.87 (2)1.84 (2)2.702 (2)170 (2)
N3A—H3A···N3B0.88 (2)2.15 (2)3.030 (3)173 (2)
N21B—H21B···O41A0.87 (2)1.97 (2)2.8335 (19)173 (2)
N41B—H41B···S21A0.87 (2)2.52 (2)3.373 (3)167 (4)
N41B—H42B···O41Aii0.88 (2)1.96 (2)2.825 (4)168 (5)
Symmetry code: (ii) x, y+1, z.
(V) 2,4,6-Triaminopyrimidinium 6-methyl-2-thiouracilate–6-methyl-2-thiouracil–dimethylformamide (1/1/1) top
Crystal data top
C4H8N5+·C5H5N2OS·C5H6N2OS·2C3H7NOF(000) = 588
Mr = 555.69Dx = 1.367 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 8.2680 (8) ÅCell parameters from 20998 reflections
b = 6.6000 (4) Åθ = 2.5–26.5°
c = 25.043 (2) ŵ = 0.25 mm1
β = 98.887 (7)°T = 173 K
V = 1350.16 (19) Å3Block, colourless
Z = 20.38 × 0.32 × 0.18 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2588 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.032
ω scansθmax = 25.9°, θmin = 2.5°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 109
Tmin = 0.912, Tmax = 0.956k = 88
10981 measured reflectionsl = 3030
2836 independent reflections
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.6067P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2836 reflectionsΔρmax = 0.23 e Å3
244 parametersΔρmin = 0.25 e Å3
Crystal data top
C4H8N5+·C5H5N2OS·C5H6N2OS·2C3H7NOV = 1350.16 (19) Å3
Mr = 555.69Z = 2
Monoclinic, P21/mMo Kα radiation
a = 8.2680 (8) ŵ = 0.25 mm1
b = 6.6000 (4) ÅT = 173 K
c = 25.043 (2) Å0.38 × 0.32 × 0.18 mm
β = 98.887 (7)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2836 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2588 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.956Rint = 0.032
10981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03710 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.23 e Å3
2836 reflectionsΔρmin = 0.25 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.2568 (2)0.25000.07376 (8)0.0303 (4)
H1A0.277 (3)0.25000.1073 (8)0.036*
C2A0.3805 (3)0.25000.03157 (9)0.0277 (5)
S21A0.57544 (7)0.25000.04155 (2)0.03333 (17)
N3A0.3343 (2)0.25000.01840 (8)0.0285 (4)
H3A0.416 (3)0.25000.0454 (9)0.034*
C4A0.1757 (3)0.25000.02881 (9)0.0305 (5)
O41A0.14919 (19)0.25000.07611 (6)0.0387 (4)
C5A0.0527 (3)0.25000.01817 (9)0.0336 (5)
H5A0.05980.25000.01420.040*
C6A0.0955 (3)0.25000.06796 (9)0.0313 (5)
C61A0.0246 (3)0.25000.11931 (10)0.0403 (6)
H61A0.13630.25000.11070.060*0.74 (3)
H62A0.00800.12880.14040.060*0.368 (16)
H63A0.00800.37120.14040.060*0.368 (16)
H64A0.03470.25000.15030.060*0.26 (3)
H65A0.09350.37120.12060.060*0.132 (16)
H66A0.09350.12880.12060.060*0.132 (16)
N1B0.4998 (2)0.25000.42379 (7)0.0303 (4)
H1B0.558 (3)0.25000.4559 (8)0.036*
C2B0.5791 (3)0.25000.37962 (9)0.0302 (5)
S21B0.78692 (7)0.25000.39207 (2)0.0458 (2)
N3B0.4938 (2)0.25000.32940 (7)0.0302 (4)
C4B0.3265 (3)0.25000.32283 (9)0.0304 (5)
O41B0.24638 (19)0.25000.27568 (6)0.0378 (4)
C5B0.2457 (3)0.25000.36933 (9)0.0335 (5)
H5B0.12950.25000.36500.040*
C6B0.3340 (3)0.25000.41956 (9)0.0300 (5)
C61B0.2622 (3)0.25000.47071 (9)0.0377 (6)
H61B0.14250.25000.46210.056*
H62B0.29850.37120.49180.056*0.5
H63B0.29850.12880.49180.056*0.5
N1C0.5835 (2)0.25000.12805 (7)0.0278 (4)
C2C0.5317 (3)0.25000.17556 (9)0.0276 (5)
N21C0.3722 (2)0.25000.17763 (8)0.0369 (5)
H21C0.306 (3)0.25000.1463 (9)0.044*
H22C0.330 (3)0.25000.2071 (9)0.044*
N3C0.6346 (2)0.25000.22384 (8)0.0292 (4)
H3C0.591 (3)0.25000.2541 (8)0.035*
C4C0.8009 (3)0.25000.22510 (9)0.0296 (5)
N41C0.8946 (2)0.25000.27300 (8)0.0406 (5)
H41C0.854 (4)0.25000.3032 (9)0.049*
H42C1.000 (2)0.25000.2727 (13)0.049*
C5C0.8600 (3)0.25000.17666 (9)0.0297 (5)
H5C0.97450.25000.17580.036*
C6C0.7485 (3)0.25000.12902 (9)0.0274 (5)
N61C0.8005 (2)0.25000.08109 (8)0.0341 (5)
H61C0.905 (2)0.25000.0787 (12)0.041*
H62C0.728 (3)0.25000.0523 (9)0.041*
C1X0.4470 (3)0.25000.18893 (10)0.0350 (5)
H1X0.53500.25000.15970.042*
O11X0.3073 (2)0.25000.17780 (7)0.0406 (4)
N2X0.4844 (3)0.25000.23839 (8)0.0357 (5)
C3X0.3574 (3)0.25000.28540 (10)0.0452 (7)
H3X10.24970.25000.27360.068*
H3X20.36840.12880.30710.068*0.5
H3X30.36840.37120.30710.068*0.5
C4X0.6536 (3)0.25000.24770 (12)0.0480 (7)
H4X10.72660.25000.21290.072*
H4X20.67420.37120.26820.072*0.5
H4X30.67420.12880.26820.072*0.5
C1Y0.7031 (3)0.25000.58127 (10)0.0376 (6)
H1Y0.64570.25000.61130.045*
O11Y0.6206 (2)0.25000.53625 (7)0.0456 (5)
N2Y0.8650 (2)0.25000.59181 (8)0.0365 (5)
C3Y0.9650 (3)0.25000.54872 (11)0.0452 (7)
H3Y10.89370.25000.51360.068*
H3Y21.03420.12880.55180.068*0.5
H3Y31.03420.37120.55180.068*0.5
C4Y0.9517 (3)0.25000.64663 (10)0.0495 (7)
H4Y10.87260.25000.67200.074*
H4Y21.02050.37120.65250.074*0.5
H4Y31.02050.12880.65250.074*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0256 (9)0.0436 (11)0.0224 (9)0.0000.0057 (8)0.000
C2A0.0264 (11)0.0317 (11)0.0256 (11)0.0000.0057 (9)0.000
S21A0.0223 (3)0.0524 (4)0.0263 (3)0.0000.0072 (2)0.000
N3A0.0213 (9)0.0415 (11)0.0228 (9)0.0000.0038 (7)0.000
C4A0.0242 (11)0.0417 (13)0.0259 (11)0.0000.0051 (9)0.000
O41A0.0226 (8)0.0714 (12)0.0227 (8)0.0000.0058 (6)0.000
C5A0.0197 (10)0.0520 (14)0.0292 (12)0.0000.0043 (9)0.000
C6A0.0245 (11)0.0408 (13)0.0285 (12)0.0000.0032 (9)0.000
C61A0.0296 (12)0.0621 (17)0.0282 (12)0.0000.0015 (10)0.000
N1B0.0229 (9)0.0478 (12)0.0195 (9)0.0000.0017 (7)0.000
C2B0.0247 (11)0.0436 (13)0.0220 (10)0.0000.0030 (8)0.000
S21B0.0198 (3)0.0935 (6)0.0240 (3)0.0000.0027 (2)0.000
N3B0.0209 (9)0.0473 (12)0.0225 (9)0.0000.0036 (7)0.000
C4B0.0230 (11)0.0420 (13)0.0264 (11)0.0000.0040 (9)0.000
O41B0.0224 (8)0.0685 (12)0.0220 (8)0.0000.0017 (6)0.000
C5B0.0203 (10)0.0549 (15)0.0257 (11)0.0000.0046 (9)0.000
C6B0.0238 (11)0.0422 (13)0.0251 (11)0.0000.0068 (9)0.000
C61B0.0260 (11)0.0639 (17)0.0241 (11)0.0000.0071 (9)0.000
N1C0.0193 (9)0.0415 (11)0.0228 (9)0.0000.0038 (7)0.000
C2C0.0220 (10)0.0376 (12)0.0233 (10)0.0000.0032 (8)0.000
N21C0.0199 (9)0.0691 (15)0.0222 (9)0.0000.0049 (7)0.000
N3C0.0203 (9)0.0461 (11)0.0218 (9)0.0000.0046 (7)0.000
C4C0.0218 (10)0.0413 (13)0.0250 (11)0.0000.0018 (8)0.000
N41C0.0204 (9)0.0797 (17)0.0212 (10)0.0000.0015 (8)0.000
C5C0.0186 (10)0.0455 (13)0.0251 (11)0.0000.0040 (8)0.000
C6C0.0231 (10)0.0354 (12)0.0244 (10)0.0000.0060 (8)0.000
N61C0.0208 (9)0.0600 (13)0.0220 (9)0.0000.0048 (7)0.000
C1X0.0365 (13)0.0415 (13)0.0266 (11)0.0000.0035 (10)0.000
O11X0.0358 (10)0.0577 (11)0.0295 (9)0.0000.0088 (7)0.000
N2X0.0342 (11)0.0480 (12)0.0255 (10)0.0000.0061 (8)0.000
C3X0.0481 (16)0.0606 (17)0.0254 (12)0.0000.0010 (11)0.000
C4X0.0405 (15)0.0672 (19)0.0391 (14)0.0000.0153 (12)0.000
C1Y0.0326 (12)0.0541 (16)0.0261 (12)0.0000.0052 (10)0.000
O11Y0.0375 (10)0.0692 (13)0.0276 (9)0.0000.0029 (7)0.000
N2Y0.0299 (10)0.0583 (13)0.0214 (9)0.0000.0041 (8)0.000
C3Y0.0368 (14)0.0691 (19)0.0316 (13)0.0000.0118 (11)0.000
C4Y0.0403 (14)0.081 (2)0.0253 (12)0.0000.0018 (11)0.000
Geometric parameters (Å, º) top
N1A—C2A1.352 (3)N21C—H21C0.883 (18)
N1A—C6A1.364 (3)N21C—H22C0.862 (17)
N1A—H1A0.883 (17)N3C—C4C1.370 (3)
C2A—N3A1.364 (3)N3C—H3C0.886 (17)
C2A—S21A1.669 (2)C4C—N41C1.324 (3)
N3A—C4A1.376 (3)C4C—C5C1.376 (3)
N3A—H3A0.878 (17)N41C—H41C0.872 (18)
C4A—O41A1.237 (3)N41C—H42C0.869 (18)
C4A—C5A1.432 (3)C5C—C6C1.391 (3)
C5A—C6A1.348 (3)C5C—H5C0.9500
C5A—H5A0.9500C6C—N61C1.336 (3)
C6A—C61A1.499 (3)N61C—H61C0.872 (17)
C61A—H61A0.9800N61C—H62C0.862 (17)
C61A—H62A0.9800C1X—O11X1.229 (3)
C61A—H63A0.9800C1X—N2X1.322 (3)
C61A—H64A0.9800C1X—H1X0.9500
C61A—H65A0.9800N2X—C3X1.451 (3)
C61A—H66A0.9800N2X—C4X1.453 (3)
N1B—C6B1.358 (3)C3X—H3X10.9800
N1B—C2B1.370 (3)C3X—H3X20.9800
N1B—H1B0.872 (17)C3X—H3X30.9800
C2B—N3B1.344 (3)C4X—H4X10.9800
C2B—S21B1.698 (2)C4X—H4X20.9800
N3B—C4B1.367 (3)C4X—H4X30.9800
C4B—O41B1.262 (3)C1Y—O11Y1.224 (3)
C4B—C5B1.429 (3)C1Y—N2Y1.324 (3)
C5B—C6B1.353 (3)C1Y—H1Y0.9500
C5B—H5B0.9500N2Y—C4Y1.447 (3)
C6B—C61B1.493 (3)N2Y—C3Y1.457 (3)
C61B—H61B0.9800C3Y—H3Y10.9800
C61B—H62B0.9800C3Y—H3Y20.9800
C61B—H63B0.9800C3Y—H3Y30.9800
N1C—C2C1.325 (3)C4Y—H4Y10.9800
N1C—C6C1.360 (3)C4Y—H4Y20.9800
C2C—N21C1.328 (3)C4Y—H4Y30.9800
C2C—N3C1.367 (3)
C2A—N1A—C6A123.41 (19)C2C—N21C—H22C124 (2)
C2A—N1A—H1A120.7 (18)H21C—N21C—H22C119 (3)
C6A—N1A—H1A115.9 (18)C2C—N3C—C4C120.37 (19)
N1A—C2A—N3A115.59 (19)C2C—N3C—H3C118.5 (18)
N1A—C2A—S21A120.95 (17)C4C—N3C—H3C121.2 (18)
N3A—C2A—S21A123.46 (17)N41C—C4C—N3C117.7 (2)
C2A—N3A—C4A125.75 (19)N41C—C4C—C5C124.1 (2)
C2A—N3A—H3A114.7 (18)N3C—C4C—C5C118.1 (2)
C4A—N3A—H3A119.5 (18)C4C—N41C—H41C123 (2)
O41A—C4A—N3A119.7 (2)C4C—N41C—H42C116 (2)
O41A—C4A—C5A125.4 (2)H41C—N41C—H42C122 (3)
N3A—C4A—C5A114.9 (2)C4C—C5C—C6C118.5 (2)
C6A—C5A—C4A120.4 (2)C4C—C5C—H5C120.7
C6A—C5A—H5A119.8C6C—C5C—H5C120.7
C4A—C5A—H5A119.8N61C—C6C—N1C116.4 (2)
C5A—C6A—N1A120.0 (2)N61C—C6C—C5C120.5 (2)
C5A—C6A—C61A124.0 (2)N1C—C6C—C5C123.0 (2)
N1A—C6A—C61A116.0 (2)C6C—N61C—H61C121.3 (19)
C6A—C61A—H61A109.5C6C—N61C—H62C118.3 (19)
C6A—C61A—H62A109.5H61C—N61C—H62C120 (3)
H61A—C61A—H62A109.5O11X—C1X—N2X125.2 (2)
C6A—C61A—H63A109.5O11X—C1X—H1X117.4
H61A—C61A—H63A109.5N2X—C1X—H1X117.4
H62A—C61A—H63A109.5C1X—N2X—C3X121.0 (2)
C6A—C61A—H64A109.5C1X—N2X—C4X121.4 (2)
C6A—C61A—H65A109.5C3X—N2X—C4X117.6 (2)
H64A—C61A—H65A109.5N2X—C3X—H3X1109.5
C6A—C61A—H66A109.5N2X—C3X—H3X2109.5
H64A—C61A—H66A109.5H3X1—C3X—H3X2109.5
H65A—C61A—H66A109.5N2X—C3X—H3X3109.5
C6B—N1B—C2B122.68 (19)H3X1—C3X—H3X3109.5
C6B—N1B—H1B118.8 (18)H3X2—C3X—H3X3109.5
C2B—N1B—H1B118.5 (18)N2X—C4X—H4X1109.5
N3B—C2B—N1B120.5 (2)N2X—C4X—H4X2109.5
N3B—C2B—S21B122.82 (17)H4X1—C4X—H4X2109.5
N1B—C2B—S21B116.65 (17)N2X—C4X—H4X3109.5
C2B—N3B—C4B119.20 (19)H4X1—C4X—H4X3109.5
O41B—C4B—N3B119.2 (2)H4X2—C4X—H4X3109.5
O41B—C4B—C5B121.2 (2)O11Y—C1Y—N2Y125.9 (2)
N3B—C4B—C5B119.6 (2)O11Y—C1Y—H1Y117.1
C6B—C5B—C4B120.3 (2)N2Y—C1Y—H1Y117.1
C6B—C5B—H5B119.9C1Y—N2Y—C4Y121.8 (2)
C4B—C5B—H5B119.9C1Y—N2Y—C3Y121.6 (2)
C5B—C6B—N1B117.7 (2)C4Y—N2Y—C3Y116.6 (2)
C5B—C6B—C61B124.6 (2)N2Y—C3Y—H3Y1109.5
N1B—C6B—C61B117.6 (2)N2Y—C3Y—H3Y2109.5
C6B—C61B—H61B109.5H3Y1—C3Y—H3Y2109.5
C6B—C61B—H62B109.5N2Y—C3Y—H3Y3109.5
H61B—C61B—H62B109.5H3Y1—C3Y—H3Y3109.5
C6B—C61B—H63B109.5H3Y2—C3Y—H3Y3109.5
H61B—C61B—H63B109.5N2Y—C4Y—H4Y1109.5
H62B—C61B—H63B109.5N2Y—C4Y—H4Y2109.5
C2C—N1C—C6C116.51 (19)H4Y1—C4Y—H4Y2109.5
N1C—C2C—N21C119.7 (2)N2Y—C4Y—H4Y3109.5
N1C—C2C—N3C123.41 (19)H4Y1—C4Y—H4Y3109.5
N21C—C2C—N3C116.9 (2)H4Y2—C4Y—H4Y3109.5
C2C—N21C—H21C116.5 (19)
C6A—N1A—C2A—N3A0.000 (1)C4B—C5B—C6B—N1B0.000 (1)
C6A—N1A—C2A—S21A180.000 (1)C4B—C5B—C6B—C61B180.000 (1)
N1A—C2A—N3A—C4A0.000 (1)C2B—N1B—C6B—C5B0.000 (1)
S21A—C2A—N3A—C4A180.000 (1)C2B—N1B—C6B—C61B180.000 (1)
C2A—N3A—C4A—O41A180.000 (1)C6C—N1C—C2C—N21C180.000 (1)
C2A—N3A—C4A—C5A0.000 (1)C6C—N1C—C2C—N3C0.000 (1)
O41A—C4A—C5A—C6A180.000 (1)N1C—C2C—N3C—C4C0.000 (1)
N3A—C4A—C5A—C6A0.000 (1)N21C—C2C—N3C—C4C180.000 (1)
C4A—C5A—C6A—N1A0.000 (1)C2C—N3C—C4C—N41C180.000 (1)
C4A—C5A—C6A—C61A180.000 (1)C2C—N3C—C4C—C5C0.000 (1)
C2A—N1A—C6A—C5A0.000 (1)N41C—C4C—C5C—C6C180.000 (1)
C2A—N1A—C6A—C61A180.000 (1)N3C—C4C—C5C—C6C0.000 (1)
C6B—N1B—C2B—N3B0.000 (1)C2C—N1C—C6C—N61C180.000 (1)
C6B—N1B—C2B—S21B180.000 (1)C2C—N1C—C6C—C5C0.000 (1)
N1B—C2B—N3B—C4B0.000 (1)C4C—C5C—C6C—N61C180.000 (1)
S21B—C2B—N3B—C4B180.000 (1)C4C—C5C—C6C—N1C0.000 (1)
C2B—N3B—C4B—O41B180.000 (1)O11X—C1X—N2X—C3X0.000 (1)
C2B—N3B—C4B—C5B0.000 (1)O11X—C1X—N2X—C4X180.000 (1)
O41B—C4B—C5B—C6B180.000 (1)O11Y—C1Y—N2Y—C4Y180.000 (1)
N3B—C4B—C5B—C6B0.000 (1)O11Y—C1Y—N2Y—C3Y0.000 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11X0.88 (2)1.82 (2)2.701 (2)177 (3)
N3A—H3A···N1C0.88 (2)2.31 (2)3.169 (3)167 (2)
N1B—H1B···O11Y0.87 (2)2.00 (2)2.839 (3)162 (3)
N21C—H21C···O41A0.88 (2)2.02 (2)2.901 (3)178 (3)
N21C—H22C···O41B0.86 (2)1.95 (2)2.811 (3)177 (3)
N3C—H3C···N3B0.89 (2)2.16 (2)3.049 (3)178 (2)
N41C—H41C···S21B0.87 (2)2.38 (2)3.241 (2)171 (3)
N41C—H42C···O41Bi0.87 (2)2.03 (2)2.899 (3)177 (3)
N61C—H61C···O41Ai0.87 (2)2.03 (2)2.905 (3)178 (3)
N61C—H62C···S21A0.86 (2)2.49 (2)3.336 (2)167 (3)
Symmetry code: (i) x+1, y, z.
(VI) 6-Methyl-2-thiouracil–6-amino-3H-isocytosine–dimethylformamide (1/1/1) top
Crystal data top
C5H6N2OS·C4H6N4O·C3H7NOF(000) = 720
Mr = 341.40Dx = 1.398 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3559 (6) ÅCell parameters from 22989 reflections
b = 30.068 (2) Åθ = 2.9–26.6°
c = 8.1263 (7) ŵ = 0.23 mm1
β = 115.534 (6)°T = 173 K
V = 1621.8 (2) Å3Plate, colourless
Z = 40.40 × 0.28 × 0.13 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2686 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.088
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 99
Tmin = 0.925, Tmax = 0.970k = 3036
12580 measured reflectionsl = 99
3119 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.1661P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max = 0.014
S = 1.05Δρmax = 0.17 e Å3
3119 reflectionsΔρmin = 0.35 e Å3
233 parametersExtinction correction: SHELXL3013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraintsExtinction coefficient: 0.052 (7)
Crystal data top
C5H6N2OS·C4H6N4O·C3H7NOV = 1621.8 (2) Å3
Mr = 341.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3559 (6) ŵ = 0.23 mm1
b = 30.068 (2) ÅT = 173 K
c = 8.1263 (7) Å0.40 × 0.28 × 0.13 mm
β = 115.534 (6)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3119 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2686 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.970Rint = 0.088
12580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0477 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
3119 reflectionsΔρmin = 0.35 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.2107 (2)0.54021 (5)0.4616 (2)0.0554 (4)
H1A0.251 (3)0.5675 (6)0.509 (3)0.066*
C2A0.3094 (3)0.50515 (6)0.5672 (3)0.0530 (4)
S21A0.49426 (7)0.51197 (2)0.77513 (6)0.0581 (2)
N3A0.2427 (2)0.46423 (5)0.4922 (2)0.0541 (4)
H3A0.299 (3)0.4400 (6)0.554 (3)0.065*
C4A0.0902 (3)0.45657 (7)0.3188 (2)0.0557 (4)
O41A0.0453 (2)0.41783 (5)0.26477 (19)0.0653 (4)
C5A0.0046 (3)0.49538 (7)0.2173 (3)0.0575 (5)
H5A0.11050.49250.09810.069*
C6A0.0551 (3)0.53614 (7)0.2898 (3)0.0551 (4)
C61A0.0394 (3)0.57872 (7)0.1971 (3)0.0631 (5)
H61A0.12800.57280.06850.095*
H62A0.06620.59970.20550.095*
H63A0.11840.59150.25650.095*
N1B0.4222 (2)0.37462 (5)0.6930 (2)0.0550 (4)
C2B0.3594 (3)0.33685 (6)0.6026 (2)0.0549 (4)
N21B0.1890 (3)0.33560 (6)0.4491 (2)0.0655 (5)
H21B0.134 (3)0.3602 (7)0.398 (3)0.079*
H22B0.156 (4)0.3102 (6)0.390 (3)0.079*
N3B0.4586 (2)0.29747 (5)0.6611 (2)0.0565 (4)
H3B0.414 (3)0.2741 (6)0.599 (3)0.068*
C4B0.6353 (3)0.29360 (6)0.8200 (3)0.0561 (4)
O41B0.7139 (2)0.25554 (4)0.86180 (19)0.0660 (4)
C5B0.7038 (3)0.33296 (6)0.9179 (3)0.0580 (5)
H5B0.82460.33321.02780.070*
C6B0.5933 (3)0.37189 (6)0.8530 (3)0.0556 (4)
N61B0.6496 (3)0.40973 (6)0.9491 (2)0.0651 (4)
H61B0.762 (3)0.4107 (9)1.050 (3)0.078*
H62B0.584 (3)0.4339 (7)0.902 (3)0.078*
C1X0.4567 (3)0.63490 (7)0.7106 (3)0.0667 (5)
H1X0.54940.61140.76570.080*
O11X0.2964 (2)0.62540 (5)0.5798 (2)0.0749 (4)
N2X0.5098 (3)0.67515 (6)0.7803 (2)0.0653 (4)
C3X0.3752 (4)0.71295 (8)0.7054 (3)0.0759 (6)
H3X10.25810.70370.59470.114*
H3X20.44690.73680.67550.114*
H3X30.33030.72380.79550.114*
C4X0.7010 (4)0.68336 (8)0.9354 (3)0.0778 (6)
H4X10.78220.65610.96540.117*
H4X20.67720.69241.04030.117*
H4X30.77300.70710.90520.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0544 (8)0.0506 (9)0.0552 (8)0.0006 (7)0.0179 (7)0.0015 (7)
C2A0.0502 (9)0.0524 (10)0.0546 (10)0.0015 (7)0.0209 (8)0.0007 (8)
S21A0.0547 (3)0.0545 (3)0.0537 (3)0.00083 (19)0.0127 (2)0.00218 (19)
N3A0.0509 (8)0.0521 (8)0.0504 (8)0.0008 (6)0.0134 (6)0.0001 (7)
C4A0.0489 (9)0.0570 (11)0.0537 (10)0.0004 (8)0.0149 (8)0.0012 (8)
O41A0.0647 (7)0.0531 (8)0.0586 (8)0.0028 (6)0.0081 (6)0.0025 (6)
C5A0.0509 (10)0.0599 (11)0.0530 (10)0.0011 (8)0.0140 (8)0.0021 (8)
C6A0.0490 (9)0.0585 (11)0.0539 (9)0.0023 (8)0.0184 (7)0.0031 (8)
C61A0.0592 (10)0.0586 (12)0.0629 (11)0.0046 (9)0.0182 (9)0.0078 (9)
N1B0.0512 (8)0.0499 (9)0.0537 (8)0.0005 (6)0.0131 (6)0.0025 (7)
C2B0.0522 (9)0.0509 (10)0.0548 (10)0.0015 (8)0.0168 (8)0.0003 (8)
N21B0.0608 (9)0.0510 (9)0.0605 (10)0.0026 (7)0.0032 (8)0.0046 (7)
N3B0.0575 (8)0.0459 (8)0.0550 (9)0.0003 (7)0.0136 (7)0.0015 (7)
C4B0.0546 (9)0.0515 (10)0.0543 (10)0.0033 (8)0.0162 (8)0.0040 (8)
O41B0.0675 (8)0.0501 (8)0.0642 (8)0.0063 (6)0.0130 (7)0.0036 (6)
C5B0.0529 (9)0.0536 (10)0.0554 (10)0.0010 (8)0.0118 (8)0.0002 (8)
C6B0.0515 (9)0.0540 (10)0.0548 (10)0.0000 (7)0.0166 (8)0.0012 (8)
N61B0.0631 (10)0.0499 (9)0.0606 (9)0.0024 (7)0.0063 (7)0.0048 (8)
C1X0.0697 (11)0.0565 (12)0.0688 (12)0.0006 (9)0.0250 (10)0.0011 (9)
O11X0.0744 (9)0.0587 (9)0.0747 (9)0.0031 (7)0.0162 (8)0.0049 (7)
N2X0.0682 (10)0.0522 (9)0.0685 (10)0.0018 (7)0.0230 (9)0.0008 (7)
C3X0.0808 (14)0.0574 (12)0.0858 (15)0.0056 (10)0.0326 (12)0.0029 (11)
C4X0.0769 (14)0.0702 (14)0.0735 (14)0.0124 (11)0.0202 (11)0.0011 (11)
Geometric parameters (Å, º) top
N1A—C2A1.356 (2)N3B—C4B1.387 (2)
N1A—C6A1.377 (2)N3B—H3B0.846 (16)
N1A—H1A0.901 (16)C4B—O41B1.261 (2)
C2A—N3A1.367 (2)C4B—C5B1.394 (3)
C2A—S21A1.6631 (19)C5B—C6B1.393 (3)
N3A—C4A1.391 (2)C5B—H5B0.9500
N3A—H3A0.882 (16)C6B—N61B1.341 (2)
C4A—O41A1.238 (2)N61B—H61B0.879 (16)
C4A—C5A1.425 (3)N61B—H62B0.865 (16)
C5A—C6A1.349 (3)C1X—O11X1.233 (3)
C5A—H5A0.9500C1X—N2X1.322 (3)
C6A—C61A1.496 (3)C1X—H1X0.9500
C61A—H61A0.9800N2X—C4X1.449 (3)
C61A—H62A0.9800N2X—C3X1.457 (3)
C61A—H63A0.9800C3X—H3X10.9800
N1B—C2B1.323 (2)C3X—H3X20.9800
N1B—C6B1.368 (2)C3X—H3X30.9800
C2B—N21B1.334 (2)C4X—H4X10.9800
C2B—N3B1.364 (2)C4X—H4X20.9800
N21B—H21B0.861 (16)C4X—H4X30.9800
N21B—H22B0.880 (16)
C2A—N1A—C6A123.85 (17)C2B—N3B—H3B120.1 (16)
C2A—N1A—H1A116.7 (15)C4B—N3B—H3B117.0 (16)
C6A—N1A—H1A119.5 (15)O41B—C4B—N3B117.63 (17)
N1A—C2A—N3A115.23 (16)O41B—C4B—C5B127.30 (17)
N1A—C2A—S21A121.85 (15)N3B—C4B—C5B115.05 (17)
N3A—C2A—S21A122.91 (14)C4B—C5B—C6B119.27 (17)
C2A—N3A—C4A125.35 (16)C4B—C5B—H5B120.4
C2A—N3A—H3A119.9 (15)C6B—C5B—H5B120.4
C4A—N3A—H3A114.8 (15)N61B—C6B—N1B115.43 (17)
O41A—C4A—N3A119.34 (17)N61B—C6B—C5B120.61 (17)
O41A—C4A—C5A125.17 (17)N1B—C6B—C5B123.95 (17)
N3A—C4A—C5A115.49 (17)C6B—N61B—H61B120.0 (17)
C6A—C5A—C4A120.35 (17)C6B—N61B—H62B119.0 (17)
C6A—C5A—H5A119.8H61B—N61B—H62B120 (2)
C4A—C5A—H5A119.8O11X—C1X—N2X125.3 (2)
C5A—C6A—N1A119.69 (18)O11X—C1X—H1X117.4
C5A—C6A—C61A124.37 (18)N2X—C1X—H1X117.4
N1A—C6A—C61A115.93 (18)C1X—N2X—C4X121.71 (19)
C6A—C61A—H61A109.5C1X—N2X—C3X120.87 (19)
C6A—C61A—H62A109.5C4X—N2X—C3X117.41 (18)
H61A—C61A—H62A109.5N2X—C3X—H3X1109.5
C6A—C61A—H63A109.5N2X—C3X—H3X2109.5
H61A—C61A—H63A109.5H3X1—C3X—H3X2109.5
H62A—C61A—H63A109.5N2X—C3X—H3X3109.5
C2B—N1B—C6B115.73 (15)H3X1—C3X—H3X3109.5
N1B—C2B—N21B120.36 (17)H3X2—C3X—H3X3109.5
N1B—C2B—N3B123.04 (16)N2X—C4X—H4X1109.5
N21B—C2B—N3B116.57 (17)N2X—C4X—H4X2109.5
C2B—N21B—H21B119.2 (17)H4X1—C4X—H4X2109.5
C2B—N21B—H22B117.7 (17)N2X—C4X—H4X3109.5
H21B—N21B—H22B121 (2)H4X1—C4X—H4X3109.5
C2B—N3B—C4B122.90 (16)H4X2—C4X—H4X3109.5
C6A—N1A—C2A—N3A0.6 (3)C6B—N1B—C2B—N3B1.0 (3)
C6A—N1A—C2A—S21A179.11 (13)N1B—C2B—N3B—C4B0.6 (3)
N1A—C2A—N3A—C4A2.1 (3)N21B—C2B—N3B—C4B178.78 (18)
S21A—C2A—N3A—C4A179.43 (14)C2B—N3B—C4B—O41B179.61 (17)
C2A—N3A—C4A—O41A178.78 (17)C2B—N3B—C4B—C5B0.8 (3)
C2A—N3A—C4A—C5A2.0 (3)O41B—C4B—C5B—C6B178.02 (19)
O41A—C4A—C5A—C6A179.51 (18)N3B—C4B—C5B—C6B0.6 (3)
N3A—C4A—C5A—C6A0.3 (3)C2B—N1B—C6B—N61B176.36 (17)
C4A—C5A—C6A—N1A1.0 (3)C2B—N1B—C6B—C5B2.6 (3)
C4A—C5A—C6A—C61A177.78 (17)C4B—C5B—C6B—N61B176.47 (19)
C2A—N1A—C6A—C5A0.9 (3)C4B—C5B—C6B—N1B2.4 (3)
C2A—N1A—C6A—C61A178.01 (16)O11X—C1X—N2X—C4X179.6 (2)
C6B—N1B—C2B—N21B177.02 (17)O11X—C1X—N2X—C3X0.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11X0.90 (2)1.82 (2)2.713 (2)172 (2)
N3A—H3A···N1B0.88 (2)2.25 (2)3.132 (2)175 (2)
N21B—H21B···O41A0.86 (2)2.00 (2)2.848 (2)170 (2)
N21B—H22B···O41Bi0.88 (2)2.06 (2)2.856 (2)151 (2)
N3B—H3B···O41Bi0.85 (2)2.06 (2)2.815 (2)149 (2)
N61B—H61B···O41Aii0.88 (2)2.07 (2)2.945 (2)172 (2)
N61B—H62B···S21A0.87 (2)2.53 (2)3.3708 (18)163 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1.
(VII) 6-Methyl-2-thiouracil–6-amino-3H-isocytosine–dimethyl sulfoxide (1/1/1) top
Crystal data top
C5H6N2OS·C4H6N4O·C2H6OSF(000) = 728
Mr = 346.43Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2520 (7) ÅCell parameters from 20193 reflections
b = 23.9532 (19) Åθ = 1.7–26.9°
c = 8.2133 (6) ŵ = 0.36 mm1
β = 102.496 (6)°T = 173 K
V = 1585.0 (2) Å3Plate, colourless
Z = 40.22 × 0.21 × 0.07 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2706 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.064
ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1010
Tmin = 0.925, Tmax = 0.978k = 2929
13609 measured reflectionsl = 109
3229 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.7321P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3229 reflectionsΔρmax = 0.35 e Å3
223 parametersΔρmin = 0.32 e Å3
Crystal data top
C5H6N2OS·C4H6N4O·C2H6OSV = 1585.0 (2) Å3
Mr = 346.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2520 (7) ŵ = 0.36 mm1
b = 23.9532 (19) ÅT = 173 K
c = 8.2133 (6) Å0.22 × 0.21 × 0.07 mm
β = 102.496 (6)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3229 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2706 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.978Rint = 0.064
13609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0477 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
3229 reflectionsΔρmin = 0.32 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.1018 (2)0.42641 (8)0.3836 (2)0.0318 (4)
H1A0.040 (3)0.4003 (9)0.416 (3)0.038*
C2A0.1819 (3)0.46132 (9)0.5040 (3)0.0299 (5)
S21A0.17565 (8)0.45203 (3)0.70382 (7)0.03718 (17)
N3A0.2681 (2)0.50357 (8)0.4504 (2)0.0301 (4)
H3A0.322 (3)0.5273 (10)0.524 (3)0.036*
C4A0.2767 (3)0.51298 (10)0.2863 (3)0.0315 (5)
O41A0.3617 (2)0.55224 (7)0.2531 (2)0.0420 (4)
C5A0.1840 (3)0.47532 (10)0.1667 (3)0.0317 (5)
H5A0.18140.48030.05140.038*
C6A0.1002 (3)0.43267 (10)0.2175 (3)0.0318 (5)
C61A0.0057 (3)0.38987 (11)0.1041 (3)0.0410 (6)
H61A0.00190.40120.01200.061*
H62A0.10610.38640.12550.061*
H63A0.06300.35390.12410.061*
N1B0.4607 (2)0.59726 (7)0.6794 (2)0.0282 (4)
C2B0.5110 (2)0.64257 (9)0.6119 (3)0.0262 (4)
N21B0.5132 (3)0.64312 (8)0.4500 (2)0.0330 (4)
H21B0.473 (3)0.6137 (9)0.392 (3)0.040*
H22B0.540 (3)0.6742 (9)0.412 (3)0.040*
N3B0.5615 (2)0.68989 (7)0.6991 (2)0.0276 (4)
H3B0.589 (3)0.7197 (9)0.643 (3)0.033*
C4B0.5641 (3)0.69499 (9)0.8685 (3)0.0267 (4)
O41B0.6090 (2)0.74137 (6)0.9366 (2)0.0323 (4)
C5B0.5162 (3)0.64760 (9)0.9431 (3)0.0296 (5)
H5B0.51820.64741.05920.035*
C6B0.4651 (3)0.60021 (9)0.8465 (3)0.0280 (4)
N61B0.4173 (3)0.55420 (9)0.9144 (3)0.0372 (5)
H61B0.411 (4)0.5555 (12)1.018 (2)0.045*
H62B0.377 (3)0.5254 (9)0.855 (3)0.045*
C1X0.1873 (3)0.25089 (11)0.5982 (4)0.0444 (6)
H1X10.30080.25440.53180.067*
H1X20.19020.23480.70720.067*
H1X30.12300.22650.54010.067*
S2X0.09248 (7)0.31824 (3)0.62631 (8)0.03668 (17)
O21X0.0699 (2)0.33405 (8)0.4553 (2)0.0492 (5)
C3X0.1057 (3)0.29648 (12)0.7398 (3)0.0446 (6)
H3X10.15480.27060.67160.067*
H3X20.09370.27770.84250.067*
H3X30.17790.32910.76790.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0387 (10)0.0285 (10)0.0284 (10)0.0058 (8)0.0080 (8)0.0003 (8)
C2A0.0346 (11)0.0302 (11)0.0259 (11)0.0001 (9)0.0083 (9)0.0005 (9)
S21A0.0509 (4)0.0380 (3)0.0250 (3)0.0088 (3)0.0133 (2)0.0005 (2)
N3A0.0381 (10)0.0301 (10)0.0230 (9)0.0060 (8)0.0086 (8)0.0033 (8)
C4A0.0393 (12)0.0330 (12)0.0239 (11)0.0024 (9)0.0104 (9)0.0020 (9)
O41A0.0614 (11)0.0412 (10)0.0270 (9)0.0201 (8)0.0176 (8)0.0059 (7)
C5A0.0392 (11)0.0344 (12)0.0222 (10)0.0028 (9)0.0085 (9)0.0020 (9)
C6A0.0351 (11)0.0331 (12)0.0272 (11)0.0007 (9)0.0065 (9)0.0015 (9)
C61A0.0499 (14)0.0391 (13)0.0329 (13)0.0097 (11)0.0066 (11)0.0060 (10)
N1B0.0379 (9)0.0258 (9)0.0216 (9)0.0013 (7)0.0078 (7)0.0002 (7)
C2B0.0306 (10)0.0246 (10)0.0235 (10)0.0016 (8)0.0063 (8)0.0005 (8)
N21B0.0519 (12)0.0269 (10)0.0221 (9)0.0058 (8)0.0119 (8)0.0009 (8)
N3B0.0376 (9)0.0242 (9)0.0220 (9)0.0017 (7)0.0088 (7)0.0006 (7)
C4B0.0303 (10)0.0280 (11)0.0222 (10)0.0028 (8)0.0065 (8)0.0026 (8)
O41B0.0439 (9)0.0261 (8)0.0277 (8)0.0027 (6)0.0095 (7)0.0057 (6)
C5B0.0403 (11)0.0287 (11)0.0212 (10)0.0004 (9)0.0098 (9)0.0003 (9)
C6B0.0356 (11)0.0272 (11)0.0225 (10)0.0009 (8)0.0090 (8)0.0007 (8)
N61B0.0598 (13)0.0304 (10)0.0233 (10)0.0099 (9)0.0132 (9)0.0006 (8)
C1X0.0444 (14)0.0398 (14)0.0487 (16)0.0043 (11)0.0090 (12)0.0095 (12)
S2X0.0364 (3)0.0354 (3)0.0378 (3)0.0023 (2)0.0071 (2)0.0025 (2)
O21X0.0627 (12)0.0468 (11)0.0340 (10)0.0190 (9)0.0013 (8)0.0081 (8)
C3X0.0395 (13)0.0540 (16)0.0385 (14)0.0049 (11)0.0042 (11)0.0008 (12)
Geometric parameters (Å, º) top
N1A—C2A1.353 (3)N21B—H22B0.858 (17)
N1A—C6A1.370 (3)N3B—C4B1.393 (3)
N1A—H1A0.882 (17)N3B—H3B0.902 (17)
C2A—N3A1.363 (3)C4B—O41B1.263 (3)
C2A—S21A1.668 (2)C4B—C5B1.388 (3)
N3A—C4A1.383 (3)C5B—C6B1.397 (3)
N3A—H3A0.877 (17)C5B—H5B0.9500
C4A—O41A1.238 (3)C6B—N61B1.333 (3)
C4A—C5A1.428 (3)N61B—H61B0.864 (18)
C5A—C6A1.350 (3)N61B—H62B0.867 (17)
C5A—H5A0.9500C1X—S2X1.786 (3)
C6A—C61A1.487 (3)C1X—H1X10.9800
C61A—H61A0.9800C1X—H1X20.9800
C61A—H62A0.9800C1X—H1X30.9800
C61A—H63A0.9800S2X—O21X1.5051 (19)
N1B—C2B1.326 (3)S2X—C3X1.776 (3)
N1B—C6B1.367 (3)C3X—H3X10.9800
C2B—N21B1.334 (3)C3X—H3X20.9800
C2B—N3B1.357 (3)C3X—H3X30.9800
N21B—H21B0.875 (17)
C2A—N1A—C6A123.9 (2)C2B—N3B—C4B122.47 (18)
C2A—N1A—H1A116.1 (18)C2B—N3B—H3B118.3 (17)
C6A—N1A—H1A119.8 (18)C4B—N3B—H3B119.2 (17)
N1A—C2A—N3A115.4 (2)O41B—C4B—C5B127.5 (2)
N1A—C2A—S21A121.46 (17)O41B—C4B—N3B117.33 (19)
N3A—C2A—S21A123.09 (17)C5B—C4B—N3B115.19 (19)
C2A—N3A—C4A125.14 (19)C4B—C5B—C6B119.6 (2)
C2A—N3A—H3A118.8 (18)C4B—C5B—H5B120.2
C4A—N3A—H3A116.0 (18)C6B—C5B—H5B120.2
O41A—C4A—N3A119.3 (2)N61B—C6B—N1B115.56 (19)
O41A—C4A—C5A124.9 (2)N61B—C6B—C5B121.0 (2)
N3A—C4A—C5A115.8 (2)N1B—C6B—C5B123.5 (2)
C6A—C5A—C4A120.0 (2)C6B—N61B—H61B117.9 (19)
C6A—C5A—H5A120.0C6B—N61B—H62B122 (2)
C4A—C5A—H5A120.0H61B—N61B—H62B119 (3)
C5A—C6A—N1A119.7 (2)S2X—C1X—H1X1109.5
C5A—C6A—C61A124.2 (2)S2X—C1X—H1X2109.5
N1A—C6A—C61A116.0 (2)H1X1—C1X—H1X2109.5
C6A—C61A—H61A109.5S2X—C1X—H1X3109.5
C6A—C61A—H62A109.5H1X1—C1X—H1X3109.5
H61A—C61A—H62A109.5H1X2—C1X—H1X3109.5
C6A—C61A—H63A109.5O21X—S2X—C3X106.11 (13)
H61A—C61A—H63A109.5O21X—S2X—C1X104.24 (12)
H62A—C61A—H63A109.5C3X—S2X—C1X97.51 (13)
C2B—N1B—C6B115.80 (18)S2X—C3X—H3X1109.5
N1B—C2B—N21B119.88 (19)S2X—C3X—H3X2109.5
N1B—C2B—N3B123.45 (19)H3X1—C3X—H3X2109.5
N21B—C2B—N3B116.67 (19)S2X—C3X—H3X3109.5
C2B—N21B—H21B116.6 (19)H3X1—C3X—H3X3109.5
C2B—N21B—H22B115.8 (19)H3X2—C3X—H3X3109.5
H21B—N21B—H22B127 (3)
C6A—N1A—C2A—N3A1.9 (3)C6B—N1B—C2B—N21B179.03 (19)
C6A—N1A—C2A—S21A178.73 (17)C6B—N1B—C2B—N3B1.2 (3)
N1A—C2A—N3A—C4A0.8 (3)N1B—C2B—N3B—C4B0.3 (3)
S21A—C2A—N3A—C4A179.87 (18)N21B—C2B—N3B—C4B179.50 (19)
C2A—N3A—C4A—O41A178.7 (2)C2B—N3B—C4B—O41B178.12 (19)
C2A—N3A—C4A—C5A1.2 (3)C2B—N3B—C4B—C5B1.9 (3)
O41A—C4A—C5A—C6A177.7 (2)O41B—C4B—C5B—C6B178.0 (2)
N3A—C4A—C5A—C6A2.3 (3)N3B—C4B—C5B—C6B2.1 (3)
C4A—C5A—C6A—N1A1.3 (3)C2B—N1B—C6B—N61B178.8 (2)
C4A—C5A—C6A—C61A177.4 (2)C2B—N1B—C6B—C5B1.0 (3)
C2A—N1A—C6A—C5A0.9 (3)C4B—C5B—C6B—N61B179.5 (2)
C2A—N1A—C6A—C61A179.7 (2)C4B—C5B—C6B—N1B0.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.88 (2)1.89 (2)2.758 (3)167 (3)
N3A—H3A···N1B0.88 (2)2.26 (2)3.132 (3)171 (2)
N21B—H21B···O41A0.88 (2)1.97 (2)2.836 (3)174 (3)
N21B—H22B···O41Bi0.86 (2)2.10 (2)2.886 (3)153 (3)
N3B—H3B···O41Bi0.90 (2)1.98 (2)2.807 (2)153 (2)
N61B—H61B···O41Aii0.86 (2)2.06 (2)2.916 (3)171 (3)
N61B—H62B···S21A0.87 (2)2.55 (2)3.386 (2)162 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y, z+1.
Crystallization conditions of (I)–(VII) top
CrystalMTU (mg, mmol)Coformer (mg, mmol)SolventTemperature (K)
(I)4.0, 0.0281.6, 0.015NMP (58 µl)295
(II)2.0, 0.0141.5, 0.014DMF (32 µl)323
(III)2.0, 0.0141.5, 0.014DMAC (75 µl)295
(IV)2.0, 0.0141.5, 0.014DMF (32 µl)295
(V)3.9, 0.0271.8, 0.014DMF (188 µl)323
(VI)4.5, 0.0321.8, 0.014DMF (224 µl)295
(VII)4.5, 0.0322.0, 0.016DMSO (62 µl)323

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC5H6N2OS·C4H6N4·2C5H9NOC5H6N2OS·C4H6N42C5H6N2OS·C4H6N4·2C4H9NOC5H6N2OS·0.5C4H6N4·C3H7NO
Mr450.57252.31568.73270.34
Crystal system, space groupMonoclinic, C2/cOrthorhombic, PnmaTriclinic, P1Monoclinic, C2/c
Temperature (K)173173173173
a, b, c (Å)13.9475 (5), 8.1618 (3), 40.9157 (14)6.9996 (8), 19.223 (2), 17.143 (2)8.2095 (7), 12.8069 (11), 14.3391 (13)14.9786 (15), 8.2010 (11), 22.568 (2)
α, β, γ (°)90, 98.148 (3), 9090, 90, 9089.914 (7), 76.230 (7), 83.418 (7)90, 99.899 (8), 90
V3)4610.7 (3)2306.6 (4)1454.1 (2)2731.0 (5)
Z8828
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.180.280.230.24
Crystal size (mm)0.38 × 0.28 × 0.240.14 × 0.10 × 0.090.30 × 0.22 × 0.180.55 × 0.15 × 0.09
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.940, 0.9590.965, 0.9770.939, 0.9610.957, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
17630, 4449, 3920 11786, 2234, 1279 11080, 5400, 4514 10452, 2624, 2026
Rint0.0590.1030.0300.047
(sin θ/λ)max1)0.6160.6090.6080.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.04 0.052, 0.111, 0.93 0.039, 0.105, 1.05 0.040, 0.095, 1.05
No. of reflections4449223454002624
No. of parameters302197417188
No. of restraints682645
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.220.26, 0.230.34, 0.260.19, 0.18


(V)(VI)(VII)
Crystal data
Chemical formulaC4H8N5+·C5H5N2OS·C5H6N2OS·2C3H7NOC5H6N2OS·C4H6N4O·C3H7NOC5H6N2OS·C4H6N4O·C2H6OS
Mr555.69341.40346.43
Crystal system, space groupMonoclinic, P21/mMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)173173173
a, b, c (Å)8.2680 (8), 6.6000 (4), 25.043 (2)7.3559 (6), 30.068 (2), 8.1263 (7)8.2520 (7), 23.9532 (19), 8.2133 (6)
α, β, γ (°)90, 98.887 (7), 9090, 115.534 (6), 9090, 102.496 (6), 90
V3)1350.16 (19)1621.8 (2)1585.0 (2)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.250.230.36
Crystal size (mm)0.38 × 0.32 × 0.180.40 × 0.28 × 0.130.22 × 0.21 × 0.07
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.912, 0.9560.925, 0.9700.925, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
10981, 2836, 2588 12580, 3119, 2686 13609, 3229, 2706
Rint0.0320.0880.064
(sin θ/λ)max1)0.6150.6170.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.15 0.047, 0.137, 1.05 0.047, 0.113, 1.06
No. of reflections283631193229
No. of parameters244233223
No. of restraints1077
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.250.17, 0.350.35, 0.32

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXD (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), SHELXL3013 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and XP in SHELXTL-Plus (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.877 (14)1.895 (15)2.7413 (17)161.5 (17)
N3A—H3A···N1B0.906 (14)1.964 (14)2.8674 (18)175.4 (16)
N21B—H21B···O41A0.880 (15)2.014 (16)2.8914 (18)175 (2)
N21B—H22B···O21Y0.869 (15)2.070 (16)2.9351 (19)173.2 (19)
N41B—H41B···N3Bi0.882 (15)2.171 (16)3.0334 (19)165.7 (18)
N41B—H42B···O21Yii0.874 (15)2.024 (16)2.8565 (19)159.0 (19)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N3C0.887 (18)2.003 (19)2.883 (4)171 (3)
N3A—H3A···N3B0.904 (17)1.966 (18)2.868 (3)174 (3)
N21B—H21B···O41A0.859 (17)2.159 (19)2.993 (3)164 (3)
N41B—H41B···S21A0.87 (2)2.47 (4)3.258 (6)150 (6)
N21C—H21C···O41Ai0.870 (18)2.33 (2)3.137 (3)154 (3)
N41C—H41C···S21A0.89 (2)2.37 (2)3.250 (6)170 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.882 (15)1.885 (15)2.7447 (19)164.6 (18)
N3A—H3A···N3C0.872 (15)2.255 (15)3.120 (2)171.4 (18)
N1B—H1B···O21Y0.883 (15)1.897 (16)2.766 (2)167.8 (19)
N3B—H3B···N1C0.850 (15)2.088 (15)2.936 (2)174.9 (19)
N21C—H21C···O41B0.853 (16)2.005 (17)2.856 (2)175 (2)
N21C—H22C···O41A0.870 (16)1.952 (17)2.822 (2)178 (2)
N41C—H41C···S21A0.880 (18)2.492 (19)3.365 (2)172 (3)
N41C—H42C···O41Ai0.895 (18)1.971 (19)2.862 (2)174 (3)
N41'—H41'···S21B0.882.393.234 (9)160.5
N41'—H42'···O41Bi0.881.932.755 (9)155.4
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11X0.874 (15)1.837 (16)2.702 (2)170 (2)
N3A—H3A···N3B0.882 (15)2.154 (16)3.030 (3)172.9 (19)
N21B—H21B···O41A0.868 (15)1.970 (16)2.8335 (19)173 (2)
N41B—H41B···S21A0.870 (19)2.52 (2)3.373 (3)167 (4)
N41B—H42B···O41Ai0.878 (19)1.96 (2)2.825 (4)168 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11X0.883 (17)1.819 (17)2.701 (2)177 (3)
N3A—H3A···N1C0.878 (17)2.306 (18)3.169 (3)167 (2)
N1B—H1B···O11Y0.872 (17)1.998 (19)2.839 (3)162 (3)
N21C—H21C···O41A0.883 (18)2.018 (18)2.901 (3)178 (3)
N21C—H22C···O41B0.862 (17)1.949 (18)2.811 (3)177 (3)
N3C—H3C···N3B0.886 (17)2.163 (18)3.049 (3)178 (2)
N41C—H41C···S21B0.872 (18)2.377 (19)3.241 (2)171 (3)
N41C—H42C···O41Bi0.869 (18)2.030 (18)2.899 (3)177 (3)
N61C—H61C···O41Ai0.872 (17)2.033 (18)2.905 (3)178 (3)
N61C—H62C···S21A0.862 (17)2.490 (19)3.336 (2)167 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11X0.901 (16)1.818 (17)2.713 (2)172 (2)
N3A—H3A···N1B0.882 (16)2.252 (16)3.132 (2)175 (2)
N21B—H21B···O41A0.861 (16)1.996 (17)2.848 (2)170 (2)
N21B—H22B···O41Bi0.880 (16)2.056 (19)2.856 (2)151 (2)
N3B—H3B···O41Bi0.846 (16)2.055 (18)2.815 (2)149 (2)
N61B—H61B···O41Aii0.879 (16)2.073 (17)2.945 (2)172 (2)
N61B—H62B···S21A0.865 (16)2.534 (18)3.3708 (18)163 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (VII) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.882 (17)1.891 (18)2.758 (3)167 (3)
N3A—H3A···N1B0.877 (17)2.262 (18)3.132 (3)171 (2)
N21B—H21B···O41A0.875 (17)1.965 (18)2.836 (3)174 (3)
N21B—H22B···O41Bi0.858 (17)2.10 (2)2.886 (3)153 (3)
N3B—H3B···O41Bi0.902 (17)1.98 (2)2.807 (2)153 (2)
N61B—H61B···O41Aii0.864 (18)2.060 (19)2.916 (3)171 (3)
N61B—H62B···S21A0.867 (17)2.551 (19)3.386 (2)162 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds