Download citation
Download citation
link to html
Three highly-substituted cyclo­hexa­nol derivatives have been prepared from 2-acetyl­pyridine and 4-halogenobenzaldehydes under mild conditions. (1RS,2SR,3SR,4RS,5RS)-3,5-Bis(4-fluoro­phen­yl)-2,4-bis­(pyridine-2-carbon­yl)-1-(pyridin-2-yl)cy­clo­hexa­nol, C35H27F2N3O3, (I), (1RS,2SR,3SR,4RS,5RS)-3,5-bis­(4-chloro­phen­yl)-2,4-bis­(pyridine-2-carbon­yl)-1-(pyridin-2-yl)cyclo­hexa­nol acetone 0.951-solvate, C35H27Cl2N3O3·0.951C3H6O, (II), and (1RS,2SR,3SR,4RS,5RS)-3,5-bis­(4-bromo­phen­yl)-2,4-bis­(pyridine-2-carbon­yl)-1-(pyridin-2-yl)cy­clo­hexa­nol, C35H27Br2N3O3, (III), all crystallize in different space groups, viz. Pbca, Fdd2 and P\overline{1}, respectively. In compound (II), the acetone molecule is disordered over two sets of atomic sites having occupancies of 0.690 (13) and 0.261 (13). Each of the cyclo­hexa­nol mol­ecules contains an intra­molecular O-H...N hydrogen bond and their overall mol­ecular conformations are fairly similar. The mol­ecules of (I) are linked by two independent C-H...O hydrogen bonds to form a C(5)C(10)[R22(15)] chain of rings, and those of (III) are linked by a combination of C-H...O and C-H...N hydrogen bonds, forming a chain of alternating R22(16) and R22(18) rings. The cyclo­hexa­nol mol­ecules in (II) are linked by a single C-H...N hydrogen bond to form simple C(4) chains and these chains are linked by a [pi]-[pi] stacking inter­action to form sheets, to which the disordered acetone molecules are weakly linked via a number of C-H...O contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614019937/sk3563sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614019937/sk3563Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614019937/sk3563IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614019937/sk3563IIIsup4.hkl
Contains datablock III

CCDC references: 1022769; 1022770; 1022771

Introduction top

Chalcones, i.e. 1,3-disubstituted prop-2-en-1-one derivatives of the form R1COCHCHR2, are versatile inter­mediates for organic synthesis which are readily prepared via Claisen reactions between acetyl compounds R1COCH3 and aldehydes R2CHO. Their versatility stems from their dual modes of reactivity, involving either Michael-type addition across the CC double bond or condensation reactions at the carbonyl function. When these two modes are active in tandem, new cyclic structures result which can be either carbocyclic (Tabba et al., 1995; Ravindran et al., 2008; Fischer et al., 2008; Fun, Hemamalini et al., 2010b) or heterocyclic (Fun, Hemamalini et al., 2010a; Jasinski, Guild et al., 2010; Jasinski, Pek et al., 2010; Samshuddin et al., 2010).

We now report the synthesis and structures of three closely related cyclo­hexanol derivatives, namely (1RS,2SR,3SR,4RS,5RS)-3,5-bis­(4-fluoro­phenyl)-2,4-bis­(pyridine-2-carbonyl)1-(pyridin-2-yl)cyclo­hexanol, (I), (1RS,2SR,3SR,4RS,5RS)-3,5-bis­(4-chloro­phenyl)-2,4-bis­(pyridine-2-carbonyl)-1-(pyridin-2-yl)cyclo­hexanol acetone 0.951-solvate, (II), and (1RS,2SR,3SR,4RS,5RS)- 3,5-bis­(4-bromo­phenyl)-2,4-bis­(pyridine-2-carbonyl)-1-(pyridin-2-yl)cyclo­hexanol, (III) (see Scheme 1). These cyclo­hexanols were prepared, in a one-pot procedure exploiting the dual reactivity of chalcones and giving satisfactory yields, by the reaction of 3:2 molar ratios of 2-acetyl­pyridine with a 4-halogenobenzaldehyde in alkaline aqueous ethanol, without the need for any form of heating. The purposes of this study were the definition of the relative stereochemistry of the five stereogenic centres, the comparison of the molecular conformations, and the exploration of the supra­molecular assembly. In addition, we compare the structures of compounds (I)–(III) with that of the recently reported analogue (IV) (Fun et al., 2012) (see Scheme 1).

Experimental top

Synthesis and crystallization top

For the synthesis of the solvent-free forms (I), (IIa) and (III) (see Scheme 1), 2-acetyl­pyridine (0.03 mol) and the appropriate 4-halogenobenzaldehyde (0.02 mol) were dissolved in ethanol (30 ml). Aqueous potassium hydroxide solution (10 ml of 10% w/v solution) was added and the mixtures were then stirred at 293 K for 4 h, and then permitted to stand overnight at ambient temperature. The resulting colourless products were collected by filtration and dried in air. Compound (I): yield 64%, m.p. 493–495 K; NMR (di­methyl sulfoxide-d6): δ(H) 1.69 (m, 2H, CH2), 3.62 (dd, 1H, H-3), 4.04 (m, 1H, H-5), 4.40 (dd, 1H, H-4), 5.52 (s, 1H, OH), 6.04 (d, 1H, H-2), 6.61–8.44 (m, 20H, aryl and pyridyl); IR (KBr, cm-1): 3430 (OH), 1682 (C O); analysis found: C 72.9, H 4.7, N 6.5%; C35H27F2N3O3 requires: C 73.0, H 4.7, N 6.6%. Compound (IIa): yield 66%, m.p. 416–419 K; NMR (di­methyl sulfoxide-d6): δ(H) 1.75 (m, 2H, CH2), 3.70 (dd, 1H, H-3), 4.05 (m, 1H, H-5), 4.45 (dd, 1H, H-4), 5.50 (s, 1H, OH), 6.05 (d, 1H, H-2), 6.84–8.44 (m, 20H, aryl and pyridyl); IR (KBr, cm-1): 3434 (OH), 1689 (CO); analysis found:C 68.9, H 4.5, N 6.9%; C35H27Cl2N3O3 requires: C 69.3, H 4.5, N 6.9%. Compound (III): yield 72%, m.p. 508–510 K; NMR (chloro­form-d3): δ(H) 1.95 (m, 2H, CH2), 3.50 (dd, 1H, H-3), 4.15 (m, 1H, H-5), 4.40 (dd, 1H, H-4), 5.50 (s, 1H, OH), 6.22 (m, 1H, H-2), 6.86–7.49 (m, 20H, aryl and pyridyl); δ(C) 37.9, 40.6, 47.7, 199.9, 120.9, 121.0, 121.6, 121.8, 126.0, 126.1, 126.5, 130.2, 130.7, 130.8, 136.0, 136.1, 139.7, 141.0, 146.9, 147.9, 148.0, 153.7, 153.9, 162.2, 203.0, 205.0; IR (KBr, cm-1): 3429 (OH), 1682 (CO); analysis found: C 60.2, H 3.9, N 6.0%; C35H27Br2N3O3 requires: C 60.3, H 3.9, N 6.0%. Crystals of (I)–(III) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in acetone.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms in the cyco­hexanol components were located in difference maps and then treated as riding atoms. H atoms bonded to C atoms were treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic and heteroaromatic), 0.99 (CH2) or 1.00 Å (aliphatic), and with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were permitted to ride at the positions located in difference maps, with Uiso(H) = 1.5Ueq(O), giving the O—H distances shown in Table 3. Chloro compound (II) crystallizes as an acetone solvate where the solvent molecules are over two sets of atomic sites. For the minor component, the bonded distances and the one-angle nonbonded distances were restrained to the corresponding values in the major component, subject to variations of 0.005 and 0.01 Å, respectively. In addition, the anisotropic displacement parameters for atoms C71 and C81 were constrained to be identical, as were those of atoms O71 and O81, and those of methyl atoms C72, C73, C82 and C83. The H atoms for both components of the acetone component were included in calculated positions as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.5Ueq(C). Subject to these conditions, the occupancies of the major and minor components refined to 0.690 (13) and 0.261 (13), respectively. The correct orientation of the structure of (II) with respect to the polar-axis direction was determined using the Flack x parameter (Flack, 1983), calculated using 613 quotients of the type [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013), although this has no chemical significance. Examination of the refined structures using PLATON (Spek, 2009) showed that none of them contained any solvent-accessible voids.

Results and discussion top

Although all of the cyclo­hexanols reported here, (I)–(III), were recrystallized from acetone, fluoro and bromo derivatives (I) and (III) crystallized in solvent-free form but chloro derivative (II) crystallized as a nonstoichiometric acetone solvate, in which the acetone solvent component is disordered over two adjacent sets of atomic sites having occupancies of 0.690 (13) and 0.261 (13) in the crystal selected for data collection. In addition to the contrast between solvate (II) and solvent-free forms (I) and (III), all of these compounds crystallize in different space groups, viz. Pbca, Fdd2 and P1, respectively, for compounds (I), (II) and (III), despite the very small differences in their overall molecular constitutions. This behaviour contrasts with the isomorphous behaviour sometimes seen in compounds which differ only in the identity of their halogen substituents (e.g. Glidewell et al., 2005; Nayak et al., 2014). Compound (IV) crystallizes in the space group P21/c as a stoichiometric 1:1 solvate with butanone, although the reported synthetic procedure for (IV) specifies that the compound was crystallized from acetone (Fun et al., 2012).

The cyclo­hexanol components in compounds (I)–(III) contain five stereogenic centres and, for each compound, the reference molecule was selected as one having the R configuration at atom C1 (Figs. 1–3). On this basis, the reference molecules all have the configuration (1R,2S,3S,4R,5R) and the space groups confirm that all three compounds crystallize as racemic mixtures. Compound (IV) has exactly the same stereochemistry, although this aspect of its structure was not mentioned in the original structure report (Fun et al., 2012). The isolated yields of the (1RS,2SR,3SR,4RS,5RS) forms for compounds (I)–(IV), in the range 64–74%, suggest a high degree of stereoselectivity in the formation of the substituted cyclo­hexane ring.

The formation of these polysubstituted cyclo­hexanols from very simple precursors can be envisaged as starting with a condensation reaction between the substituted benzaldehyde, ArCHO, and 2-acetyl­pyridine, MeCOPy, to form a chalcone inter­mediate (A) (see Scheme 2). This step is followed by two Michael additions, the first of which is addition of MeCOPy to the chalcone (A) to form the inter­mediate (B), and the second addition is that of (B) to a further molecule of (A) giving (C). Finally, an intra­molecular aldol reaction converts inter­mediate (C) to the cyclo­hexanol product. The formation of inter­mediate (B) introduces a stereogenic centre, at the site which will eventually become atom C5 of the cyclo­hexane ring (cf. Figs 1–3). Inter­mediate (B) is necessary racemic, as no component in the initial reaction mixtures is capable of inducing enanti­oselectivity. However, the presence of a stereogenic centre in (B) appears to control the relative stereochemistry at the remaining stereogenic centres subsequently formed at the final positions C1, C2, C3 and C4. This reaction scheme accounts for the reaction stoichiometry, the formation of five adjacent stereogenic centres and the formation of the final products as racemic mixtures, but it must be emphasized that this scheme is largely conjectural, albeit firmly based on the straightforward application of simple organic processes.

Within the cyclo­hexanol components, the cyclo­hexane rings all adopt chair conformations and the ring-puckering angles θ, calculated (Cremer & Pople, 1975) for the atom sequence C1–C2–C3–C4–C5–C6 are 5.36 (17), 5.5 (3) and 0.0 (3)° for compounds (I), (II) and (III), respectively; the corresponding value for compound (IV) is 4.69 (15)°. The ideal value for a perfect chair conformation is θ = 0.0° (Boeyens, 1978). The organic substituents at atoms C1, C2, C3 and C5 all occupy equatorial sites, and both the hy­droxy group at atom C1 and the acyl substituent at atom C4 occupy axial sites.

In each of compounds (I)–(III) there is an intra­molecular O—H···N hydrogen bond (Table 3), which may serve effectively to lock the orientation of the pyridine ring bonded to atom C1. The overall molecular conformation can be conveniently summarized in terms of the dihedral angles between the successive rings bonded to the central cyclo­hexane ring (Table 2); the corresponding values for (I)–(III) are in general similar, although with some small differences in detail. The overall similarity between compounds (I)–(III) in terms of their molecular constitutions, stereochemistry and molecular conformations makes their marked differences in crystallization behavior difficult to understand.

The supra­molecular assembly in compounds (I)–(III) is fairly simple for molecules of this complexity. Thus, for example, despite the presence in each cyclo­hexanol molecule of five independent aryl or pyridyl rings, there are no ππ inter­actions in the structure of (I) and only one such inter­action in each of (II) and (III). Similarly, there are no C—H···π inter­actions in the structures of (I) and (III), while the single inter­action of this type in (II) has long H···Cg and C···Cg distances (Table 3), and it is not considered to be structurally significant. The principal inter­molecular inter­actions are thus C—H···N and C—H···O hydrogen bonds, augmented by the ππ inter­actions in (II) and (III). In the structure of compound (I), a combination of two C—H···O hydrogen bonds (Table 3) links molecules related by a b-glide plane to form a C(5)C(10)[R22(15)] chain of rings (Bernstein et al., 1995) running parallel to the [010] direction (Fig. 4).

There are several C—H···O contacts between the molecular components in compound (II) (Table 3). Within the selected asymmetric unit, the cyclo­hexanol molecule forms rather long C—H···O contacts with the two partial-occupancy components of the disordered acetone molecule, one of them with an H···O distance beyond the sum (2.65 Å) of the van der Waals radii for H and O (Rowland & Taylor, 1996). A third such contact has a C—H···O angle of only 129°, so that this contact is probably not structurally significant (Wood et al., 2009). The weak bonding of the acetone to the cyclo­hexanol component may account for the nonstoichiometric nature of the solvation, for the positional disorder of the solvent molecule, and for the relatively large displacement parameters for the solvent component. Subject to these provisos, and that mentioned above concerning the C—H···π contact, the sole significant inter­molecular hydrogen bond, of C—H···N type, links cyclo­hexanol molecules related by the d-glide plane at y = 0.375 to form a simple C(4) chain running parallel to the [101] direction (Fig. 5). These simple chains are linked into sheets by a single ππ stacking inter­action. The pyridyl rings containing atoms N11 and N41 in the molecules at (x, y, z) and (x+1/2, y, z+1/2), respectively, make a dihedral angle of 4.7 (2)°. The ring-centroid separation is 3.846 (2) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3909 (17) Å, corresponding to a nearly ideal ring-centroid offset of ca 1.52 Å. This inter­action links cyclo­hexanol molecules related by translation to form a π-stacked chain running parallel to the [101] direction (Fig. 6). The combination of the hydrogen-bonded chains along [101] and the π-stacked chains along [101] links the cyclo­hexanol molecules into a sheet parallel to (010) to which the acetone molecules are linked only weakly, if at all.

A combination of one C—H···N hydrogen bond and one C—H···O hydrogen bond links the molecules of compound (III) into a chain of centrosymmetric rings running parallel to the [011] direction (Fig. 7). Inversion-related pairs of C—H···N hydrogen bonds link pairs of molecules into R22(18) rings centred at (0, 0.5-n, n), where n represents an integer, and these rings alternate with R22(16) rings containing inversion-related pairs of C—H···O hydrogen bonds which are centred at (0, n, 0.5-n), where n again represents an integer. There is a single ππ inter­action in this structure; the pyridine rings containing atom N21 in the molecules at (x, y, z) and (-x+1, -y, -z+1) are parallel. The inter­planar spacing is 3.555 (2) Å, the ring-centroid separation is 3.680 (3) and the ring-centroid offset is 0.951 (3) Å, and the effect of this inter­action is to link the hydrogen-bonded chain into a sheet parallel to (011).

In the structure of compound (III), there is a short inter­molecular Br···Br contact between inversion-related molecules, with Br54···Br54i = 3.3802 (6) Å and C54—Br54···Br54i= 159.23 (9)° [symmetry code: (i) -x, -y+1, -z]. A database study of the angular distribution of such contacts (Ramasubbu et al., 1986) has shown that the C—X···X angles (where X = Cl, Br or I) are clustered either around 100° or around 165°, and the angle observed in compound (III) is consistent with this finding. Although the observed Br···Br distance in (III) is shorter that the conventional sum of van der Waals radii (3.70 Å; Rowland & Taylor, 1996), a database study of the non-bonded distances in such contacts (Nyburg & Faerman, 1985) found that atoms such as halogens bonded to C atoms do not behave in this context as though they were spherical but instead they behave as oblate ellipsoids, with the major axis normal to the direction of the C—X bond and the minor axis parallel to the C—X bond. For Br, these characteristic radii were found to be 2.01 and 1.64 Å, respectively, and, on this basis, the observed Br···Br distance in compound (III) does not seem to be exceptional.

In compound (IV) (Fun et al., 2012), the supra­molecular assembly consists of C(5) chains built from a single C—H···O hydrogen bond, to which the butanone solvent molecules are linked, also via C—H···O hydrogen bonds. Although the presence of a ππ stacking inter­action was mentioned in the original structure report, no discussion of its action was given. In fact, this inter­action links the hydrogen-bonded chains into a sheet lying parallel to (100) (Fig. 8).

Related literature top

For related literature, see: Bernstein et al. (1995); Boeyens (1978); Cremer & Pople (1975); Fischer et al. (2008); Flack (1983); Fun et al. (2010a, 2010b, 2012); Glidewell et al. (2005); Jasinski, Guild, Samshuddin, Narayana & Yathirajan (2010); Jasinski, Pek, Samshuddin, Narayana & Yathirajan (2010); Nayak et al. (2014); Nyburg & Faerman (1985); Parsons et al. (2013); Ramasubbu et al. (1986); Ravindran et al. (2008); Rowland & Taylor (1996); Samshuddin et al. (2010); Spek (2009); Tabba et al. (1995); Wood et al. (2009).

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2014); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2014) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the (1R,2S,3S,4R,5R) enantiomer of compound (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. [some lines/H atoms missing in ??? ring; please revise]
[Figure 2] Fig. 2. The independent molecular components of compound (II), showing the atom-labelling scheme for the (1R,2S,3S,4R,5R) enantiomer of the cyclohexanol component and the disordered acetone component. Unlabelled atoms C15 and C16 are below O71. The occupancies of the two acetone components are 0.690 (13) and 0.261 (13) and the displacement ellipsoids are drawn at the 30% probability level. [some lines/H atoms missing in ??? ring; please revise]
[Figure 3] Fig. 3. The molecular structure of the (1R,2S,3S,4R,5R) enantiomer of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded C(5)C(10)[R22(15)] chain of rings parallel to [010]. Hydrogen bonds are shown as dashed lines and H atoms not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded C(4) chain parallel to [101]. Hydrogen bonds are shown as dashed lines and the the acetone components and H atoms not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (II), showing the formation of a π-stacked chain parallel to [101]. The acetone components and all of the H atoms have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded chain of centrosymmetric R22(16) and R22(18) rings parallel to [011]. Hydrogen bonds are shown as dashed lines and H atoms not involved in the motifs shown have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (IV), showing the formation of a π-stacked sheet of hydrogen-bonded chains parallel to (100). The original atomic coordinates (Fun et al., 2012) have been used. Hydrogen bonds are shown as dashed lines and the butanone solvent molecules and H atoms not involved in the motif shown have been omitted.
(I) (1RS,2SR,3SR,4RS,5RS)-3,5-Bis(4-fluorophenyl)-2,4-bis(pyridine-2-carbonyl)1-(pyridin-2-yl)cyclohexanol top
Crystal data top
C35H27F2N3O3Dx = 1.282 Mg m3
Mr = 575.60Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 5754 reflections
a = 21.8864 (9) Åθ = 3.6–71.2°
b = 11.2268 (4) ŵ = 0.75 mm1
c = 24.2670 (9) ÅT = 200 K
V = 5962.7 (4) Å3Needle, colourless
Z = 80.40 × 0.09 × 0.08 mm
F(000) = 2400
Data collection top
Agilent Eos Gemini
diffractometer
4489 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.036
ω scansθmax = 71.2°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1826
Tmin = 0.693, Tmax = 0.942k = 1313
37077 measured reflectionsl = 2729
5754 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0634P)2 + 1.1285P]
where P = (Fo2 + 2Fc2)/3
5754 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C35H27F2N3O3V = 5962.7 (4) Å3
Mr = 575.60Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 21.8864 (9) ŵ = 0.75 mm1
b = 11.2268 (4) ÅT = 200 K
c = 24.2670 (9) Å0.40 × 0.09 × 0.08 mm
Data collection top
Agilent Eos Gemini
diffractometer
5754 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4489 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.942Rint = 0.036
37077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
5754 reflectionsΔρmin = 0.20 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19695 (8)0.56058 (14)0.29755 (6)0.0469 (4)
O110.20061 (6)0.43914 (10)0.28039 (5)0.0587 (3)
H110.17160.42860.25980.088*
C20.15217 (7)0.57345 (13)0.34750 (6)0.0436 (3)
H20.15090.65890.35900.052*
C30.17385 (7)0.49773 (13)0.39661 (6)0.0434 (3)
H30.17310.41280.38420.052*
C40.24067 (7)0.52586 (13)0.41351 (6)0.0433 (3)
H40.25390.46170.43950.052*
C50.28430 (7)0.52110 (13)0.36324 (7)0.0463 (3)
H50.28420.43680.35000.056*
C60.26119 (7)0.59731 (15)0.31527 (7)0.0495 (4)
H6A0.26090.68210.32650.059*
H6B0.28940.58900.28360.059*
N110.13521 (8)0.57704 (16)0.21601 (6)0.0662 (4)
C120.17203 (8)0.63612 (16)0.25019 (7)0.0513 (4)
C130.18284 (11)0.75631 (19)0.24506 (9)0.0716 (5)
H130.21010.79600.26940.086*
C140.15306 (14)0.8180 (2)0.20361 (11)0.0942 (8)
H140.15970.90100.19900.113*
C150.11414 (13)0.7586 (3)0.16938 (10)0.0927 (8)
H150.09270.79950.14110.111*
C160.10686 (12)0.6393 (3)0.17684 (9)0.0853 (7)
H160.08000.59800.15270.102*
C270.08834 (8)0.53511 (15)0.33041 (7)0.0493 (4)
O270.07514 (6)0.43068 (11)0.32607 (6)0.0646 (3)
N210.05596 (9)0.74111 (16)0.32838 (8)0.0758 (5)
C220.04146 (8)0.62888 (18)0.31706 (7)0.0573 (4)
C230.01306 (10)0.5955 (3)0.29329 (10)0.0846 (7)
H230.02220.51420.28610.102*
C240.05428 (13)0.6857 (4)0.28028 (13)0.1123 (10)
H240.09200.66690.26300.135*
C250.04035 (15)0.8010 (3)0.29238 (13)0.1112 (10)
H250.06840.86330.28470.133*
C260.01477 (14)0.8246 (3)0.31575 (11)0.1002 (9)
H260.02460.90520.32360.120*
C310.13233 (7)0.50623 (14)0.44664 (7)0.0473 (4)
C320.10194 (9)0.60966 (17)0.46100 (8)0.0604 (4)
H320.10410.67690.43730.072*
C330.06841 (10)0.6169 (2)0.50932 (9)0.0737 (6)
H330.04790.68850.51900.088*
C340.06538 (10)0.5205 (2)0.54226 (9)0.0771 (6)
F340.03235 (8)0.52803 (18)0.58975 (6)0.1177 (6)
C350.09327 (12)0.4160 (2)0.52967 (9)0.0830 (7)
H350.08990.34910.55350.100*
C360.12679 (10)0.40895 (18)0.48118 (8)0.0649 (5)
H360.14620.33620.47160.078*
C470.24466 (7)0.64265 (13)0.44453 (7)0.0456 (3)
O470.23444 (6)0.73801 (9)0.42281 (5)0.0575 (3)
N410.28713 (11)0.54117 (16)0.52388 (8)0.0865 (6)
C420.26141 (9)0.63990 (15)0.50466 (7)0.0561 (4)
C430.25094 (12)0.73865 (19)0.53713 (8)0.0764 (6)
H430.23220.80790.52230.092*
C440.26832 (17)0.7342 (3)0.59181 (10)0.1086 (10)
H440.26100.80020.61540.130*
C450.29594 (18)0.6346 (3)0.61140 (11)0.1234 (12)
H450.30910.63020.64860.148*
C460.30429 (18)0.5414 (3)0.57659 (12)0.1228 (12)
H460.32360.47190.59070.147*
C510.34937 (7)0.54824 (14)0.38108 (7)0.0481 (4)
C520.37957 (9)0.46579 (17)0.41399 (9)0.0653 (5)
H520.35970.39340.42340.078*
C530.43805 (9)0.48691 (19)0.43340 (9)0.0705 (5)
H530.45840.43020.45600.085*
C540.46566 (8)0.59140 (18)0.41921 (8)0.0598 (4)
F540.52375 (5)0.61192 (12)0.43809 (5)0.0820 (4)
C550.43852 (8)0.67500 (17)0.38715 (8)0.0621 (5)
H550.45920.74680.37800.074*
C560.37968 (8)0.65291 (15)0.36802 (8)0.0550 (4)
H560.35990.71060.34560.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0533 (9)0.0418 (8)0.0455 (8)0.0003 (6)0.0003 (7)0.0037 (7)
O110.0640 (7)0.0490 (6)0.0631 (7)0.0062 (5)0.0044 (6)0.0149 (6)
C20.0496 (8)0.0366 (7)0.0447 (8)0.0021 (6)0.0022 (6)0.0004 (6)
C30.0501 (8)0.0328 (7)0.0474 (8)0.0012 (6)0.0015 (6)0.0008 (6)
C40.0496 (8)0.0340 (7)0.0462 (8)0.0013 (6)0.0034 (6)0.0028 (6)
C50.0495 (9)0.0381 (7)0.0514 (8)0.0022 (6)0.0018 (7)0.0023 (6)
C60.0483 (9)0.0523 (9)0.0478 (8)0.0008 (7)0.0011 (7)0.0016 (7)
N110.0690 (10)0.0781 (11)0.0516 (8)0.0047 (8)0.0112 (7)0.0038 (8)
C120.0541 (9)0.0577 (10)0.0421 (8)0.0008 (7)0.0008 (7)0.0011 (7)
C130.0880 (14)0.0628 (12)0.0641 (12)0.0082 (10)0.0169 (10)0.0112 (9)
C140.119 (2)0.0785 (15)0.0852 (16)0.0030 (14)0.0186 (15)0.0296 (13)
C150.0962 (18)0.116 (2)0.0661 (14)0.0048 (15)0.0201 (12)0.0294 (14)
C160.0844 (15)0.113 (2)0.0583 (12)0.0039 (14)0.0201 (11)0.0039 (12)
C270.0525 (9)0.0505 (9)0.0450 (8)0.0014 (7)0.0009 (7)0.0017 (7)
O270.0643 (8)0.0548 (7)0.0748 (8)0.0110 (6)0.0088 (6)0.0017 (6)
N210.0841 (12)0.0654 (11)0.0780 (11)0.0245 (9)0.0153 (9)0.0006 (9)
C220.0535 (9)0.0708 (12)0.0476 (9)0.0096 (8)0.0003 (7)0.0047 (8)
C230.0627 (12)0.1074 (18)0.0838 (15)0.0044 (12)0.0151 (11)0.0066 (13)
C240.0685 (15)0.160 (3)0.109 (2)0.0285 (18)0.0282 (14)0.014 (2)
C250.104 (2)0.126 (3)0.104 (2)0.058 (2)0.0170 (17)0.0143 (19)
C260.112 (2)0.0883 (17)0.1003 (18)0.0465 (16)0.0226 (16)0.0019 (14)
C310.0469 (8)0.0490 (8)0.0461 (8)0.0031 (7)0.0036 (7)0.0001 (7)
C320.0650 (11)0.0566 (10)0.0595 (10)0.0019 (8)0.0082 (8)0.0039 (8)
C330.0722 (13)0.0803 (14)0.0686 (12)0.0002 (11)0.0124 (10)0.0182 (11)
C340.0707 (13)0.1070 (18)0.0534 (11)0.0127 (12)0.0120 (9)0.0094 (11)
F340.1163 (12)0.1697 (16)0.0670 (8)0.0229 (11)0.0383 (8)0.0117 (9)
C350.0904 (16)0.0956 (17)0.0630 (12)0.0111 (13)0.0090 (11)0.0248 (12)
C360.0704 (12)0.0625 (11)0.0619 (11)0.0012 (9)0.0033 (9)0.0128 (9)
C470.0474 (8)0.0381 (8)0.0513 (8)0.0013 (6)0.0000 (7)0.0017 (7)
O470.0793 (8)0.0351 (6)0.0580 (7)0.0012 (5)0.0048 (6)0.0018 (5)
N410.1270 (17)0.0641 (11)0.0682 (11)0.0086 (10)0.0376 (11)0.0004 (9)
C420.0673 (11)0.0477 (9)0.0531 (9)0.0099 (8)0.0066 (8)0.0002 (7)
C430.1111 (18)0.0619 (12)0.0562 (11)0.0032 (11)0.0002 (11)0.0056 (9)
C440.173 (3)0.0959 (19)0.0572 (13)0.0161 (19)0.0056 (16)0.0175 (13)
C450.196 (4)0.112 (2)0.0613 (15)0.022 (2)0.0468 (19)0.0030 (15)
C460.196 (4)0.0907 (19)0.0821 (17)0.010 (2)0.066 (2)0.0076 (15)
C510.0480 (9)0.0433 (8)0.0529 (9)0.0031 (6)0.0018 (7)0.0014 (7)
C520.0575 (10)0.0523 (10)0.0862 (13)0.0029 (8)0.0101 (9)0.0141 (9)
C530.0605 (11)0.0714 (13)0.0795 (13)0.0020 (9)0.0142 (10)0.0209 (10)
C540.0480 (9)0.0718 (12)0.0597 (10)0.0051 (8)0.0060 (8)0.0029 (9)
F540.0588 (6)0.1041 (9)0.0831 (8)0.0149 (6)0.0181 (6)0.0077 (7)
C550.0576 (10)0.0542 (10)0.0744 (12)0.0093 (8)0.0008 (9)0.0043 (9)
C560.0523 (9)0.0492 (9)0.0634 (10)0.0012 (7)0.0025 (8)0.0062 (8)
Geometric parameters (Å, º) top
C1—O111.4279 (19)C25—C261.359 (4)
C1—C61.527 (2)C25—H250.9500
C1—C121.529 (2)C26—H260.9500
C1—C21.565 (2)C31—C361.382 (2)
O11—H110.8158C31—C321.383 (2)
C2—C271.519 (2)C32—C331.386 (3)
C2—C31.539 (2)C32—H320.9500
C2—H21.0000C33—C341.347 (3)
C3—C311.520 (2)C33—H330.9500
C3—C41.551 (2)C34—C351.357 (4)
C3—H31.0000C34—F341.363 (2)
C4—C471.514 (2)C35—C361.389 (3)
C4—C51.550 (2)C35—H350.9500
C4—H41.0000C36—H360.9500
C5—C511.519 (2)C47—O471.2140 (19)
C5—C61.531 (2)C47—C421.505 (2)
C5—H51.0000N41—C421.328 (3)
C6—H6A0.9900N41—C461.333 (3)
C6—H6B0.9900C42—C431.379 (3)
N11—C121.333 (2)C43—C441.381 (3)
N11—C161.333 (3)C43—H430.9500
C12—C131.376 (3)C44—C451.357 (4)
C13—C141.384 (3)C44—H440.9500
C13—H130.9500C45—C461.357 (4)
C14—C151.364 (4)C45—H450.9500
C14—H140.9500C46—H460.9500
C15—C161.361 (4)C51—C561.386 (2)
C15—H150.9500C51—C521.390 (2)
C16—H160.9500C52—C531.384 (3)
C27—O271.212 (2)C52—H520.9500
C27—C221.505 (2)C53—C541.364 (3)
N21—C221.328 (3)C53—H530.9500
N21—C261.336 (3)C54—C551.356 (3)
C22—C231.378 (3)C54—F541.371 (2)
C23—C241.393 (4)C55—C561.391 (2)
C23—H230.9500C55—H550.9500
C24—C251.362 (4)C56—H560.9500
C24—H240.9500
O11—C1—C6106.76 (13)C25—C24—H24120.1
O11—C1—C12109.29 (13)C23—C24—H24120.1
C6—C1—C12112.97 (13)C26—C25—C24118.3 (2)
O11—C1—C2110.43 (13)C26—C25—H25120.9
C6—C1—C2109.49 (13)C24—C25—H25120.9
C12—C1—C2107.91 (13)N21—C26—C25123.9 (3)
C1—O11—H11105.9N21—C26—H26118.0
C27—C2—C3109.78 (12)C25—C26—H26118.0
C27—C2—C1109.77 (13)C36—C31—C32117.94 (17)
C3—C2—C1110.82 (12)C36—C31—C3119.17 (15)
C27—C2—H2108.8C32—C31—C3122.80 (15)
C3—C2—H2108.8C31—C32—C33121.13 (19)
C1—C2—H2108.8C31—C32—H32119.4
C31—C3—C2113.55 (13)C33—C32—H32119.4
C31—C3—C4109.86 (12)C34—C33—C32118.8 (2)
C2—C3—C4112.52 (12)C34—C33—H33120.6
C31—C3—H3106.8C32—C33—H33120.6
C2—C3—H3106.8C33—C34—C35122.59 (19)
C4—C3—H3106.8C33—C34—F34118.6 (2)
C47—C4—C5112.67 (12)C35—C34—F34118.9 (2)
C47—C4—C3111.22 (12)C34—C35—C36118.5 (2)
C5—C4—C3111.44 (12)C34—C35—H35120.7
C47—C4—H4107.1C36—C35—H35120.7
C5—C4—H4107.1C31—C36—C35121.0 (2)
C3—C4—H4107.1C31—C36—H36119.5
C51—C5—C6114.48 (13)C35—C36—H36119.5
C51—C5—C4110.25 (13)O47—C47—C42118.94 (15)
C6—C5—C4112.07 (13)O47—C47—C4122.49 (14)
C51—C5—H5106.5C42—C47—C4118.56 (13)
C6—C5—H5106.5C42—N41—C46117.1 (2)
C4—C5—H5106.5N41—C42—C43122.75 (18)
C1—C6—C5111.55 (13)N41—C42—C47117.45 (16)
C1—C6—H6A109.3C43—C42—C47119.79 (17)
C5—C6—H6A109.3C42—C43—C44118.3 (2)
C1—C6—H6B109.3C42—C43—H43120.9
C5—C6—H6B109.3C44—C43—H43120.9
H6A—C6—H6B108.0C45—C44—C43119.3 (3)
C12—N11—C16117.64 (19)C45—C44—H44120.4
N11—C12—C13122.39 (17)C43—C44—H44120.4
N11—C12—C1114.04 (15)C44—C45—C46118.5 (2)
C13—C12—C1123.42 (16)C44—C45—H45120.7
C12—C13—C14118.4 (2)C46—C45—H45120.7
C12—C13—H13120.8N41—C46—C45124.1 (3)
C14—C13—H13120.8N41—C46—H46118.0
C15—C14—C13119.5 (2)C45—C46—H46118.0
C15—C14—H14120.3C56—C51—C52117.92 (16)
C13—C14—H14120.3C56—C51—C5123.61 (15)
C16—C15—C14118.2 (2)C52—C51—C5118.43 (15)
C16—C15—H15120.9C53—C52—C51121.41 (18)
C14—C15—H15120.9C53—C52—H52119.3
N11—C16—C15123.8 (2)C51—C52—H52119.3
N11—C16—H16118.1C54—C53—C52118.12 (18)
C15—C16—H16118.1C54—C53—H53120.9
O27—C27—C22119.69 (16)C52—C53—H53120.9
O27—C27—C2121.13 (15)C55—C54—C53123.09 (17)
C22—C27—C2119.16 (15)C55—C54—F54118.79 (17)
C22—N21—C26117.2 (2)C53—C54—F54118.11 (17)
N21—C22—C23123.49 (19)C54—C55—C56118.26 (17)
N21—C22—C27117.14 (16)C54—C55—H55120.9
C23—C22—C27119.36 (19)C56—C55—H55120.9
C22—C23—C24117.3 (3)C51—C56—C55121.20 (16)
C22—C23—H23121.4C51—C56—H56119.4
C24—C23—H23121.4C55—C56—H56119.4
C25—C24—C23119.8 (3)
O11—C1—C2—C2761.80 (16)C22—C23—C24—C251.5 (4)
C6—C1—C2—C27179.08 (13)C23—C24—C25—C261.7 (5)
C12—C1—C2—C2757.59 (16)C22—N21—C26—C250.1 (4)
O11—C1—C2—C359.62 (16)C24—C25—C26—N211.0 (5)
C6—C1—C2—C357.65 (16)C2—C3—C31—C36148.77 (15)
C12—C1—C2—C3179.02 (13)C4—C3—C31—C3684.24 (18)
C27—C2—C3—C3158.61 (16)C2—C3—C31—C3234.7 (2)
C1—C2—C3—C31179.97 (12)C4—C3—C31—C3292.30 (18)
C27—C2—C3—C4175.80 (12)C36—C31—C32—C331.9 (3)
C1—C2—C3—C454.37 (16)C3—C31—C32—C33174.72 (17)
C31—C3—C4—C4751.99 (16)C31—C32—C33—C340.5 (3)
C2—C3—C4—C4775.59 (16)C32—C33—C34—C350.8 (4)
C31—C3—C4—C5178.62 (12)C32—C33—C34—F34180.0 (2)
C2—C3—C4—C551.05 (16)C33—C34—C35—C360.7 (4)
C47—C4—C5—C5154.51 (16)F34—C34—C35—C36179.9 (2)
C3—C4—C5—C51179.66 (12)C32—C31—C36—C351.9 (3)
C47—C4—C5—C674.26 (16)C3—C31—C36—C35174.78 (19)
C3—C4—C5—C651.57 (16)C34—C35—C36—C310.7 (3)
O11—C1—C6—C560.66 (17)C5—C4—C47—O4758.7 (2)
C12—C1—C6—C5179.18 (13)C3—C4—C47—O4767.30 (19)
C2—C1—C6—C558.90 (17)C5—C4—C47—C42121.88 (15)
C51—C5—C6—C1176.87 (13)C3—C4—C47—C42112.16 (16)
C4—C5—C6—C156.61 (17)C46—N41—C42—C431.6 (4)
C16—N11—C12—C132.1 (3)C46—N41—C42—C47177.1 (3)
C16—N11—C12—C1173.54 (18)O47—C47—C42—N41163.26 (19)
O11—C1—C12—N1128.5 (2)C4—C47—C42—N4117.3 (3)
C6—C1—C12—N11147.25 (15)O47—C47—C42—C4315.5 (3)
C2—C1—C12—N1191.57 (17)C4—C47—C42—C43164.01 (18)
O11—C1—C12—C13155.82 (18)N41—C42—C43—C440.3 (4)
C6—C1—C12—C1337.1 (2)C47—C42—C43—C44178.3 (2)
C2—C1—C12—C1384.1 (2)C42—C43—C44—C451.2 (5)
N11—C12—C13—C141.6 (3)C43—C44—C45—C461.4 (6)
C1—C12—C13—C14173.7 (2)C42—N41—C46—C451.4 (5)
C12—C13—C14—C150.1 (4)C44—C45—C46—N410.1 (6)
C13—C14—C15—C161.1 (4)C6—C5—C51—C5618.5 (2)
C12—N11—C16—C151.0 (4)C4—C5—C51—C56108.96 (18)
C14—C15—C16—N110.6 (4)C6—C5—C51—C52163.96 (16)
C3—C2—C27—O2745.1 (2)C4—C5—C51—C5268.6 (2)
C1—C2—C27—O2776.93 (19)C56—C51—C52—C530.1 (3)
C3—C2—C27—C22136.74 (14)C5—C51—C52—C53177.57 (19)
C1—C2—C27—C22101.21 (16)C51—C52—C53—C540.2 (3)
C26—N21—C22—C230.1 (3)C52—C53—C54—C550.0 (3)
C26—N21—C22—C27179.0 (2)C52—C53—C54—F54179.53 (19)
O27—C27—C22—N21172.63 (17)C53—C54—C55—C560.2 (3)
C2—C27—C22—N219.2 (2)F54—C54—C55—C56179.70 (17)
O27—C27—C22—C238.4 (3)C52—C51—C56—C550.1 (3)
C2—C27—C22—C23169.76 (18)C5—C51—C56—C55177.62 (16)
N21—C22—C23—C240.6 (4)C54—C55—C56—C510.2 (3)
C27—C22—C23—C24178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···N110.822.132.624 (2)119
C13—H13···O11i0.952.543.385 (3)148
C55—H55···O27i0.952.533.244 (2)132
Symmetry code: (i) x+1/2, y+1/2, z.
(II) (1RS,2SR,3SR,4RS,5RS)-3,5-Bis(4-chlorophenyl)-2,4-bis(pyridine-2-carbonyl)-1-(pyridin-2-yl)cyclohexanol acetone 0.951-solvate top
Crystal data top
C35H27Cl2N3O3·0.951C3H6ODx = 1.280 Mg m3
Mr = 663.73Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Fdd2Cell parameters from 4224 reflections
a = 16.5446 (6) Åθ = 4.6–70.1°
b = 53.4204 (17) ŵ = 2.05 mm1
c = 15.5857 (4) ÅT = 200 K
V = 13774.9 (8) Å3Block, colourless
Z = 160.30 × 0.25 × 0.20 mm
F(000) = 5543
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
3490 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.027
ω scansθmax = 70.1°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1920
Tmin = 0.388, Tmax = 0.664k = 5664
9544 measured reflectionsl = 186
4224 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0744P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
4224 reflectionsΔρmax = 0.16 e Å3
436 parametersΔρmin = 0.16 e Å3
7 restraintsAbsolute structure: Flack x determined using 613 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.089 (18)
Crystal data top
C35H27Cl2N3O3·0.951C3H6OV = 13774.9 (8) Å3
Mr = 663.73Z = 16
Orthorhombic, Fdd2Cu Kα radiation
a = 16.5446 (6) ŵ = 2.05 mm1
b = 53.4204 (17) ÅT = 200 K
c = 15.5857 (4) Å0.30 × 0.25 × 0.20 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
4224 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3490 reflections with I > 2σ(I)
Tmin = 0.388, Tmax = 0.664Rint = 0.027
9544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.16 e Å3
S = 0.97Δρmin = 0.16 e Å3
4224 reflectionsAbsolute structure: Flack x determined using 613 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
436 parametersAbsolute structure parameter: 0.089 (18)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.25172 (19)0.35490 (6)0.4632 (2)0.0505 (6)
O110.20607 (15)0.35606 (5)0.54074 (15)0.0647 (6)
H110.23790.34670.57310.097*
C20.21280 (17)0.33568 (5)0.40064 (19)0.0481 (6)
H20.24400.33570.34570.058*
C30.12475 (17)0.34306 (5)0.38147 (19)0.0460 (6)
H30.09620.34350.43800.055*
C40.11812 (16)0.36986 (5)0.34352 (19)0.0454 (6)
H40.05960.37450.34380.054*
C50.16302 (18)0.38897 (5)0.4017 (2)0.0489 (6)
H50.13360.38910.45770.059*
C60.24983 (19)0.38087 (5)0.4218 (2)0.0526 (6)
H6A0.28180.38060.36810.063*
H6B0.27500.39320.46110.063*
N110.3517 (2)0.33975 (6)0.5638 (2)0.0679 (7)
C120.33845 (19)0.34663 (6)0.4829 (2)0.0546 (7)
C130.3972 (2)0.34512 (7)0.4207 (3)0.0649 (8)
H130.38650.35090.36420.078*
C140.4712 (2)0.33528 (9)0.4409 (3)0.0809 (11)
H140.51210.33380.39840.097*
C150.4854 (3)0.32758 (9)0.5246 (4)0.0876 (13)
H150.53560.32040.54070.105*
C160.4251 (3)0.33070 (9)0.5827 (3)0.0862 (13)
H160.43570.32620.64050.103*
C270.21686 (19)0.30956 (6)0.4398 (2)0.0541 (7)
O270.16848 (16)0.30235 (5)0.4917 (2)0.0735 (7)
N210.3165 (2)0.29660 (7)0.3350 (3)0.0837 (10)
C220.2864 (2)0.29305 (6)0.4138 (3)0.0620 (8)
C230.3160 (3)0.27562 (7)0.4698 (4)0.0841 (12)
H230.29240.27360.52490.101*
C240.3807 (4)0.26106 (10)0.4446 (5)0.1104 (18)
H240.40380.24920.48290.132*
C250.4108 (4)0.26401 (11)0.3641 (5)0.116 (2)
H250.45400.25370.34450.139*
C260.3785 (3)0.28192 (12)0.3115 (4)0.1066 (17)
H260.40090.28410.25590.128*
C310.08089 (18)0.32368 (6)0.3270 (2)0.0513 (6)
C320.1182 (2)0.31044 (7)0.2615 (3)0.0637 (8)
H320.17290.31410.24770.076*
C330.0783 (2)0.29211 (8)0.2158 (3)0.0746 (10)
H330.10490.28320.17120.090*
C340.0008 (3)0.28699 (7)0.2360 (3)0.0757 (10)
Cl340.05239 (11)0.26346 (3)0.18053 (12)0.1225 (6)
C350.0399 (2)0.29974 (8)0.2996 (3)0.0764 (11)
H350.09460.29600.31260.092*
C360.0003 (2)0.31802 (7)0.3446 (3)0.0631 (8)
H360.02720.32690.38840.076*
C470.14717 (16)0.37140 (5)0.25098 (19)0.0451 (6)
O470.21661 (12)0.36662 (5)0.23092 (16)0.0607 (6)
N410.01329 (16)0.38537 (6)0.2066 (2)0.0646 (7)
C420.08830 (17)0.37945 (5)0.1827 (2)0.0488 (6)
C430.1135 (2)0.38102 (7)0.0983 (2)0.0618 (8)
H430.16720.37650.08310.074*
C440.0603 (2)0.38919 (8)0.0363 (3)0.0751 (10)
H440.07680.39070.02180.090*
C450.0167 (3)0.39508 (8)0.0603 (3)0.0782 (11)
H450.05530.40050.01920.094*
C460.0367 (2)0.39294 (9)0.1454 (3)0.0794 (11)
H460.09030.39720.16160.095*
C510.15672 (19)0.41541 (6)0.3660 (2)0.0508 (6)
C520.0822 (2)0.42707 (7)0.3642 (3)0.0706 (10)
H520.03620.41850.38560.085*
C530.0733 (3)0.45099 (8)0.3318 (4)0.0804 (11)
H530.02150.45870.33020.096*
C540.1397 (3)0.46354 (7)0.3021 (3)0.0725 (10)
Cl540.12896 (10)0.49384 (2)0.26117 (12)0.1142 (5)
C550.2146 (3)0.45280 (7)0.3033 (3)0.0726 (10)
H550.26030.46170.28250.087*
C560.2225 (2)0.42862 (6)0.3355 (3)0.0623 (8)
H560.27440.42100.33660.075*
C710.6495 (16)0.2977 (7)0.2767 (10)0.125 (3)0.690 (13)
O710.5974 (5)0.3120 (2)0.2778 (8)0.159 (4)0.690 (13)
C720.7036 (14)0.2906 (3)0.2035 (9)0.174 (5)0.690 (13)
H72A0.71370.27260.20470.261*0.690 (13)
H72B0.75500.29960.20870.261*0.690 (13)
H72C0.67760.29510.14920.261*0.690 (13)
C730.6809 (14)0.2869 (3)0.3563 (8)0.174 (5)0.690 (13)
H73A0.73960.28930.35870.261*0.690 (13)
H73B0.66860.26900.35810.261*0.690 (13)
H73C0.65570.29530.40550.261*0.690 (13)
C810.664 (4)0.293 (2)0.285 (2)0.125 (3)0.261 (11)
O810.6093 (14)0.2987 (6)0.326 (2)0.159 (4)0.261 (11)
C820.680 (3)0.2969 (10)0.1916 (17)0.174 (5)0.261 (11)
H82A0.71790.28410.17110.261*0.261 (11)
H82B0.70350.31350.18250.261*0.261 (11)
H82C0.62910.29560.15990.261*0.261 (11)
C830.731 (2)0.2787 (7)0.323 (2)0.174 (5)0.261 (11)
H83A0.77260.27580.27990.261*0.261 (11)
H83B0.71010.26260.34400.261*0.261 (11)
H83C0.75390.28810.37140.261*0.261 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0563 (14)0.0556 (15)0.0397 (13)0.0015 (13)0.0020 (13)0.0001 (12)
O110.0749 (13)0.0745 (14)0.0445 (12)0.0068 (12)0.0082 (11)0.0015 (11)
C20.0501 (13)0.0502 (13)0.0440 (14)0.0029 (12)0.0040 (12)0.0005 (12)
C30.0469 (13)0.0504 (13)0.0409 (13)0.0026 (11)0.0056 (11)0.0026 (11)
C40.0413 (12)0.0505 (14)0.0443 (14)0.0055 (11)0.0058 (11)0.0000 (12)
C50.0552 (14)0.0497 (13)0.0419 (13)0.0031 (12)0.0075 (13)0.0010 (11)
C60.0576 (15)0.0507 (14)0.0495 (15)0.0007 (13)0.0049 (13)0.0007 (13)
N110.0849 (19)0.0655 (15)0.0533 (15)0.0078 (15)0.0128 (16)0.0091 (13)
C120.0625 (16)0.0502 (14)0.0512 (16)0.0030 (13)0.0109 (15)0.0016 (13)
C130.0551 (16)0.080 (2)0.0597 (19)0.0013 (16)0.0068 (16)0.0029 (17)
C140.0621 (19)0.092 (3)0.088 (3)0.0039 (19)0.008 (2)0.002 (2)
C150.074 (2)0.086 (3)0.104 (3)0.015 (2)0.029 (3)0.006 (3)
C160.105 (3)0.084 (3)0.070 (2)0.019 (2)0.030 (3)0.015 (2)
C270.0583 (15)0.0555 (15)0.0485 (15)0.0016 (13)0.0029 (14)0.0026 (13)
O270.0774 (14)0.0687 (14)0.0743 (17)0.0041 (12)0.0120 (14)0.0199 (13)
N210.088 (2)0.093 (2)0.070 (2)0.0334 (19)0.0021 (18)0.0136 (18)
C220.0672 (17)0.0499 (15)0.069 (2)0.0054 (14)0.0081 (17)0.0079 (15)
C230.097 (3)0.0609 (19)0.094 (3)0.019 (2)0.003 (3)0.011 (2)
C240.123 (4)0.077 (3)0.131 (5)0.042 (3)0.014 (4)0.004 (3)
C250.122 (4)0.102 (4)0.123 (5)0.061 (3)0.013 (4)0.039 (4)
C260.110 (3)0.128 (4)0.081 (3)0.047 (3)0.011 (3)0.030 (3)
C310.0516 (14)0.0498 (14)0.0526 (16)0.0002 (12)0.0016 (13)0.0070 (13)
C320.0637 (16)0.0635 (17)0.064 (2)0.0005 (15)0.0012 (17)0.0067 (16)
C330.086 (2)0.067 (2)0.071 (2)0.0000 (18)0.016 (2)0.0121 (18)
C340.090 (2)0.0581 (17)0.079 (3)0.0081 (18)0.031 (2)0.0038 (18)
Cl340.1446 (11)0.0949 (8)0.1281 (12)0.0398 (8)0.0502 (10)0.0146 (8)
C350.0620 (18)0.081 (2)0.086 (3)0.0154 (19)0.0148 (19)0.014 (2)
C360.0564 (16)0.0667 (19)0.066 (2)0.0026 (15)0.0054 (16)0.0083 (17)
C470.0442 (13)0.0472 (12)0.0440 (15)0.0009 (11)0.0069 (12)0.0014 (11)
O470.0481 (10)0.0849 (15)0.0491 (11)0.0098 (10)0.0084 (10)0.0015 (11)
N410.0513 (13)0.0835 (18)0.0588 (16)0.0139 (13)0.0057 (13)0.0086 (15)
C420.0477 (13)0.0507 (13)0.0479 (15)0.0038 (11)0.0003 (13)0.0001 (12)
C430.0542 (16)0.082 (2)0.0494 (17)0.0068 (15)0.0071 (15)0.0027 (16)
C440.079 (2)0.093 (3)0.0528 (19)0.010 (2)0.0045 (18)0.0080 (19)
C450.080 (2)0.083 (2)0.072 (2)0.003 (2)0.022 (2)0.016 (2)
C460.0548 (17)0.101 (3)0.083 (3)0.0193 (19)0.0018 (19)0.014 (2)
C510.0590 (15)0.0487 (14)0.0448 (14)0.0031 (13)0.0035 (13)0.0028 (12)
C520.0645 (18)0.0581 (17)0.089 (3)0.0055 (16)0.0117 (19)0.0037 (18)
C530.076 (2)0.062 (2)0.103 (3)0.0158 (18)0.003 (2)0.008 (2)
C540.098 (3)0.0495 (16)0.070 (2)0.0066 (18)0.007 (2)0.0090 (16)
Cl540.1386 (10)0.0630 (5)0.1409 (12)0.0055 (6)0.0158 (10)0.0338 (6)
C550.084 (2)0.0572 (17)0.077 (2)0.0077 (18)0.006 (2)0.0091 (17)
C560.0596 (16)0.0565 (16)0.071 (2)0.0020 (14)0.0073 (17)0.0020 (16)
C710.138 (11)0.106 (16)0.132 (7)0.032 (6)0.022 (7)0.008 (6)
O710.130 (5)0.161 (8)0.186 (11)0.012 (5)0.014 (6)0.015 (7)
C720.286 (14)0.131 (8)0.104 (5)0.013 (8)0.028 (7)0.016 (4)
C730.286 (14)0.131 (8)0.104 (5)0.013 (8)0.028 (7)0.016 (4)
C810.138 (11)0.106 (16)0.132 (7)0.032 (6)0.022 (7)0.008 (6)
O810.130 (5)0.161 (8)0.186 (11)0.012 (5)0.014 (6)0.015 (7)
C820.286 (14)0.131 (8)0.104 (5)0.013 (8)0.028 (7)0.016 (4)
C830.286 (14)0.131 (8)0.104 (5)0.013 (8)0.028 (7)0.016 (4)
Geometric parameters (Å, º) top
C1—O111.426 (4)C34—C351.365 (7)
C1—C61.531 (4)C34—Cl341.748 (4)
C1—C121.533 (4)C35—C361.374 (6)
C1—C21.556 (4)C35—H350.9500
O11—H110.8847C36—H360.9500
C2—C271.524 (4)C47—O471.218 (3)
C2—C31.539 (4)C47—C421.506 (4)
C2—H21.0000N41—C461.326 (5)
C3—C311.523 (4)N41—C421.334 (4)
C3—C41.552 (4)C42—C431.382 (5)
C3—H31.0000C43—C441.378 (5)
C4—C471.523 (4)C43—H430.9500
C4—C51.555 (4)C44—C451.364 (6)
C4—H41.0000C44—H440.9500
C5—C511.521 (4)C45—C461.372 (7)
C5—C61.532 (4)C45—H450.9500
C5—H51.0000C46—H460.9500
C6—H6A0.9900C51—C521.381 (5)
C6—H6B0.9900C51—C561.382 (5)
N11—C121.331 (5)C52—C531.382 (5)
N11—C161.340 (5)C52—H520.9500
C12—C131.375 (5)C53—C541.368 (6)
C13—C141.370 (6)C53—H530.9500
C13—H130.9500C54—C551.365 (6)
C14—C151.387 (8)C54—Cl541.749 (4)
C14—H140.9500C55—C561.392 (5)
C15—C161.357 (7)C55—H550.9500
C15—H150.9500C56—H560.9500
C16—H160.9500C71—O711.151 (13)
C27—O271.201 (4)C71—C731.464 (17)
C27—C221.506 (5)C71—C721.498 (14)
N21—C221.338 (6)C72—H72A0.9800
N21—C261.342 (5)C72—H72B0.9800
C22—C231.366 (6)C72—H72C0.9800
C23—C241.380 (7)C73—H73A0.9800
C23—H230.9500C73—H73B0.9800
C24—C251.360 (10)C73—H73C0.9800
C24—H240.9500C81—O811.150 (13)
C25—C261.369 (9)C81—C831.463 (18)
C25—H250.9500C81—C821.497 (15)
C26—H260.9500C82—H82A0.9800
C31—C321.386 (5)C82—H82B0.9800
C31—C361.394 (5)C82—H82C0.9800
C32—C331.380 (5)C83—H83A0.9800
C32—H320.9500C83—H83B0.9800
C33—C341.373 (6)C83—H83C0.9800
C33—H330.9500
O11—C1—C6107.9 (2)C34—C33—H33120.7
O11—C1—C12109.8 (3)C32—C33—H33120.7
C6—C1—C12111.4 (3)C35—C34—C33121.2 (4)
O11—C1—C2109.9 (2)C35—C34—Cl34119.1 (3)
C6—C1—C2109.0 (2)C33—C34—Cl34119.6 (4)
C12—C1—C2108.8 (2)C34—C35—C36119.7 (3)
C1—O11—H1198.2C34—C35—H35120.1
C27—C2—C3110.7 (2)C36—C35—H35120.1
C27—C2—C1109.6 (2)C35—C36—C31121.1 (4)
C3—C2—C1110.1 (2)C35—C36—H36119.5
C27—C2—H2108.8C31—C36—H36119.5
C3—C2—H2108.8O47—C47—C42119.2 (3)
C1—C2—H2108.8O47—C47—C4122.0 (3)
C31—C3—C2112.6 (2)C42—C47—C4118.8 (2)
C31—C3—C4112.4 (2)C46—N41—C42116.8 (3)
C2—C3—C4112.2 (2)N41—C42—C43122.2 (3)
C31—C3—H3106.4N41—C42—C47118.1 (3)
C2—C3—H3106.4C43—C42—C47119.6 (3)
C4—C3—H3106.4C44—C43—C42119.5 (3)
C47—C4—C3112.9 (2)C44—C43—H43120.2
C47—C4—C5111.5 (2)C42—C43—H43120.2
C3—C4—C5110.5 (2)C45—C44—C43118.6 (4)
C47—C4—H4107.2C45—C44—H44120.7
C3—C4—H4107.2C43—C44—H44120.7
C5—C4—H4107.2C44—C45—C46118.1 (4)
C51—C5—C6113.7 (2)C44—C45—H45121.0
C51—C5—C4111.3 (2)C46—C45—H45121.0
C6—C5—C4112.4 (2)N41—C46—C45124.8 (4)
C51—C5—H5106.3N41—C46—H46117.6
C6—C5—H5106.3C45—C46—H46117.6
C4—C5—H5106.3C52—C51—C56117.7 (3)
C1—C6—C5111.2 (2)C52—C51—C5119.2 (3)
C1—C6—H6A109.4C56—C51—C5123.1 (3)
C5—C6—H6A109.4C51—C52—C53121.4 (4)
C1—C6—H6B109.4C51—C52—H52119.3
C5—C6—H6B109.4C53—C52—H52119.3
H6A—C6—H6B108.0C54—C53—C52119.4 (4)
C12—N11—C16117.2 (4)C54—C53—H53120.3
N11—C12—C13122.3 (3)C52—C53—H53120.3
N11—C12—C1115.1 (3)C55—C54—C53121.2 (3)
C13—C12—C1122.5 (3)C55—C54—Cl54119.1 (3)
C14—C13—C12119.5 (4)C53—C54—Cl54119.7 (3)
C14—C13—H13120.3C54—C55—C56118.7 (4)
C12—C13—H13120.3C54—C55—H55120.6
C13—C14—C15118.7 (5)C56—C55—H55120.6
C13—C14—H14120.6C51—C56—C55121.6 (3)
C15—C14—H14120.6C51—C56—H56119.2
C16—C15—C14117.8 (4)C55—C56—H56119.2
C16—C15—H15121.1O71—C71—C73120.9 (14)
C14—C15—H15121.1O71—C71—C72128.7 (13)
N11—C16—C15124.3 (4)C73—C71—C72109.5 (11)
N11—C16—H16117.8C71—C72—H72A109.5
C15—C16—H16117.8C71—C72—H72B109.5
O27—C27—C22120.2 (3)H72A—C72—H72B109.5
O27—C27—C2122.2 (3)C71—C72—H72C109.5
C22—C27—C2117.5 (3)H72A—C72—H72C109.5
C22—N21—C26116.8 (4)H72B—C72—H72C109.5
N21—C22—C23123.3 (4)C71—C73—H73A109.5
N21—C22—C27116.6 (3)C71—C73—H73B109.5
C23—C22—C27120.1 (4)H73A—C73—H73B109.5
C22—C23—C24118.7 (5)C71—C73—H73C109.5
C22—C23—H23120.6H73A—C73—H73C109.5
C24—C23—H23120.6H73B—C73—H73C109.5
C25—C24—C23118.8 (5)O81—C81—C83120.7 (17)
C25—C24—H24120.6O81—C81—C82129.5 (16)
C23—C24—H24120.6C83—C81—C82109.7 (13)
C24—C25—C26119.3 (5)C81—C82—H82A109.5
C24—C25—H25120.3C81—C82—H82B109.5
C26—C25—H25120.3H82A—C82—H82B109.5
N21—C26—C25123.0 (6)C81—C82—H82C109.5
N21—C26—H26118.5H82A—C82—H82C109.5
C25—C26—H26118.5H82B—C82—H82C109.5
C32—C31—C36117.4 (3)C81—C83—H83A109.5
C32—C31—C3123.0 (3)C81—C83—H83B109.5
C36—C31—C3119.5 (3)H83A—C83—H83B109.5
C33—C32—C31121.9 (3)C81—C83—H83C109.5
C33—C32—H32119.0H83A—C83—H83C109.5
C31—C32—H32119.0H83B—C83—H83C109.5
C34—C33—C32118.6 (4)
O11—C1—C2—C2763.9 (3)C22—C23—C24—C252.2 (8)
C6—C1—C2—C27178.1 (2)C23—C24—C25—C262.5 (10)
C12—C1—C2—C2756.4 (3)C22—N21—C26—C250.0 (8)
O11—C1—C2—C358.2 (3)C24—C25—C26—N211.4 (10)
C6—C1—C2—C359.9 (3)C2—C3—C31—C3236.8 (4)
C12—C1—C2—C3178.5 (2)C4—C3—C31—C3291.0 (4)
C27—C2—C3—C3153.4 (3)C2—C3—C31—C36140.7 (3)
C1—C2—C3—C31174.8 (2)C4—C3—C31—C3691.4 (3)
C27—C2—C3—C4178.6 (2)C36—C31—C32—C330.8 (5)
C1—C2—C3—C457.3 (3)C3—C31—C32—C33176.8 (3)
C31—C3—C4—C4755.0 (3)C31—C32—C33—C340.2 (6)
C2—C3—C4—C4773.1 (3)C32—C33—C34—C350.3 (6)
C31—C3—C4—C5179.5 (2)C32—C33—C34—Cl34178.8 (3)
C2—C3—C4—C552.4 (3)C33—C34—C35—C360.1 (6)
C47—C4—C5—C5154.1 (3)Cl34—C34—C35—C36179.0 (3)
C3—C4—C5—C51179.6 (2)C34—C35—C36—C310.6 (6)
C47—C4—C5—C674.7 (3)C32—C31—C36—C351.0 (5)
C3—C4—C5—C651.6 (3)C3—C31—C36—C35176.7 (3)
O11—C1—C6—C559.7 (3)C3—C4—C47—O4761.9 (4)
C12—C1—C6—C5179.7 (3)C5—C4—C47—O4763.1 (4)
C2—C1—C6—C559.6 (3)C3—C4—C47—C42119.0 (3)
C51—C5—C6—C1176.0 (3)C5—C4—C47—C42116.0 (3)
C4—C5—C6—C156.4 (3)C46—N41—C42—C430.1 (5)
C16—N11—C12—C131.2 (5)C46—N41—C42—C47178.5 (3)
C16—N11—C12—C1175.4 (3)O47—C47—C42—N41177.8 (3)
O11—C1—C12—N116.8 (4)C4—C47—C42—N411.3 (4)
C6—C1—C12—N11126.3 (3)O47—C47—C42—C430.8 (4)
C2—C1—C12—N11113.6 (3)C4—C47—C42—C43179.9 (3)
O11—C1—C12—C13176.6 (3)N41—C42—C43—C440.7 (5)
C6—C1—C12—C1357.1 (4)C47—C42—C43—C44177.9 (3)
C2—C1—C12—C1363.1 (4)C42—C43—C44—C451.1 (6)
N11—C12—C13—C142.7 (6)C43—C44—C45—C461.0 (7)
C1—C12—C13—C14173.7 (4)C42—N41—C46—C450.0 (7)
C12—C13—C14—C151.4 (7)C44—C45—C46—N410.5 (7)
C13—C14—C15—C161.3 (7)C6—C5—C51—C52165.0 (3)
C12—N11—C16—C151.7 (7)C4—C5—C51—C5266.9 (4)
C14—C15—C16—N112.9 (8)C6—C5—C51—C5614.5 (4)
C3—C2—C27—O2739.9 (4)C4—C5—C51—C56113.6 (3)
C1—C2—C27—O2781.8 (4)C56—C51—C52—C531.0 (6)
C3—C2—C27—C22142.5 (3)C5—C51—C52—C53179.5 (4)
C1—C2—C27—C2295.8 (3)C51—C52—C53—C540.9 (7)
C26—N21—C22—C230.3 (7)C52—C53—C54—C550.4 (7)
C26—N21—C22—C27179.9 (4)C52—C53—C54—Cl54179.9 (4)
O27—C27—C22—N21152.5 (4)C53—C54—C55—C560.0 (7)
C2—C27—C22—N2129.9 (5)Cl54—C54—C55—C56179.7 (3)
O27—C27—C22—C2327.8 (5)C52—C51—C56—C550.5 (6)
C2—C27—C22—C23149.9 (4)C5—C51—C56—C55180.0 (4)
N21—C22—C23—C240.8 (7)C54—C55—C56—C510.0 (6)
C27—C22—C23—C24178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···N110.881.922.587 (4)130
C14—H14···O710.952.623.517 (12)157
C14—H14···O810.952.723.499 (12)140
C43—H43···N41i0.952.613.433 (4)145
C45—H45···O71ii0.952.573.251 (11)129
C16—H16···Cg1iii0.953.003.869 (5)153
Symmetry codes: (i) x+1/4, y+3/4, z1/4; (ii) x3/4, y+3/4, z1/4; (iii) x+1/2, y, z+1/2.
(III) (1RS,2SR,3SR,4RS,5RS)- 3,5-Bis(4-bromophenyl)-2,4-bis(pyridine-2-carbonyl)-1-(pyridin-2-yl)cyclohexanol top
Crystal data top
C35H27Br2N3O3Z = 2
Mr = 697.41F(000) = 704
Triclinic, P1Dx = 1.471 Mg m3
a = 9.5741 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.7061 (3) ÅCell parameters from 5922 reflections
c = 15.9952 (6) Åθ = 4.8–70.0°
α = 92.863 (3)°µ = 3.58 mm1
β = 97.443 (3)°T = 200 K
γ = 103.618 (3)°Block, colourless
V = 1574.49 (10) Å30.25 × 0.20 × 0.15 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
4948 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.026
ω scansθmax = 70.0°, θmin = 4.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1011
Tmin = 0.109, Tmax = 0.584k = 1313
11667 measured reflectionsl = 1919
5922 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0808P)2 + 0.8269P]
where P = (Fo2 + 2Fc2)/3
5922 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C35H27Br2N3O3γ = 103.618 (3)°
Mr = 697.41V = 1574.49 (10) Å3
Triclinic, P1Z = 2
a = 9.5741 (4) ÅCu Kα radiation
b = 10.7061 (3) ŵ = 3.58 mm1
c = 15.9952 (6) ÅT = 200 K
α = 92.863 (3)°0.25 × 0.20 × 0.15 mm
β = 97.443 (3)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
5922 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4948 reflections with I > 2σ(I)
Tmin = 0.109, Tmax = 0.584Rint = 0.026
11667 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
5922 reflectionsΔρmin = 0.64 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1094 (3)0.2890 (3)0.37522 (18)0.0469 (6)
O110.0179 (2)0.1914 (2)0.34356 (14)0.0597 (5)
H110.03880.15110.38390.075*
C20.2459 (3)0.2500 (3)0.34883 (17)0.0431 (6)
H20.33450.31810.37360.052*
C30.2393 (3)0.2382 (2)0.25268 (17)0.0423 (5)
H30.15090.16860.23000.051*
C40.2191 (3)0.3631 (3)0.21229 (17)0.0428 (6)
H40.20200.34480.14940.051*
C50.0830 (3)0.3990 (3)0.23934 (18)0.0474 (6)
H50.00140.32450.21850.057*
C60.0928 (3)0.4136 (3)0.33570 (19)0.0505 (6)
H6A0.00400.43580.35080.061*
H6B0.17710.48510.35920.061*
N110.0326 (3)0.2241 (3)0.50752 (18)0.0679 (8)
C120.1245 (3)0.3091 (3)0.47110 (19)0.0496 (6)
C130.2307 (4)0.4069 (4)0.5184 (2)0.0618 (8)
H130.29640.46690.49140.074*
C140.2392 (4)0.4156 (4)0.6059 (2)0.0722 (9)
H140.31100.48190.63960.087*
C150.1442 (4)0.3286 (5)0.6429 (2)0.0778 (11)
H150.14770.33330.70260.093*
C160.0443 (5)0.2349 (5)0.5928 (2)0.0857 (13)
H160.02110.17350.61900.103*
C270.2561 (3)0.1226 (3)0.38517 (19)0.0489 (6)
O270.1950 (3)0.0192 (2)0.34738 (15)0.0666 (6)
N210.4626 (4)0.2257 (3)0.4895 (2)0.0679 (8)
C220.3450 (4)0.1270 (3)0.4699 (2)0.0541 (7)
C230.3069 (5)0.0303 (4)0.5227 (3)0.0768 (11)
H230.22290.03840.50680.092*
C240.3957 (7)0.0364 (6)0.6000 (3)0.1017 (17)
H240.37220.02760.63840.122*
C250.5172 (7)0.1359 (5)0.6197 (3)0.0977 (17)
H250.58020.14160.67150.117*
C260.5455 (6)0.2268 (4)0.5633 (3)0.0884 (14)
H260.63000.29540.57760.106*
C310.3678 (3)0.1972 (2)0.22351 (17)0.0439 (6)
C320.5090 (3)0.2443 (3)0.2641 (2)0.0550 (7)
H320.52660.29920.31480.066*
C330.6256 (3)0.2124 (3)0.2318 (2)0.0597 (8)
H330.72220.24680.25930.072*
C340.5991 (4)0.1310 (3)0.1601 (2)0.0575 (7)
Br340.75694 (5)0.09296 (5)0.11223 (4)0.0979 (2)
C350.4591 (4)0.0767 (4)0.1205 (2)0.0655 (9)
H350.44170.01710.07210.079*
C360.3452 (4)0.1110 (3)0.1528 (2)0.0561 (7)
H360.24870.07450.12570.067*
C470.3521 (3)0.4760 (3)0.23542 (18)0.0441 (6)
O470.4088 (2)0.5068 (2)0.30802 (13)0.0568 (5)
N410.3478 (4)0.5267 (3)0.0881 (2)0.0725 (8)
C420.4133 (3)0.5553 (3)0.1677 (2)0.0512 (6)
C430.5344 (4)0.6559 (4)0.1917 (3)0.0752 (10)
H430.57670.67420.24950.090*
C440.5924 (6)0.7290 (5)0.1310 (4)0.1031 (17)
H440.67750.79710.14560.124*
C450.5261 (6)0.7024 (6)0.0496 (4)0.113 (2)
H450.56210.75300.00640.135*
C460.4060 (6)0.6008 (6)0.0310 (3)0.1027 (17)
H460.36150.58220.02630.123*
C510.0525 (3)0.5151 (3)0.19609 (18)0.0466 (6)
C520.0392 (4)0.4954 (3)0.1203 (2)0.0611 (8)
H520.08600.40960.09800.073*
C530.0653 (4)0.5979 (3)0.0755 (2)0.0643 (8)
H530.12780.58280.02290.077*
C540.0009 (3)0.7206 (3)0.1089 (2)0.0544 (7)
Br540.03457 (5)0.86020 (4)0.04693 (3)0.07606 (16)
C550.0917 (4)0.7454 (3)0.1847 (2)0.0577 (7)
H550.13690.83150.20680.069*
C560.1159 (4)0.6418 (3)0.2283 (2)0.0553 (7)
H560.17720.65780.28130.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (13)0.0497 (15)0.0488 (15)0.0037 (11)0.0059 (11)0.0116 (11)
O110.0459 (11)0.0660 (13)0.0585 (12)0.0037 (10)0.0042 (9)0.0149 (10)
C20.0421 (13)0.0399 (13)0.0450 (14)0.0050 (10)0.0043 (10)0.0108 (10)
C30.0393 (13)0.0383 (12)0.0457 (14)0.0030 (10)0.0023 (10)0.0102 (10)
C40.0433 (13)0.0421 (13)0.0408 (13)0.0061 (11)0.0027 (10)0.0114 (10)
C50.0409 (14)0.0458 (14)0.0525 (15)0.0062 (11)0.0005 (11)0.0126 (11)
C60.0473 (15)0.0552 (16)0.0536 (16)0.0161 (12)0.0129 (12)0.0159 (13)
N110.0625 (17)0.0764 (19)0.0571 (16)0.0042 (14)0.0157 (13)0.0159 (13)
C120.0454 (15)0.0543 (16)0.0517 (16)0.0126 (12)0.0119 (12)0.0139 (12)
C130.0581 (18)0.0651 (19)0.0566 (18)0.0054 (15)0.0049 (14)0.0089 (14)
C140.063 (2)0.085 (3)0.063 (2)0.0140 (18)0.0011 (16)0.0032 (18)
C150.068 (2)0.114 (3)0.0501 (19)0.018 (2)0.0123 (16)0.0069 (19)
C160.079 (3)0.113 (3)0.057 (2)0.004 (2)0.0232 (19)0.022 (2)
C270.0526 (16)0.0413 (14)0.0510 (15)0.0072 (12)0.0066 (12)0.0116 (11)
O270.0818 (16)0.0433 (11)0.0637 (14)0.0001 (11)0.0038 (12)0.0116 (10)
N210.077 (2)0.0548 (15)0.0665 (18)0.0189 (14)0.0131 (15)0.0022 (13)
C220.0646 (19)0.0483 (15)0.0513 (16)0.0208 (14)0.0012 (13)0.0073 (12)
C230.096 (3)0.068 (2)0.067 (2)0.020 (2)0.0048 (19)0.0260 (18)
C240.148 (5)0.104 (4)0.064 (2)0.053 (4)0.004 (3)0.037 (2)
C250.133 (4)0.095 (3)0.066 (2)0.056 (3)0.031 (3)0.006 (2)
C260.102 (3)0.069 (2)0.083 (3)0.028 (2)0.033 (2)0.008 (2)
C310.0465 (14)0.0387 (13)0.0453 (14)0.0083 (11)0.0038 (11)0.0105 (10)
C320.0480 (16)0.0565 (17)0.0559 (17)0.0096 (13)0.0012 (12)0.0086 (13)
C330.0432 (15)0.0594 (18)0.073 (2)0.0076 (13)0.0068 (14)0.0022 (15)
C340.0583 (18)0.0496 (16)0.0683 (19)0.0139 (13)0.0215 (15)0.0060 (14)
Br340.0719 (3)0.0935 (3)0.1280 (4)0.0138 (2)0.0402 (3)0.0285 (3)
C350.070 (2)0.0626 (19)0.0597 (19)0.0105 (16)0.0115 (16)0.0109 (15)
C360.0533 (17)0.0572 (17)0.0509 (16)0.0043 (13)0.0014 (13)0.0014 (13)
C470.0407 (13)0.0398 (13)0.0507 (16)0.0072 (10)0.0049 (11)0.0102 (11)
O470.0561 (12)0.0521 (11)0.0518 (12)0.0030 (9)0.0009 (9)0.0071 (9)
N410.0667 (18)0.081 (2)0.0631 (18)0.0009 (15)0.0096 (14)0.0287 (15)
C420.0459 (15)0.0511 (15)0.0564 (17)0.0085 (12)0.0079 (12)0.0181 (13)
C430.064 (2)0.068 (2)0.084 (3)0.0065 (17)0.0105 (18)0.0255 (19)
C440.085 (3)0.093 (3)0.115 (4)0.020 (3)0.021 (3)0.045 (3)
C450.098 (4)0.121 (4)0.113 (4)0.007 (3)0.033 (3)0.068 (3)
C460.099 (3)0.128 (4)0.071 (3)0.002 (3)0.013 (2)0.049 (3)
C510.0423 (14)0.0468 (14)0.0518 (15)0.0126 (11)0.0049 (11)0.0117 (11)
C520.065 (2)0.0478 (16)0.0630 (19)0.0093 (14)0.0101 (15)0.0076 (14)
C530.071 (2)0.0616 (19)0.0572 (18)0.0187 (16)0.0089 (15)0.0128 (15)
C540.0542 (17)0.0510 (16)0.0645 (18)0.0192 (13)0.0126 (14)0.0249 (14)
Br540.0745 (3)0.0655 (2)0.0962 (3)0.02530 (19)0.0135 (2)0.0409 (2)
C550.0626 (19)0.0443 (15)0.0655 (19)0.0107 (13)0.0079 (15)0.0117 (13)
C560.0569 (17)0.0517 (16)0.0535 (17)0.0111 (13)0.0026 (13)0.0080 (13)
Geometric parameters (Å, º) top
C1—O111.422 (3)C25—C261.364 (7)
C1—C121.521 (4)C25—H250.9500
C1—C61.537 (4)C26—H260.9500
C1—C21.563 (4)C31—C361.384 (4)
O11—H110.8144C31—C321.387 (4)
C2—C271.528 (4)C32—C331.394 (4)
C2—C31.529 (4)C32—H320.9500
C2—H21.0000C33—C341.363 (5)
C3—C311.519 (4)C33—H330.9500
C3—C41.555 (3)C34—C351.383 (5)
C3—H31.0000C34—Br341.896 (3)
C4—C471.526 (4)C35—C361.381 (5)
C4—C51.548 (4)C35—H350.9500
C4—H41.0000C36—H360.9500
C5—C511.521 (4)C47—O471.211 (4)
C5—C61.530 (4)C47—C421.503 (4)
C5—H51.0000N41—C461.330 (5)
C6—H6A0.9900N41—C421.331 (4)
C6—H6B0.9900C42—C431.382 (5)
N11—C121.322 (4)C43—C441.369 (6)
N11—C161.351 (5)C43—H430.9500
C12—C131.387 (5)C44—C451.358 (8)
C13—C141.388 (5)C44—H440.9500
C13—H130.9500C45—C461.373 (7)
C14—C151.357 (6)C45—H450.9500
C14—H140.9500C46—H460.9500
C15—C161.353 (6)C51—C521.377 (4)
C15—H150.9500C51—C561.391 (4)
C16—H160.9500C52—C531.394 (4)
C27—O271.213 (4)C52—H520.9500
C27—C221.496 (4)C53—C541.364 (5)
N21—C261.333 (5)C53—H530.9500
N21—C221.341 (5)C54—C551.372 (5)
C22—C231.381 (5)C54—Br541.905 (3)
C23—C241.397 (6)C55—C561.388 (4)
C23—H230.9500C55—H550.9500
C24—C251.369 (8)C56—H560.9500
C24—H240.9500
O11—C1—C12110.1 (2)C25—C24—H24120.5
O11—C1—C6107.2 (2)C23—C24—H24120.5
C12—C1—C6109.9 (2)C26—C25—C24118.5 (4)
O11—C1—C2109.9 (2)C26—C25—H25120.7
C12—C1—C2110.0 (2)C24—C25—H25120.7
C6—C1—C2109.7 (2)N21—C26—C25124.4 (4)
C1—O11—H11105.3N21—C26—H26117.8
C27—C2—C3110.6 (2)C25—C26—H26117.8
C27—C2—C1108.8 (2)C36—C31—C32117.9 (3)
C3—C2—C1111.4 (2)C36—C31—C3119.4 (3)
C27—C2—H2108.6C32—C31—C3122.7 (3)
C3—C2—H2108.6C31—C32—C33121.1 (3)
C1—C2—H2108.6C31—C32—H32119.4
C31—C3—C2113.6 (2)C33—C32—H32119.4
C31—C3—C4110.4 (2)C34—C33—C32119.0 (3)
C2—C3—C4112.4 (2)C34—C33—H33120.5
C31—C3—H3106.7C32—C33—H33120.5
C2—C3—H3106.7C33—C34—C35121.4 (3)
C4—C3—H3106.7C33—C34—Br34119.6 (3)
C47—C4—C5110.4 (2)C35—C34—Br34119.0 (3)
C47—C4—C3112.7 (2)C36—C35—C34118.6 (3)
C5—C4—C3109.4 (2)C36—C35—H35120.7
C47—C4—H4108.1C34—C35—H35120.7
C5—C4—H4108.1C35—C36—C31121.8 (3)
C3—C4—H4108.1C35—C36—H36119.1
C51—C5—C6113.8 (3)C31—C36—H36119.1
C51—C5—C4111.2 (2)O47—C47—C42118.1 (2)
C6—C5—C4111.4 (2)O47—C47—C4121.7 (2)
C51—C5—H5106.6C42—C47—C4120.1 (2)
C6—C5—H5106.6C46—N41—C42116.2 (4)
C4—C5—H5106.6N41—C42—C43123.2 (3)
C5—C6—C1111.5 (3)N41—C42—C47118.9 (3)
C5—C6—H6A109.3C43—C42—C47117.9 (3)
C1—C6—H6A109.3C44—C43—C42118.9 (4)
C5—C6—H6B109.3C44—C43—H43120.6
C1—C6—H6B109.3C42—C43—H43120.6
H6A—C6—H6B108.0C45—C44—C43118.7 (4)
C12—N11—C16118.2 (3)C45—C44—H44120.6
N11—C12—C13121.5 (3)C43—C44—H44120.6
N11—C12—C1115.7 (3)C44—C45—C46118.7 (4)
C13—C12—C1122.7 (3)C44—C45—H45120.7
C12—C13—C14118.8 (3)C46—C45—H45120.7
C12—C13—H13120.6N41—C46—C45124.2 (5)
C14—C13—H13120.6N41—C46—H46117.9
C15—C14—C13119.4 (4)C45—C46—H46117.9
C15—C14—H14120.3C52—C51—C56117.8 (3)
C13—C14—H14120.3C52—C51—C5119.1 (3)
C16—C15—C14118.5 (4)C56—C51—C5123.2 (3)
C16—C15—H15120.7C51—C52—C53121.7 (3)
C14—C15—H15120.7C51—C52—H52119.2
N11—C16—C15123.5 (4)C53—C52—H52119.2
N11—C16—H16118.2C54—C53—C52118.6 (3)
C15—C16—H16118.2C54—C53—H53120.7
O27—C27—C22119.5 (3)C52—C53—H53120.7
O27—C27—C2122.0 (3)C53—C54—C55122.0 (3)
C22—C27—C2118.4 (2)C53—C54—Br54118.3 (2)
C26—N21—C22116.9 (4)C55—C54—Br54119.8 (2)
N21—C22—C23123.1 (3)C54—C55—C56118.5 (3)
N21—C22—C27116.8 (3)C54—C55—H55120.7
C23—C22—C27120.1 (3)C56—C55—H55120.7
C22—C23—C24118.1 (4)C55—C56—C51121.5 (3)
C22—C23—H23121.0C55—C56—H56119.3
C24—C23—H23121.0C51—C56—H56119.3
C25—C24—C23119.0 (4)
O11—C1—C2—C2759.6 (3)C22—C23—C24—C251.0 (8)
C12—C1—C2—C2761.8 (3)C23—C24—C25—C261.0 (8)
C6—C1—C2—C27177.2 (2)C22—N21—C26—C250.9 (7)
O11—C1—C2—C362.6 (3)C24—C25—C26—N210.0 (8)
C12—C1—C2—C3176.0 (2)C2—C3—C31—C36140.5 (3)
C6—C1—C2—C355.0 (3)C4—C3—C31—C3692.2 (3)
C27—C2—C3—C3157.4 (3)C2—C3—C31—C3240.6 (4)
C1—C2—C3—C31178.5 (2)C4—C3—C31—C3286.7 (3)
C27—C2—C3—C4176.4 (2)C36—C31—C32—C334.0 (5)
C1—C2—C3—C455.2 (3)C3—C31—C32—C33174.9 (3)
C31—C3—C4—C4759.7 (3)C31—C32—C33—C341.6 (5)
C2—C3—C4—C4768.3 (3)C32—C33—C34—C351.9 (5)
C31—C3—C4—C5177.1 (2)C32—C33—C34—Br34177.0 (3)
C2—C3—C4—C554.9 (3)C33—C34—C35—C362.9 (6)
C47—C4—C5—C5159.7 (3)Br34—C34—C35—C36176.1 (3)
C3—C4—C5—C51175.8 (2)C34—C35—C36—C310.3 (5)
C47—C4—C5—C668.5 (3)C32—C31—C36—C353.0 (5)
C3—C4—C5—C656.0 (3)C3—C31—C36—C35175.9 (3)
C51—C5—C6—C1174.7 (2)C5—C4—C47—O4772.3 (3)
C4—C5—C6—C158.6 (3)C3—C4—C47—O4750.3 (4)
O11—C1—C6—C562.5 (3)C5—C4—C47—C42105.5 (3)
C12—C1—C6—C5177.9 (2)C3—C4—C47—C42131.9 (3)
C2—C1—C6—C556.8 (3)C46—N41—C42—C430.4 (6)
C16—N11—C12—C130.1 (6)C46—N41—C42—C47179.4 (4)
C16—N11—C12—C1177.9 (4)O47—C47—C42—N41176.7 (3)
O11—C1—C12—N118.8 (4)C4—C47—C42—N411.3 (4)
C6—C1—C12—N11126.6 (3)O47—C47—C42—C432.5 (5)
C2—C1—C12—N11112.5 (3)C4—C47—C42—C43179.6 (3)
O11—C1—C12—C13173.5 (3)N41—C42—C43—C441.3 (7)
C6—C1—C12—C1355.7 (4)C47—C42—C43—C44179.7 (4)
C2—C1—C12—C1365.2 (4)C42—C43—C44—C452.0 (9)
N11—C12—C13—C140.4 (5)C43—C44—C45—C461.9 (10)
C1—C12—C13—C14178.0 (3)C42—N41—C46—C450.3 (9)
C12—C13—C14—C150.1 (6)C44—C45—C46—N411.1 (11)
C13—C14—C15—C160.5 (7)C6—C5—C51—C52141.5 (3)
C12—N11—C16—C150.6 (7)C4—C5—C51—C5291.7 (3)
C14—C15—C16—N110.9 (8)C6—C5—C51—C5640.2 (4)
C3—C2—C27—O2734.8 (4)C4—C5—C51—C5686.7 (4)
C1—C2—C27—O2788.0 (4)C56—C51—C52—C531.9 (5)
C3—C2—C27—C22145.0 (3)C5—C51—C52—C53176.6 (3)
C1—C2—C27—C2292.3 (3)C51—C52—C53—C540.9 (6)
C26—N21—C22—C230.9 (6)C52—C53—C54—C550.0 (6)
C26—N21—C22—C27177.2 (4)C52—C53—C54—Br54179.7 (3)
O27—C27—C22—N21146.8 (3)C53—C54—C55—C560.1 (5)
C2—C27—C22—N2132.9 (4)Br54—C54—C55—C56179.8 (3)
O27—C27—C22—C2331.3 (5)C54—C55—C56—C511.1 (5)
C2—C27—C22—C23148.9 (3)C52—C51—C56—C552.0 (5)
N21—C22—C23—C240.1 (7)C5—C51—C56—C55176.4 (3)
C27—C22—C23—C24178.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···N110.812.062.595 (4)123
C16—H16···O27i0.952.463.385 (6)165
C53—H53···N41ii0.952.573.473 (5)158
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC35H27F2N3O3C35H27Cl2N3O3·0.951C3H6OC35H27Br2N3O3
Mr575.60663.73697.41
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, Fdd2Triclinic, P1
Temperature (K)200200200
a, b, c (Å)21.8864 (9), 11.2268 (4), 24.2670 (9)16.5446 (6), 53.4204 (17), 15.5857 (4)9.5741 (4), 10.7061 (3), 15.9952 (6)
α, β, γ (°)90, 90, 9090, 90, 9092.863 (3), 97.443 (3), 103.618 (3)
V3)5962.7 (4)13774.9 (8)1574.49 (10)
Z8162
Radiation typeCu KαCu KαCu Kα
µ (mm1)0.752.053.58
Crystal size (mm)0.40 × 0.09 × 0.080.30 × 0.25 × 0.200.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent Eos Gemini
diffractometer
Agilent Xcalibur Ruby Gemini
diffractometer
Agilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Multi-scan
(CrysAlis PRO; Agilent, 2012)
Multi-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.693, 0.9420.388, 0.6640.109, 0.584
No. of measured, independent and
observed [I > 2σ(I)] reflections
37077, 5754, 4489 9544, 4224, 3490 11667, 5922, 4948
Rint0.0360.0270.026
(sin θ/λ)max1)0.6140.6100.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.03 0.039, 0.109, 0.97 0.046, 0.141, 1.05
No. of reflections575442245922
No. of parameters388436388
No. of restraints070
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.200.16, 0.160.67, 0.64
Absolute structure?Flack x determined using 613 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).?
Absolute structure parameter?0.089 (18)?

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2014) and PLATON (Spek, 2009).

Selected dihedral angles (°) for compounds (I)–(III) top
Compoundθ1θ2θ3θ4θ5
(I)30.80 (12)85.33 (11)44.19 (13)67.09 (13)28.94 (10)
(II)24.3 (2)88.0 (2)62.66 (19)57.3 (2)53.3 (2)
(III)31.5 (2)79.4 (2)63.9 (2)42.5 (2)49.05 (18)
Notes: θ1 represents the dihedral angle between the N11/C12–C16) and N21/C22–C26 planes; θ2 represents the dihedral angle between the N21/C22–C26 and C31–C36 planes; θ3 represents the dihedral angle between the C31–C36 and N41/C42–C46 planes; θ4 represents the dihedral angle between the N41/C42–C46 and C51–C56 planes; θ5 represents the dihedral angle between the C51–C56 and N11/C12–C16 planes.
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (I)–(III) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)O11—H11···N110.822.132.624 (2)119
C13—H13···O11i0.952.543.385 (3)148
C55—H55···O27i0.952.533.244 (2)132
(I)O11—H11···N110.881.922.587 (4)130
C14—H14···O710.952.623.517 (12)157
C14—H14···O810.952.723.499 (12)140
C43—H43···N41ii0.952.613.433 (4)145
C45—H45···O71iii0.952.573.251 (11)129
C16—H16···Cg1iv0.953.003.869 (5)153
(I)O11—H11···N110.812.062.595 (4)123
C16—H16···O27v0.952.463.385 (6)165
C53—H53···N41vi0.952.573.473 (5)158
Symmetry codes: (i) -x+1/2, y+1/2, z; (ii) x+1/4, -y+3/4, z-1/4; (iii) x-3/4, -y+3/4, z-1/4; (iv) x+1/2, y, z+1/2; (v) -x, -y, -z+1; (vi) -x, -y+1, -z.

Cg1 represents the centroid of the C31–C36 ring.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds