Download citation
Download citation
link to html
The Cu2+ ions in the title compounds, namely bis­[1,3-bis­(penta­fluoro­phen­yl)propane-1,3-dionato-[kappa]2O,O']copper(II) p-xylene n-solvate, [Cu(C15HF10O2)2nC8H10, with n = 1, (I), n = 2, (II), and n = 4, (III), are coordinated by two 1,3-bis­(penta­fluoro­phen­yl)propane-1,3-dionate ligands. The coordination complexes of (I) and (II) have crystallographic inversion symmetry at the Cu atom and the p-xylene molecule in (I) also lies across an inversion centre. The p-xylene mol­ecules in (I) and (II) inter­act with the penta­fluoro­phenyl groups of the complex via arene-perfluoro­arene inter­actions. In the crystal of (III), two of the p-xylene mol­ecules inter­act with the penta­fluoro­phenyl groups via arene-perfluoro­arene inter­actions. The other two p-xylene mol­ecules are located on the CuO4 coordination plane, forming a uniform cavity produced by metal...[pi] inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614020294/sk3552sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020294/sk3552Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020294/sk3552IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020294/sk3552IIIsup4.hkl
Contains datablock III

CCDC references: 1023526; 1023527; 895480

Introduction top

While single crystals of M(dbm)2 (dbm is di­benzoyl­methane) include no solvent molecules (Vigato et al., 2009; Soldatov et al., 2001), coordination complexes with the fully fluorinated bis­(penta­fluoro­phenyl)­propane-1,3-dione (HL) ligand produced cocrystals, which abundantly take up benzene molecules when crystallized from a benzene/CH2Cl2 solvent mixture (Hori & Arii, 2007). For example, single crystals of Cu(L)2 were obtained as Cu(L)2·3C6H6 with 21 wt% benzene molecules. These high capacities for solvent occlusion are induced by two weak inter­molecular inter­actions, viz. arene–perfluoro­arene and metal···π. The arene–perfluoro­arene inter­action is currently well known as an electrostatic inter­action (Patrick & Prosser, 1960; Williams, 1993), which was observed between the penta­fluoro­phenyl groups of the complex and two benzene molecules. A metal···π inter­action was observed between a Cu2+ ion and a benzene molecule. The high encapsulation of aromatic guest molecules into the crystals of the fluorinated complex was also found in the corresponding [Ni2(L)4(H2O)2] complex, giving the benzene-rich pseudopolymorphs [Ni2(L)4(H2O)2]·2C6H6 and [Ni2(L)4(H2O)2]·4C6H6 (Hori & Mizutani, 2009). Fluorination drastically changes not only the sole structural characteristics and properties, but also the inter­molecular inter­actions to produce molecular recognition events (Reichenbacher et al., 2005; Hori, 2012). As part of a detailed analysis of complexes involving arene–perfluoro­arene inter­actions, we found three pseudopolymorph examples with p-xylene solvation, namely [Cu(L)2]·C8H10, (I), [Cu(L)2]·2C8H10, (II), and [Cu(L)2]·4C8H10, (III), which included the p-xylene at 10.8, 19.9, and 32.3 wt%, respectively. These structures were fully characterized by X-ray crystallographic studies, showing that the guest molecules are stabilized and fixed in an orientation suitable for electrostatic inter­actions with the Cu(L)2 complex. In this study, the three crystal forms (I)–(III) are compared and discussed in relation to their inter­molecular inter­actions.

Experimental top

Synthesis and crystallization top

The Cu2+ complex was prepared according to a previously reported procedure (Hori & Arii, 2007). The complex was crystallized from ethanol with p-xylene to give green block-shaped crystals (I) suitable for X-ray structural analysis. The two kinds of crystals, i.e. (II) and (III), were crystallized from p-xylene/CH2Cl2 as green block-shaped crystals. The three crystals were optically indistinguishable.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in geometrically idealized positions and refined as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl groups. Tetra­solvate (III) was refined as a racemic twin: Flack parameter = 0.494 (13) (Parsons et al., 2013).

Results and discussion top

Concerning the p-xylene encapsulation, the three kinds of crystals (I)–(III) were independently obtained as pseudopolymorphs under different conditions. For example, Cu(L)2 and excess amounts of p-xylene in ethanol were slowly evaporated to yield the green block-shaped crystal of (I), which grew to a noteworthy large size (one edge> 5 mm). On the other hand, Cu(L)2 and excess amounts of p-xylene in CH2Cl2 (or CHCl3 or MeOH) were slowly evaporated to give green block-shaped crystal of (II). Evaporation of a solution of Cu(L)2 in an excess of p-xylene without any solvents also produced crystals of (II). We examined each crystallization at least three times, but never obtained the replaced and mixed crystals between (I) and (II). However, a green block-shaped crystal of (III) was occasionally obtained from CH2Cl2, in which crystal (III) was solely obtained as a single component without any admixture of (I) and (II). Unfortunately, crystals of (II) and (III) were optically indistinguishable based on their appearances. The evaporation rates and the starting concentrations showed no relationship with the formation of the pseudopolymorphs. It is noteworthy that crystal (III) was occasionally obtained only in winter, while crystal (II) was obtained throughout the year.

In monosolvate (I), the asymmetric unit contains one half of the coordination complex and one half of a p-xylene molecule (Fig. 1). The complex is centrosymmetric and comprises one Cu2+ ion and two L ligands, giving a mononuclear Cu2+ complex with a square–planar coordination (Table 2). The p-xylene molecule is located on a crystallographic inversion centre. The penta­fluoro­phenyl groups (ringa A and B) are highly twisted with respect to the coordination plane, as can be gleaned from the respective torsion angles C5—C6—C7—C8 and C8—C9—C10—C15 of -55.0 (3) and 48.7 (3)°.

Disolvate (II) also has one half of the coordination complex in the asymmetric unit and one entire p-xylene molecule, as shown in Fig. 2. The geometry around the metal centre is also square planar (Table 2). The structures of Cu(L)2 in crystals (I) and (II) are almost the same. The penta­fluoro­phenyl groups (rings D and E) in (II) are also highly twisted with respect to the coordination plane, with torsion angles C5—C6—C7—C8 = 68.39 (17)° and C8—C9—C10—C15 = 66.47 (17)°.

On the other hand, tetra­solvate (III) includes the entire complex, Cu(L)2, and four p-xylene molecules in the asymmetric unit (Fig. 3). The geometry around the metal centre in (III) is square planar (Table 2). The Cu2+ coordination in all three compexes is thus very similar. The penta­fluoro­phenyl groups (rings G, H, I and J) in (III) again show a twisted orientation with respect to the coordination plane [torsion angles C5—C6—C7—C8 = -46.1 (7)°, C8—C9—C10—C15 = -70.5 (6)°, C20—C21—C22—C23 = 45.1 (7)° and C23—C24—C25—C30 = 53.7 (6)°]. The twist angles of rings G and I are very similar, whereas those of rings H and J differ significantly, thus breaking perfect inversion symmetry of complex (III). The structure is thus pseudocentrosymmetric with space group Pn. Because the Flack (1983) parameter refined to a value close to 0.5 [0.494 (13)], the structure is racemically twinned.

The orientations of the penta­fluoro­phenyl groups in (I)–(III) are flexibly twisted and stabilized by the p-xylene molecules through inter­molecular arene–perfluoro­arene inter­actions, as discussed below.

In the crystal structure of (I) (Fig. 4), p-xylene ring C inter­acts closely with penta­fluoro­phenyl ring Biv [symmetry code: (iv) x-1/2, -y+3/2, -z] of the adjacent complex molecule [CgC···CgBiv = 3.4747 (12) Å; CgX is the centroid of the ring denoted X]. The corresponding shortest perpendicular distance from the ring centroids to the adjacent planes is 3.3032 (9) Å. The p-xylene molecule further inter­acts with the opposite penta­fluoro­phenyl group [ring Bv; symmetry code: (v) -x+3/2, y+1/2, z] of the complex to give 1:2 sandwich structures through the typical arene–perfluoro­arene inter­actions.

Furthermore, the p-xylene molecule is surrounded by the two coordination CuO4 sites of Cu(L)2, but no stacking formation is observed. The inter­molecular distance of C11i—F6i···H17ii—C17ii [F6i···C17ii = 3.239 (3) Å; symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+2, -z] is slightly shorter than the standard value, showing that C—F···H inter­actions between the complex and p-xylene molecules dominate the alternate arrangements. Remarkably short inter­molecular distances are observed between pairs of complex molecules, viz. 2.8243 (12) Å for Cu1···F7iv and 2.8845 (18) Å for O1i···F7iv [2.7267 (14) Å between the centroid of Cu1—O1i—C7i—C8i—C9i—O2i and F7iv], showing an inter­action between the metal centre Cu2+ (δ+) and the fluorine substituent (δ-).

In the crystal structure of disolvate (II) (Fig. 5), the complex molecules overlap down the a axis, but the shortest inter­molecular metal–metal distance is long [7.5688 (4) Å] because the coordination planes are tilted. This allows the p-xylene molecules to stack alternately with the penta­fluoro­phenyl groups of the complex along the a axis. p-Xylene ring F closely inter­acts with penta­fluoro­phenyl ring D [CgF···CgD = 3.7572 (9) Å]. The corresponding shortest perpendicular distance from the ring centroids to the adjacent planes is 3.5115 (7) Å. Conversely, the p-xylene molecule further inter­acts with adjacent penta­fluoro­phenyl ring Dvi [symmetry code: (vi) x+1, y, z] to give 1:2 sandwich structures through arene–perfluoro­arene inter­actions [CgF···CgDvi = 3.8175 (9) Å]. The corresponding shortest perpendicular distance from the ring centroids to the adjacent planes is 3.5678 (7) Å. This clearly shows the arene–perfluoro­arene stacking between the complex and p-xylene molecules (Fig. 5). A remarkably short inter­molecular distance of 3.2669 (11) Å is observed between the two complexes, viz. C4—F4···CgEvii [symmetry code: (vii) -x+1, -y+2, -z+1], indicating C—F···π(C6F5) inter­actions (Prasanna & Row, 2000).

In the crystal structure of tetra­solvate (III) (Fig. 6), two kinds of situations are observed for the four p-xylene molecules. p-Xylenes C31–C38 (ring K) and C39–C46 (ring L) closely inter­act with rings H and J of the coordination complex through arene–perfluoro­arene inter­actions, whereas the p-xylenes C47–C54 (ring M) and C55–C62 (ring N) are close to the axial site of the Cu2+ ion, where a sufficiently wide cavity exists in the surrounding penta­fluoro­phenyl groups, and the weak metal···π inter­actions are dominant between them. The inter­molecular distances between the two centroids of the penta­fluoro­phenyl groups of the coordination complex and the phenyl­ene ring of p-xylene are 3.662 (3) Å for CgH···CgKviii [symmetry code: (viii) x-1/2, -y+2, z-1/2], 3.582 (3) Å for CgH···CgLix [symmetry code: (ix) x-1/2, -y+1, z-1/2], 3.556 (3) Å for CgJ···CgKx [symmetry code: (x) x-1, y, z] and 3.618 (3) Å for CgJ···CgLx. On the other hand, the inter­molecular distances between the centroid of the phenyl­ene ring in p-xylene and the Cu2+ ion in the complex are 3.765 Å for CgMvi···Cu1 and 3.749 Å for CgN···Cu1. The slightly long metal···π distances suggest that p-xylene is large for the Cu2+ coordination centre. It is inter­esting that the perfluorinated coordination complex, Cu(L)2, encapsulates the aromatic guest molecules under different circumstances. The guest encapsulation phenomena should be attributed not only to the cavity effects on the crystal, but also to the fluorination effects of the complex. Accordingly, two kinds of p-xylene molecules produce alternate arrangements between rings K and N and also between rings L and M along the a axis. No remarkable inter­actions between the guest molecules are observed, and each guest molecule inter­acts with the host frameworks of the complex.

Related literature top

For related literature, see: Flack (1983); Hori (2012); Hori & Arii (2007); Hori & Mizutani (2009); Parsons et al. (2013); Patrick & Prosser (1960); Prasanna & Row (2000); Reichenbacher et al. (2005); Soldatov et al. (2001); Vigato et al. (2009); Williams (1993).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Generate Report (Bruker, 2013).

Figures top
[Figure 1] Fig. 1. The molecular structure of monosolvate (I) at 120 K, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+2, -z.]
[Figure 2] Fig. 2. The molecular structure of disolvate (II) at 120 K, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (iii) -x, -y+1, -z+1.]
[Figure 3] Fig. 3. The molecular structure of tetrasolvate (III) at 100 K, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. A view of part of the crystal structure of (I) along the c axis. [Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+2, -z; (iv) x-1/2, -y+3/2, -z; (v) -x+3/2, y+1/2, z.]
[Figure 5] Fig. 5. A view of part of the crystal structure of (II). [Symmetry codes: (iii) -x, -y+1, -z+1; (vi) x+1, y, z; (vii) -x+1, -y+2, -z+1.]
[Figure 6] Fig. 6. A view of part of the crystal structure of (III). [Symmetry codes: (vi) x+1, y, z; (viii) x-1/2, -y+2, z-1/2; (ix) x-1/2, -y+1, z-1/2; (x) x-1, y, z.]
(I) Bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato-κ2O,O']copper(II) p-xylene n-solvate top
Crystal data top
[Cu(C15HF10O2)2]·C8H10Dx = 1.866 Mg m3
Mr = 976.03Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5529 reflections
a = 11.1299 (10) Åθ = 2.5–27.9°
b = 13.1194 (12) ŵ = 0.78 mm1
c = 23.797 (2) ÅT = 120 K
V = 3474.7 (5) Å3Block, green
Z = 40.40 × 0.25 × 0.05 mm
F(000) = 1924
Data collection top
Bruker D8 goniometer
diffractometer
3967 independent reflections
Radiation source: sealed tube3079 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.032
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1314
Tmin = 0.85, Tmax = 0.96k = 178
18319 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.034P)2 + 2.4502P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3967 reflectionsΔρmax = 0.32 e Å3
287 parametersΔρmin = 0.51 e Å3
0 restraints
Crystal data top
[Cu(C15HF10O2)2]·C8H10V = 3474.7 (5) Å3
Mr = 976.03Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 11.1299 (10) ŵ = 0.78 mm1
b = 13.1194 (12) ÅT = 120 K
c = 23.797 (2) Å0.40 × 0.25 × 0.05 mm
Data collection top
Bruker D8 goniometer
diffractometer
3967 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3079 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.96Rint = 0.032
18319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
3967 reflectionsΔρmin = 0.51 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00001.00000.00000.01473 (9)
O10.93725 (12)1.05604 (10)0.06863 (5)0.0178 (3)
O21.03394 (12)0.87124 (10)0.03366 (5)0.0188 (3)
C10.94676 (18)1.17824 (15)0.17217 (8)0.0199 (4)
C20.90478 (19)1.24095 (15)0.21441 (8)0.0243 (4)
C30.81489 (19)1.20624 (16)0.24955 (8)0.0256 (5)
C40.77272 (17)1.10814 (17)0.24425 (8)0.0241 (4)
C50.81892 (17)1.04540 (15)0.20293 (7)0.0195 (4)
C60.90487 (17)1.07960 (14)0.16493 (7)0.0172 (4)
C70.94789 (17)1.01486 (14)0.11687 (7)0.0161 (4)
C80.99341 (17)0.91858 (14)0.12847 (7)0.0180 (4)
H80.99970.89730.16650.022*
C91.03019 (16)0.85208 (14)0.08597 (7)0.0162 (4)
C101.06826 (16)0.74599 (14)0.10140 (7)0.0162 (4)
C111.17114 (17)0.70298 (15)0.07853 (7)0.0188 (4)
C121.20394 (17)0.60359 (15)0.08938 (8)0.0213 (4)
C131.13422 (19)0.54384 (15)0.12409 (8)0.0226 (4)
C141.03214 (19)0.58454 (15)0.14762 (8)0.0228 (4)
C151.00047 (18)0.68412 (15)0.13618 (8)0.0201 (4)
C160.5794 (2)0.93958 (19)0.03250 (9)0.0349 (6)
C170.4710 (2)0.9004 (2)0.01263 (9)0.0357 (6)
H170.45000.83180.02100.043*
C180.3935 (2)0.95941 (19)0.01907 (9)0.0361 (6)
H180.32020.93060.03200.043*
C190.6631 (2)0.8748 (2)0.06726 (10)0.0480 (7)
H19A0.74640.88920.05660.072*
H19B0.64560.80260.06060.072*
H19C0.65160.89040.10720.072*
F11.03409 (11)1.21441 (9)0.13854 (5)0.0271 (3)
F20.95024 (13)1.33428 (9)0.22198 (5)0.0358 (3)
F30.77015 (12)1.26761 (10)0.28942 (5)0.0372 (3)
F40.68619 (11)1.07418 (11)0.27897 (5)0.0344 (3)
F50.77614 (11)0.95002 (9)0.19926 (5)0.0274 (3)
F61.24348 (10)0.75845 (9)0.04540 (5)0.0295 (3)
F71.30382 (11)0.56447 (10)0.06636 (5)0.0335 (3)
F81.16566 (12)0.44773 (9)0.13511 (5)0.0339 (3)
F90.96318 (13)0.52757 (10)0.18134 (6)0.0392 (3)
F100.89763 (11)0.71906 (9)0.15916 (5)0.0326 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01780 (16)0.01596 (15)0.01044 (15)0.00013 (13)0.00063 (12)0.00146 (12)
O10.0209 (7)0.0196 (7)0.0129 (6)0.0028 (6)0.0015 (5)0.0015 (5)
O20.0252 (7)0.0182 (6)0.0128 (6)0.0008 (6)0.0003 (5)0.0021 (5)
C10.0229 (10)0.0218 (10)0.0150 (9)0.0035 (8)0.0003 (8)0.0035 (8)
C20.0348 (12)0.0200 (10)0.0182 (9)0.0074 (9)0.0076 (8)0.0006 (8)
C30.0331 (12)0.0315 (11)0.0122 (8)0.0145 (10)0.0034 (8)0.0046 (8)
C40.0191 (10)0.0404 (12)0.0129 (9)0.0063 (9)0.0004 (7)0.0023 (8)
C50.0182 (9)0.0251 (10)0.0153 (9)0.0017 (8)0.0019 (7)0.0014 (8)
C60.0190 (9)0.0195 (9)0.0130 (8)0.0052 (8)0.0014 (7)0.0014 (7)
C70.0146 (9)0.0194 (9)0.0142 (8)0.0014 (7)0.0010 (7)0.0003 (7)
C80.0211 (10)0.0198 (9)0.0131 (8)0.0009 (8)0.0008 (7)0.0018 (7)
C90.0141 (9)0.0182 (9)0.0162 (8)0.0030 (7)0.0006 (7)0.0029 (7)
C100.0188 (9)0.0171 (9)0.0128 (8)0.0016 (8)0.0024 (7)0.0001 (7)
C110.0170 (9)0.0234 (10)0.0160 (9)0.0026 (8)0.0001 (7)0.0013 (8)
C120.0179 (10)0.0253 (10)0.0209 (9)0.0054 (8)0.0040 (8)0.0050 (8)
C130.0302 (11)0.0160 (9)0.0214 (9)0.0035 (9)0.0090 (8)0.0008 (8)
C140.0297 (11)0.0187 (10)0.0200 (9)0.0049 (9)0.0012 (8)0.0056 (8)
C150.0213 (10)0.0207 (9)0.0183 (9)0.0008 (8)0.0025 (8)0.0003 (7)
C160.0331 (12)0.0474 (14)0.0242 (11)0.0127 (11)0.0125 (9)0.0146 (10)
C170.0358 (13)0.0422 (13)0.0289 (11)0.0184 (11)0.0172 (10)0.0143 (10)
C180.0304 (12)0.0480 (14)0.0299 (11)0.0192 (11)0.0122 (10)0.0204 (11)
C190.0469 (16)0.0608 (18)0.0363 (13)0.0142 (14)0.0060 (12)0.0056 (13)
F10.0352 (7)0.0217 (6)0.0244 (6)0.0042 (5)0.0052 (5)0.0025 (5)
F20.0580 (9)0.0175 (6)0.0318 (7)0.0024 (6)0.0036 (6)0.0047 (5)
F30.0511 (8)0.0417 (8)0.0188 (6)0.0209 (7)0.0004 (6)0.0101 (5)
F40.0281 (7)0.0564 (9)0.0186 (6)0.0016 (6)0.0090 (5)0.0018 (6)
F50.0279 (7)0.0303 (7)0.0242 (6)0.0073 (5)0.0060 (5)0.0007 (5)
F60.0223 (6)0.0314 (7)0.0347 (7)0.0007 (5)0.0112 (5)0.0071 (6)
F70.0223 (6)0.0351 (7)0.0429 (7)0.0125 (6)0.0028 (5)0.0018 (6)
F80.0439 (8)0.0184 (6)0.0395 (7)0.0077 (6)0.0094 (6)0.0036 (5)
F90.0477 (8)0.0247 (6)0.0453 (8)0.0042 (6)0.0158 (7)0.0154 (6)
F100.0306 (7)0.0261 (6)0.0409 (7)0.0027 (5)0.0201 (6)0.0071 (6)
Geometric parameters (Å, º) top
Cu1—O21.9073 (13)C10—C151.383 (3)
Cu1—O2i1.9074 (13)C10—C111.388 (3)
Cu1—O11.9224 (12)C11—F61.342 (2)
Cu1—O1i1.9225 (12)C11—C121.378 (3)
O1—C71.274 (2)C12—F71.341 (2)
O2—C91.271 (2)C12—C131.378 (3)
C1—F11.345 (2)C13—F81.334 (2)
C1—C21.380 (3)C13—C141.375 (3)
C1—C61.386 (3)C14—F91.339 (2)
C2—F21.337 (2)C14—C151.380 (3)
C2—C31.381 (3)C15—F101.349 (2)
C3—F31.340 (2)C16—C171.395 (3)
C3—C41.376 (3)C16—C18ii1.396 (3)
C4—F41.345 (2)C16—C191.508 (4)
C4—C51.382 (3)C17—C181.383 (4)
C5—F51.342 (2)C17—H170.9500
C5—C61.391 (3)C18—C16ii1.396 (3)
C6—C71.503 (2)C18—H180.9500
C7—C81.389 (3)C19—H19A0.9800
C8—C91.397 (3)C19—H19B0.9800
C8—H80.9500C19—H19C0.9800
C9—C101.501 (3)
O2—Cu1—O2i180.0C8—C9—C10119.02 (16)
O2—Cu1—O193.09 (5)C15—C10—C11116.50 (17)
O2i—Cu1—O186.91 (5)C15—C10—C9122.45 (17)
O2—Cu1—O1i86.91 (5)C11—C10—C9120.95 (16)
O2i—Cu1—O1i93.09 (5)F6—C11—C12117.66 (17)
O1—Cu1—O1i180.0F6—C11—C10120.34 (17)
C7—O1—Cu1124.71 (12)C12—C11—C10121.99 (18)
C9—O2—Cu1125.46 (12)F7—C12—C13119.59 (18)
F1—C1—C2117.87 (18)F7—C12—C11120.33 (18)
F1—C1—C6119.89 (17)C13—C12—C11120.08 (18)
C2—C1—C6122.21 (18)F8—C13—C14120.25 (18)
F2—C2—C1121.06 (19)F8—C13—C12120.50 (18)
F2—C2—C3119.63 (18)C14—C13—C12119.24 (18)
C1—C2—C3119.32 (19)F9—C14—C13120.08 (18)
F3—C3—C4120.01 (19)F9—C14—C15120.02 (19)
F3—C3—C2119.98 (19)C13—C14—C15119.90 (18)
C4—C3—C2120.00 (18)F10—C15—C14117.29 (17)
F4—C4—C3119.86 (18)F10—C15—C10120.41 (17)
F4—C4—C5120.43 (19)C14—C15—C10122.28 (18)
C3—C4—C5119.71 (18)C17—C16—C18ii117.4 (2)
F5—C5—C4118.03 (17)C17—C16—C19120.8 (2)
F5—C5—C6120.18 (17)C18ii—C16—C19121.8 (2)
C4—C5—C6121.77 (19)C18—C17—C16121.2 (2)
C1—C6—C5116.86 (17)C18—C17—H17119.4
C1—C6—C7121.00 (17)C16—C17—H17119.4
C5—C6—C7122.11 (17)C17—C18—C16ii121.4 (2)
O1—C7—C8126.78 (17)C17—C18—H18119.3
O1—C7—C6114.60 (16)C16ii—C18—H18119.3
C8—C7—C6118.62 (16)C16—C19—H19A109.5
C7—C8—C9122.08 (17)C16—C19—H19B109.5
C7—C8—H8119.0H19A—C19—H19B109.5
C9—C8—H8119.0C16—C19—H19C109.5
O2—C9—C8126.53 (17)H19A—C19—H19C109.5
O2—C9—C10114.44 (16)H19B—C19—H19C109.5
F1—C1—C2—F20.6 (3)C7—C8—C9—O24.3 (3)
C6—C1—C2—F2177.15 (17)C7—C8—C9—C10174.69 (17)
F1—C1—C2—C3179.80 (17)O2—C9—C10—C15130.44 (19)
C6—C1—C2—C32.4 (3)C8—C9—C10—C1548.7 (3)
F2—C2—C3—F32.9 (3)O2—C9—C10—C1145.9 (2)
C1—C2—C3—F3177.54 (17)C8—C9—C10—C11134.99 (19)
F2—C2—C3—C4176.04 (17)C15—C10—C11—F6178.43 (16)
C1—C2—C3—C43.6 (3)C9—C10—C11—F65.1 (3)
F3—C3—C4—F40.3 (3)C15—C10—C11—C120.5 (3)
C2—C3—C4—F4179.21 (17)C9—C10—C11—C12175.97 (17)
F3—C3—C4—C5179.76 (17)F6—C11—C12—F71.2 (3)
C2—C3—C4—C51.3 (3)C10—C11—C12—F7179.76 (17)
F4—C4—C5—F51.0 (3)F6—C11—C12—C13178.64 (17)
C3—C4—C5—F5179.60 (17)C10—C11—C12—C130.4 (3)
F4—C4—C5—C6177.32 (17)F7—C12—C13—F80.3 (3)
C3—C4—C5—C62.1 (3)C11—C12—C13—F8179.60 (17)
F1—C1—C6—C5176.82 (16)F7—C12—C13—C14179.86 (17)
C2—C1—C6—C50.9 (3)C11—C12—C13—C140.0 (3)
F1—C1—C6—C75.3 (3)F8—C13—C14—F90.6 (3)
C2—C1—C6—C7177.01 (17)C12—C13—C14—F9179.84 (18)
F5—C5—C6—C1178.57 (16)F8—C13—C14—C15179.77 (18)
C4—C5—C6—C13.2 (3)C12—C13—C14—C150.2 (3)
F5—C5—C6—C73.6 (3)F9—C14—C15—F101.5 (3)
C4—C5—C6—C7174.69 (17)C13—C14—C15—F10178.18 (17)
Cu1—O1—C7—C87.8 (3)F9—C14—C15—C10179.65 (18)
Cu1—O1—C7—C6172.68 (12)C13—C14—C15—C100.0 (3)
C1—C6—C7—O153.2 (2)C11—C10—C15—F10178.48 (16)
C5—C6—C7—O1124.60 (19)C9—C10—C15—F102.0 (3)
C1—C6—C7—C8127.2 (2)C11—C10—C15—C140.4 (3)
C5—C6—C7—C855.0 (3)C9—C10—C15—C14176.09 (18)
O1—C7—C8—C92.5 (3)C18ii—C16—C17—C180.1 (3)
C6—C7—C8—C9177.09 (17)C19—C16—C17—C18179.7 (2)
Cu1—O2—C9—C84.4 (3)C16—C17—C18—C16ii0.1 (4)
Cu1—O2—C9—C10176.49 (11)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+2, z.
(II) Bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato-κ2O,O']copper(II) p-xylene disolvate top
Crystal data top
[Cu(C15HF10O2)2]·2C8H10Z = 1
Mr = 1082.19F(000) = 539
Triclinic, P1Dx = 1.717 Mg m3
a = 7.5688 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8976 (6) ÅCell parameters from 8584 reflections
c = 12.2578 (6) Åθ = 2.4–27.9°
α = 90.7758 (5)°µ = 0.66 mm1
β = 99.1187 (5)°T = 120 K
γ = 105.8474 (5)°Prismatic, green
V = 1046.57 (9) Å30.40 × 0.40 × 0.20 mm
Data collection top
Bruker D8 goniometer
diffractometer
4714 independent reflections
Radiation source: sealed tube4520 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.018
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 99
Tmin = 0.81, Tmax = 0.88k = 1515
12038 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.5676P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4714 reflectionsΔρmax = 0.35 e Å3
324 parametersΔρmin = 0.50 e Å3
0 restraints
Crystal data top
[Cu(C15HF10O2)2]·2C8H10γ = 105.8474 (5)°
Mr = 1082.19V = 1046.57 (9) Å3
Triclinic, P1Z = 1
a = 7.5688 (4) ÅMo Kα radiation
b = 11.8976 (6) ŵ = 0.66 mm1
c = 12.2578 (6) ÅT = 120 K
α = 90.7758 (5)°0.40 × 0.40 × 0.20 mm
β = 99.1187 (5)°
Data collection top
Bruker D8 goniometer
diffractometer
4714 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
4520 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.88Rint = 0.018
12038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
4714 reflectionsΔρmin = 0.50 e Å3
324 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.50000.01409 (7)
O10.14839 (13)0.63204 (8)0.59651 (8)0.01741 (19)
O20.15820 (13)0.53465 (8)0.39122 (8)0.01758 (19)
C10.46491 (18)0.77779 (12)0.77070 (11)0.0174 (3)
C20.54627 (19)0.86513 (13)0.85354 (11)0.0212 (3)
C30.5452 (2)0.97902 (13)0.83293 (12)0.0242 (3)
C40.4664 (2)1.00451 (12)0.73052 (13)0.0236 (3)
C50.38986 (19)0.91660 (12)0.64841 (11)0.0195 (3)
C60.38537 (17)0.80111 (11)0.66666 (11)0.0153 (2)
C70.29598 (17)0.70464 (11)0.57786 (10)0.0149 (2)
C80.38151 (18)0.70311 (12)0.48517 (11)0.0180 (3)
H80.49350.76190.48090.022*
C90.30682 (17)0.61753 (11)0.39874 (10)0.0145 (2)
C100.40891 (17)0.61937 (11)0.30254 (10)0.0147 (2)
C110.32911 (18)0.63661 (12)0.19637 (11)0.0180 (3)
C120.4171 (2)0.63262 (13)0.10641 (11)0.0214 (3)
C130.5881 (2)0.60970 (12)0.12160 (12)0.0218 (3)
C140.67085 (19)0.59151 (12)0.22611 (12)0.0206 (3)
C150.58144 (18)0.59794 (11)0.31516 (11)0.0176 (3)
C160.9590 (2)0.78907 (15)0.79456 (13)0.0273 (3)
C171.0335 (2)0.88873 (18)0.86553 (14)0.0356 (4)
H171.07870.88070.94100.043*
C181.0431 (2)0.99955 (17)0.82876 (16)0.0387 (4)
H181.09481.06580.87950.046*
C190.9785 (2)1.01581 (15)0.71881 (15)0.0327 (4)
C200.9046 (2)0.91619 (14)0.64705 (14)0.0288 (3)
H200.86000.92440.57150.035*
C210.8949 (2)0.80516 (14)0.68419 (13)0.0267 (3)
H210.84360.73880.63350.032*
C220.9465 (3)0.66842 (17)0.83434 (15)0.0361 (4)
H22A0.99820.67440.91340.054*
H22B1.01740.63050.79300.054*
H22C0.81570.62180.82250.054*
C230.9901 (3)1.13618 (17)0.6788 (2)0.0502 (5)
H23A1.03171.19370.74210.075*
H23B0.86701.13850.64110.075*
H23C1.07901.15470.62720.075*
F10.46985 (13)0.66826 (7)0.79131 (7)0.02477 (18)
F20.62668 (13)0.84124 (9)0.95225 (7)0.0312 (2)
F30.62127 (15)1.06451 (8)0.91226 (8)0.0365 (2)
F40.46457 (16)1.11511 (8)0.71103 (9)0.0378 (2)
F50.31611 (14)0.94499 (8)0.54917 (7)0.0292 (2)
F60.16467 (12)0.66027 (9)0.17904 (7)0.0288 (2)
F70.33637 (14)0.64936 (10)0.00542 (7)0.0345 (2)
F80.67395 (14)0.60468 (9)0.03515 (8)0.0328 (2)
F90.83453 (12)0.56737 (9)0.24119 (8)0.0317 (2)
F100.66593 (12)0.58023 (8)0.41631 (7)0.0274 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01255 (11)0.01641 (11)0.01096 (11)0.00086 (8)0.00396 (8)0.00205 (8)
O10.0162 (4)0.0189 (4)0.0145 (4)0.0011 (4)0.0057 (3)0.0031 (4)
O20.0154 (4)0.0209 (5)0.0136 (4)0.0010 (4)0.0046 (3)0.0017 (4)
C10.0175 (6)0.0170 (6)0.0171 (6)0.0032 (5)0.0041 (5)0.0003 (5)
C20.0196 (6)0.0263 (7)0.0147 (6)0.0028 (5)0.0009 (5)0.0024 (5)
C30.0239 (7)0.0212 (7)0.0219 (7)0.0017 (5)0.0025 (6)0.0099 (5)
C40.0277 (7)0.0141 (6)0.0275 (7)0.0028 (5)0.0062 (6)0.0011 (5)
C50.0205 (6)0.0190 (6)0.0178 (6)0.0035 (5)0.0028 (5)0.0019 (5)
C60.0135 (6)0.0160 (6)0.0149 (6)0.0006 (5)0.0045 (5)0.0018 (5)
C70.0150 (6)0.0148 (6)0.0138 (6)0.0033 (5)0.0009 (5)0.0001 (5)
C80.0162 (6)0.0181 (6)0.0169 (6)0.0015 (5)0.0058 (5)0.0009 (5)
C90.0145 (6)0.0172 (6)0.0128 (6)0.0047 (5)0.0040 (4)0.0026 (5)
C100.0148 (6)0.0134 (6)0.0146 (6)0.0003 (4)0.0053 (5)0.0004 (4)
C110.0149 (6)0.0214 (6)0.0169 (6)0.0026 (5)0.0048 (5)0.0004 (5)
C120.0230 (7)0.0261 (7)0.0132 (6)0.0024 (5)0.0049 (5)0.0009 (5)
C130.0251 (7)0.0220 (7)0.0196 (7)0.0031 (5)0.0139 (5)0.0011 (5)
C140.0172 (6)0.0192 (6)0.0278 (7)0.0054 (5)0.0106 (5)0.0028 (5)
C150.0184 (6)0.0170 (6)0.0172 (6)0.0036 (5)0.0048 (5)0.0032 (5)
C160.0190 (7)0.0402 (9)0.0247 (7)0.0116 (6)0.0039 (6)0.0028 (6)
C170.0279 (8)0.0535 (11)0.0227 (8)0.0113 (7)0.0025 (6)0.0076 (7)
C180.0294 (8)0.0424 (10)0.0376 (9)0.0055 (7)0.0044 (7)0.0210 (8)
C190.0225 (7)0.0322 (8)0.0404 (9)0.0070 (6)0.0010 (7)0.0085 (7)
C200.0253 (7)0.0345 (8)0.0258 (8)0.0109 (6)0.0016 (6)0.0044 (6)
C210.0244 (7)0.0320 (8)0.0235 (7)0.0098 (6)0.0004 (6)0.0081 (6)
C220.0369 (9)0.0466 (10)0.0282 (8)0.0173 (8)0.0060 (7)0.0047 (7)
C230.0481 (11)0.0311 (9)0.0640 (14)0.0086 (8)0.0074 (10)0.0082 (9)
F10.0342 (5)0.0189 (4)0.0204 (4)0.0082 (3)0.0006 (3)0.0019 (3)
F20.0349 (5)0.0371 (5)0.0156 (4)0.0060 (4)0.0057 (4)0.0024 (4)
F30.0438 (6)0.0272 (5)0.0288 (5)0.0014 (4)0.0011 (4)0.0156 (4)
F40.0563 (6)0.0137 (4)0.0402 (6)0.0064 (4)0.0051 (5)0.0010 (4)
F50.0399 (5)0.0241 (4)0.0216 (4)0.0093 (4)0.0018 (4)0.0048 (3)
F60.0181 (4)0.0506 (6)0.0211 (4)0.0140 (4)0.0049 (3)0.0077 (4)
F70.0328 (5)0.0578 (6)0.0127 (4)0.0112 (5)0.0057 (4)0.0060 (4)
F80.0363 (5)0.0422 (5)0.0258 (5)0.0111 (4)0.0221 (4)0.0008 (4)
F90.0226 (4)0.0392 (5)0.0417 (5)0.0165 (4)0.0156 (4)0.0092 (4)
F100.0237 (4)0.0414 (5)0.0208 (4)0.0149 (4)0.0039 (3)0.0087 (4)
Geometric parameters (Å, º) top
Cu1—O2i1.9061 (9)C12—F71.3337 (16)
Cu1—O21.9061 (9)C12—C131.379 (2)
Cu1—O11.9219 (9)C13—F81.3365 (15)
Cu1—O1i1.9219 (9)C13—C141.381 (2)
O1—C71.2671 (16)C14—F91.3322 (16)
O2—C91.2670 (16)C14—C151.3840 (19)
C1—F11.3401 (15)C15—F101.3491 (16)
C1—C21.3834 (19)C16—C171.390 (2)
C1—C61.3868 (19)C16—C211.397 (2)
C2—F21.3363 (16)C16—C221.506 (2)
C2—C31.384 (2)C17—C181.386 (3)
C3—F31.3370 (16)C17—H170.9500
C3—C41.377 (2)C18—C191.394 (3)
C4—F41.3440 (16)C18—H180.9500
C4—C51.378 (2)C19—C201.395 (2)
C5—F51.3433 (16)C19—C231.504 (3)
C5—C61.3872 (19)C20—C211.390 (2)
C6—C71.5061 (17)C20—H200.9500
C7—C81.3962 (18)C21—H210.9500
C8—C91.3947 (18)C22—H22A0.9800
C8—H80.9500C22—H22B0.9800
C9—C101.5061 (17)C22—H22C0.9800
C10—C151.3832 (18)C23—H23A0.9800
C10—C111.3878 (18)C23—H23B0.9800
C11—F61.3351 (16)C23—H23C0.9800
C11—C121.3821 (19)
O2i—Cu1—O2180.0F7—C12—C11120.33 (13)
O2i—Cu1—O187.02 (4)C13—C12—C11119.49 (13)
O2—Cu1—O192.98 (4)F8—C13—C12120.08 (13)
O2i—Cu1—O1i92.98 (4)F8—C13—C14119.82 (13)
O2—Cu1—O1i87.02 (4)C12—C13—C14120.10 (12)
O1—Cu1—O1i180.00 (6)F9—C14—C13120.47 (13)
C7—O1—Cu1125.65 (8)F9—C14—C15120.21 (13)
C9—O2—Cu1125.98 (8)C13—C14—C15119.32 (13)
F1—C1—C2118.42 (12)F10—C15—C10119.99 (12)
F1—C1—C6119.50 (12)F10—C15—C14118.00 (12)
C2—C1—C6122.04 (13)C10—C15—C14122.00 (13)
F2—C2—C1121.07 (13)C17—C16—C21117.23 (16)
F2—C2—C3119.80 (13)C17—C16—C22121.75 (15)
C1—C2—C3119.13 (13)C21—C16—C22121.02 (15)
F3—C3—C4119.91 (14)C18—C17—C16121.55 (16)
F3—C3—C2120.08 (14)C18—C17—H17119.2
C4—C3—C2120.01 (13)C16—C17—H17119.2
F4—C4—C3119.84 (13)C17—C18—C19121.34 (16)
F4—C4—C5120.26 (13)C17—C18—H18119.3
C3—C4—C5119.90 (13)C19—C18—H18119.3
F5—C5—C4118.22 (12)C18—C19—C20117.39 (16)
F5—C5—C6120.08 (12)C18—C19—C23121.31 (16)
C4—C5—C6121.69 (13)C20—C19—C23121.31 (17)
C1—C6—C5117.20 (12)C21—C20—C19121.14 (16)
C1—C6—C7121.24 (12)C21—C20—H20119.4
C5—C6—C7121.55 (12)C19—C20—H20119.4
O1—C7—C8126.72 (12)C20—C21—C16121.36 (15)
O1—C7—C6115.16 (11)C20—C21—H21119.3
C8—C7—C6118.12 (11)C16—C21—H21119.3
C9—C8—C7121.75 (12)C16—C22—H22A109.5
C9—C8—H8119.1C16—C22—H22B109.5
C7—C8—H8119.1H22A—C22—H22B109.5
O2—C9—C8126.86 (12)C16—C22—H22C109.5
O2—C9—C10114.19 (11)H22A—C22—H22C109.5
C8—C9—C10118.94 (11)H22B—C22—H22C109.5
C15—C10—C11117.23 (12)C19—C23—H23A109.5
C15—C10—C9121.49 (12)C19—C23—H23B109.5
C11—C10—C9121.20 (12)H23A—C23—H23B109.5
F6—C11—C12117.99 (12)C19—C23—H23C109.5
F6—C11—C10120.15 (12)H23A—C23—H23C109.5
C12—C11—C10121.84 (13)H23B—C23—H23C109.5
F7—C12—C13120.17 (12)
F1—C1—C2—F20.6 (2)C8—C9—C10—C1566.47 (17)
C6—C1—C2—F2178.13 (12)O2—C9—C10—C1163.47 (16)
F1—C1—C2—C3178.87 (12)C8—C9—C10—C11116.96 (14)
C6—C1—C2—C31.3 (2)C15—C10—C11—F6178.50 (12)
F2—C2—C3—F31.3 (2)C9—C10—C11—F64.78 (19)
C1—C2—C3—F3179.25 (13)C15—C10—C11—C120.1 (2)
F2—C2—C3—C4178.48 (13)C9—C10—C11—C12176.66 (12)
C1—C2—C3—C41.0 (2)F6—C11—C12—F71.5 (2)
F3—C3—C4—F40.7 (2)C10—C11—C12—F7179.88 (13)
C2—C3—C4—F4179.55 (13)F6—C11—C12—C13179.28 (13)
F3—C3—C4—C5179.31 (13)C10—C11—C12—C130.7 (2)
C2—C3—C4—C50.5 (2)F7—C12—C13—F80.3 (2)
F4—C4—C5—F50.7 (2)C11—C12—C13—F8179.47 (13)
C3—C4—C5—F5179.26 (13)F7—C12—C13—C14179.51 (13)
F4—C4—C5—C6178.37 (13)C11—C12—C13—C140.3 (2)
C3—C4—C5—C61.7 (2)F8—C13—C14—F90.9 (2)
F1—C1—C6—C5177.72 (12)C12—C13—C14—F9178.85 (13)
C2—C1—C6—C50.2 (2)F8—C13—C14—C15179.44 (12)
F1—C1—C6—C72.99 (19)C12—C13—C14—C150.8 (2)
C2—C1—C6—C7179.46 (12)C11—C10—C15—F10179.86 (12)
F5—C5—C6—C1179.62 (12)C9—C10—C15—F103.15 (19)
C4—C5—C6—C11.3 (2)C11—C10—C15—C141.19 (19)
F5—C5—C6—C71.10 (19)C9—C10—C15—C14175.52 (12)
C4—C5—C6—C7177.97 (13)F9—C14—C15—F100.63 (19)
Cu1—O1—C7—C80.77 (19)C13—C14—C15—F10179.75 (12)
Cu1—O1—C7—C6179.54 (8)F9—C14—C15—C10178.06 (12)
C1—C6—C7—O167.37 (16)C13—C14—C15—C101.6 (2)
C5—C6—C7—O1111.89 (14)C21—C16—C17—C180.3 (2)
C1—C6—C7—C8112.35 (15)C22—C16—C17—C18179.39 (16)
C5—C6—C7—C868.39 (17)C16—C17—C18—C190.0 (3)
O1—C7—C8—C91.0 (2)C17—C18—C19—C200.3 (3)
C6—C7—C8—C9179.35 (12)C17—C18—C19—C23179.65 (18)
Cu1—O2—C9—C82.86 (19)C18—C19—C20—C210.4 (2)
Cu1—O2—C9—C10176.67 (8)C23—C19—C20—C21179.72 (17)
C7—C8—C9—O21.0 (2)C19—C20—C21—C160.1 (2)
C7—C8—C9—C10178.49 (12)C17—C16—C21—C200.2 (2)
O2—C9—C10—C15113.10 (14)C22—C16—C21—C20179.45 (15)
Symmetry code: (i) x, y+1, z+1.
(III) Bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato-κ2O,O']copper(II) p-xylene tetrasolvate top
Crystal data top
[Cu(C15HF10O2)2]·4C8H10F(000) = 1310
Mr = 1294.49Dx = 1.539 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 13.8034 (16) ÅCell parameters from 8297 reflections
b = 14.2545 (17) Åθ = 2.3–27.0°
c = 14.9313 (17) ŵ = 0.51 mm1
β = 108.0612 (13)°T = 100 K
V = 2793.1 (6) Å3Block, green
Z = 20.22 × 0.15 × 0.10 mm
Data collection top
Bruker D8 goniometer
diffractometer
12693 independent reflections
Radiation source: sealed tube10311 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.034
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1717
Tmin = 0.91, Tmax = 0.95k = 1818
31741 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.044P)2 + 0.2568P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.37 e Å3
12693 reflectionsΔρmin = 0.39 e Å3
793 parametersAbsolute structure: Refined as an inversion twin; 6303 Bijvoet pairs (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.494 (13)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu(C15HF10O2)2]·4C8H10V = 2793.1 (6) Å3
Mr = 1294.49Z = 2
Monoclinic, PnMo Kα radiation
a = 13.8034 (16) ŵ = 0.51 mm1
b = 14.2545 (17) ÅT = 100 K
c = 14.9313 (17) Å0.22 × 0.15 × 0.10 mm
β = 108.0612 (13)°
Data collection top
Bruker D8 goniometer
diffractometer
12693 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
10311 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.95Rint = 0.034
31741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.37 e Å3
S = 1.03Δρmin = 0.39 e Å3
12693 reflectionsAbsolute structure: Refined as an inversion twin; 6303 Bijvoet pairs (Parsons et al., 2013)
793 parametersAbsolute structure parameter: 0.494 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.17563 (6)0.75464 (4)0.19831 (6)0.02026 (11)
O10.1062 (3)0.8731 (2)0.1724 (2)0.0205 (7)
O20.2610 (3)0.7822 (2)0.1220 (2)0.0226 (7)
O30.2451 (3)0.63676 (19)0.2239 (2)0.0219 (7)
O40.0897 (2)0.7262 (2)0.2742 (2)0.0215 (7)
C10.0458 (4)1.0168 (3)0.1043 (4)0.0246 (11)
C20.1050 (4)1.0953 (3)0.0999 (4)0.0276 (11)
C30.0621 (4)1.1826 (3)0.1042 (4)0.0304 (12)
C40.0391 (4)1.1907 (3)0.1087 (4)0.0303 (12)
C50.0955 (4)1.1111 (3)0.1107 (4)0.0253 (11)
C60.0562 (4)1.0217 (3)0.1088 (3)0.0198 (10)
C70.1192 (4)0.9343 (3)0.1152 (3)0.0194 (10)
C80.1838 (4)0.9277 (3)0.0602 (3)0.0206 (10)
H80.18170.97540.01520.025*
C90.2517 (4)0.8529 (3)0.0690 (3)0.0192 (11)
C100.3214 (4)0.8542 (3)0.0087 (4)0.0196 (11)
C110.4261 (4)0.8650 (3)0.0487 (4)0.0270 (11)
C120.4907 (4)0.8627 (3)0.0053 (4)0.0298 (11)
C130.4523 (4)0.8471 (3)0.0994 (4)0.0271 (12)
C140.3492 (4)0.8356 (3)0.1415 (4)0.0297 (11)
C150.2850 (4)0.8402 (3)0.0871 (4)0.0256 (11)
C160.3974 (4)0.4942 (3)0.2927 (3)0.0229 (10)
C170.4566 (4)0.4159 (4)0.2940 (4)0.0285 (12)
C180.4146 (4)0.3288 (3)0.2882 (4)0.0286 (12)
C190.3136 (5)0.3185 (3)0.2816 (4)0.0289 (12)
C200.2548 (4)0.3976 (3)0.2809 (3)0.0229 (11)
C210.2948 (4)0.4874 (3)0.2850 (3)0.0198 (10)
C220.2317 (3)0.5739 (3)0.2786 (3)0.0192 (10)
C230.1634 (4)0.5788 (3)0.3309 (3)0.0228 (11)
H230.16220.52850.37230.027*
C240.0976 (4)0.6535 (3)0.3252 (3)0.0185 (10)
C250.0242 (4)0.6498 (3)0.3815 (4)0.0188 (10)
C260.0789 (4)0.6637 (3)0.3400 (3)0.0239 (10)
C270.1470 (4)0.6624 (3)0.3908 (4)0.0282 (12)
C280.1117 (4)0.6480 (3)0.4865 (4)0.0302 (13)
C290.0102 (4)0.6333 (3)0.5295 (4)0.0334 (13)
C300.0561 (4)0.6337 (3)0.4770 (4)0.0282 (12)
C310.9933 (4)0.8872 (3)0.5385 (4)0.0338 (13)
C321.0225 (4)0.8861 (3)0.4584 (4)0.0346 (13)
H321.09280.87970.46440.042*
C330.9536 (4)0.8941 (3)0.3703 (4)0.0362 (14)
H330.97740.89360.31700.043*
C340.8499 (4)0.9029 (3)0.3566 (4)0.0325 (12)
C350.8190 (4)0.9030 (3)0.4379 (4)0.0351 (14)
H350.74860.90890.43150.042*
C360.8882 (4)0.8948 (4)0.5268 (4)0.0361 (14)
H360.86500.89430.58040.043*
C371.0683 (5)0.8783 (5)0.6344 (4)0.0561 (16)
H37A1.10840.82090.63780.084*
H37B1.03210.87540.68130.084*
H37C1.11390.93280.64720.084*
C380.7730 (5)0.9103 (4)0.2582 (4)0.0531 (15)
H38A0.79040.96400.22520.080*
H38B0.70450.91900.26340.080*
H38C0.77480.85270.22300.080*
C390.9941 (4)0.3827 (3)0.5314 (4)0.0335 (12)
C401.0280 (4)0.3933 (3)0.4545 (4)0.0323 (13)
H401.09910.39150.46330.039*
C410.9618 (4)0.4066 (3)0.3654 (4)0.0309 (13)
H410.98840.41290.31410.037*
C420.8585 (4)0.4109 (3)0.3484 (4)0.0312 (12)
C430.8225 (4)0.4007 (3)0.4255 (4)0.0341 (13)
H430.75130.40410.41620.041*
C440.8889 (5)0.3856 (3)0.5160 (4)0.0363 (14)
H440.86270.37730.56730.044*
C451.0682 (5)0.3667 (4)0.6277 (4)0.0542 (16)
H45A1.11020.31160.62650.081*
H45B1.03070.35630.67280.081*
H45C1.11210.42200.64680.081*
C460.7858 (4)0.4263 (4)0.2498 (4)0.0495 (15)
H46A0.81700.46900.21530.074*
H46B0.72220.45380.25380.074*
H46C0.77120.36610.21660.074*
C470.8846 (5)0.6716 (4)0.0277 (4)0.0358 (13)
C480.8805 (5)0.5767 (4)0.0453 (4)0.0378 (13)
H480.82040.55170.05450.045*
C490.9605 (5)0.5173 (4)0.0502 (4)0.0390 (14)
H490.95470.45260.06310.047*
C501.0498 (4)0.5505 (4)0.0365 (4)0.0315 (12)
C511.0546 (5)0.6454 (3)0.0190 (4)0.0327 (13)
H511.11460.67020.00960.039*
C520.9746 (4)0.7053 (4)0.0150 (4)0.0343 (13)
H520.98090.77020.00340.041*
C530.7969 (5)0.7352 (4)0.0211 (5)0.0483 (16)
H53A0.73730.71420.03010.073*
H53B0.81460.79930.00840.073*
H53C0.78110.73380.08070.073*
C541.1362 (5)0.4856 (4)0.0369 (4)0.0400 (14)
H54A1.13630.43170.07760.060*
H54B1.20100.51930.06080.060*
H54C1.12740.46380.02730.060*
C550.2947 (4)0.9636 (3)0.3611 (4)0.0280 (11)
C560.2916 (4)0.8675 (3)0.3757 (4)0.0291 (12)
H560.23310.84050.38610.035*
C570.3736 (4)0.8102 (3)0.3754 (4)0.0308 (12)
H570.37030.74480.38590.037*
C580.4600 (4)0.8478 (3)0.3599 (4)0.0328 (13)
C590.4625 (5)0.9432 (4)0.3456 (4)0.0367 (13)
H590.52130.97030.33590.044*
C600.3810 (4)1.0008 (4)0.3452 (4)0.0330 (12)
H600.38441.06620.33390.040*
C610.2069 (4)1.0250 (3)0.3634 (4)0.0327 (12)
H61A0.14280.99640.32540.049*
H61B0.21431.08690.33760.049*
H61C0.20651.03190.42850.049*
C620.5494 (5)0.7846 (4)0.3603 (5)0.0468 (15)
H62A0.59140.81600.32700.070*
H62B0.52350.72530.32860.070*
H62C0.59070.77200.42540.070*
F10.0914 (2)0.93329 (19)0.0973 (2)0.0348 (7)
F20.2039 (2)1.0869 (2)0.0913 (2)0.0403 (8)
F30.1187 (3)1.2595 (2)0.0991 (3)0.0432 (9)
F40.0791 (3)1.2761 (2)0.1088 (3)0.0471 (9)
F50.1939 (2)1.12306 (18)0.1152 (2)0.0368 (8)
F60.4650 (2)0.8798 (2)0.14101 (19)0.0451 (8)
F70.5910 (2)0.8735 (2)0.0352 (2)0.0522 (9)
F80.5146 (3)0.8429 (2)0.1535 (2)0.0403 (8)
F90.3125 (2)0.8195 (3)0.23473 (19)0.0515 (8)
F100.1851 (2)0.8272 (3)0.1294 (2)0.0497 (8)
F110.4428 (2)0.57798 (19)0.3023 (2)0.0344 (7)
F120.5569 (2)0.4255 (2)0.3068 (2)0.0391 (8)
F130.4723 (3)0.25216 (19)0.2916 (3)0.0463 (10)
F140.2723 (3)0.2329 (2)0.2774 (3)0.0462 (9)
F150.1571 (2)0.38428 (18)0.2744 (2)0.0342 (7)
F160.1166 (2)0.6789 (2)0.24653 (19)0.0426 (7)
F170.2469 (2)0.6749 (2)0.3476 (2)0.0486 (8)
F180.1767 (3)0.6482 (2)0.5368 (2)0.0453 (9)
F190.0244 (3)0.6189 (3)0.6227 (2)0.0594 (10)
F200.1557 (2)0.6200 (2)0.5226 (2)0.0471 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0261 (2)0.0175 (2)0.02174 (19)0.00388 (18)0.01416 (15)0.00478 (18)
O10.0255 (19)0.0194 (15)0.0198 (18)0.0047 (13)0.0116 (15)0.0039 (13)
O20.029 (2)0.0204 (15)0.0236 (19)0.0043 (14)0.0157 (15)0.0044 (14)
O30.0265 (19)0.0197 (15)0.0239 (19)0.0026 (12)0.0143 (15)0.0050 (13)
O40.0250 (19)0.0181 (14)0.0255 (19)0.0046 (13)0.0138 (15)0.0064 (13)
C10.032 (3)0.022 (2)0.023 (3)0.0000 (19)0.013 (2)0.0006 (18)
C20.023 (3)0.037 (3)0.024 (3)0.012 (2)0.010 (2)0.003 (2)
C30.045 (4)0.024 (2)0.024 (3)0.018 (2)0.013 (2)0.003 (2)
C40.041 (3)0.022 (2)0.027 (3)0.005 (2)0.010 (2)0.001 (2)
C50.030 (3)0.023 (2)0.026 (3)0.0012 (19)0.012 (2)0.0016 (19)
C60.023 (3)0.023 (2)0.016 (3)0.0036 (18)0.008 (2)0.0014 (17)
C70.025 (3)0.0142 (19)0.018 (2)0.0035 (17)0.004 (2)0.0006 (17)
C80.027 (3)0.018 (2)0.020 (3)0.0030 (18)0.011 (2)0.0040 (17)
C90.021 (3)0.019 (2)0.018 (3)0.0019 (17)0.007 (2)0.0018 (17)
C100.024 (3)0.015 (2)0.024 (3)0.0008 (16)0.013 (2)0.0017 (17)
C110.030 (3)0.031 (2)0.021 (2)0.000 (2)0.011 (2)0.0011 (19)
C120.023 (3)0.035 (2)0.034 (3)0.004 (2)0.013 (2)0.001 (2)
C130.034 (3)0.027 (2)0.030 (3)0.001 (2)0.024 (3)0.0031 (19)
C140.033 (3)0.039 (3)0.019 (2)0.001 (2)0.011 (2)0.001 (2)
C150.023 (3)0.037 (3)0.018 (2)0.0060 (19)0.008 (2)0.0021 (19)
C160.023 (3)0.028 (2)0.018 (3)0.0032 (19)0.007 (2)0.0034 (19)
C170.028 (3)0.042 (3)0.016 (3)0.011 (2)0.007 (2)0.001 (2)
C180.031 (3)0.035 (3)0.020 (3)0.019 (2)0.010 (2)0.004 (2)
C190.047 (3)0.017 (2)0.027 (3)0.005 (2)0.016 (2)0.0041 (19)
C200.023 (3)0.024 (2)0.024 (3)0.0049 (18)0.011 (2)0.0015 (18)
C210.024 (3)0.021 (2)0.015 (3)0.0030 (18)0.008 (2)0.0028 (17)
C220.016 (2)0.023 (2)0.019 (3)0.0032 (17)0.006 (2)0.0007 (18)
C230.032 (3)0.017 (2)0.022 (3)0.0035 (18)0.013 (2)0.0070 (18)
C240.023 (3)0.019 (2)0.016 (3)0.0013 (17)0.008 (2)0.0011 (17)
C250.025 (3)0.0140 (19)0.020 (3)0.0019 (17)0.011 (2)0.0012 (16)
C260.028 (3)0.023 (2)0.022 (2)0.0031 (18)0.010 (2)0.0020 (18)
C270.019 (3)0.031 (2)0.037 (3)0.0004 (19)0.012 (2)0.003 (2)
C280.034 (3)0.024 (2)0.045 (4)0.000 (2)0.031 (3)0.001 (2)
C290.044 (3)0.040 (3)0.023 (3)0.005 (2)0.020 (2)0.010 (2)
C300.026 (3)0.031 (2)0.030 (3)0.007 (2)0.013 (2)0.005 (2)
C310.023 (3)0.030 (2)0.048 (3)0.006 (2)0.011 (2)0.001 (2)
C320.029 (3)0.026 (2)0.054 (4)0.002 (2)0.022 (3)0.000 (2)
C330.039 (3)0.026 (3)0.052 (4)0.000 (2)0.027 (3)0.001 (2)
C340.036 (3)0.023 (2)0.042 (3)0.003 (2)0.018 (3)0.001 (2)
C350.029 (3)0.029 (3)0.050 (4)0.002 (2)0.017 (3)0.008 (2)
C360.031 (3)0.037 (3)0.046 (4)0.009 (2)0.021 (3)0.010 (2)
C370.044 (3)0.074 (4)0.051 (4)0.016 (3)0.015 (3)0.005 (3)
C380.046 (3)0.060 (4)0.051 (4)0.006 (3)0.012 (3)0.007 (3)
C390.038 (3)0.021 (2)0.040 (3)0.003 (2)0.010 (3)0.000 (2)
C400.023 (3)0.031 (3)0.045 (4)0.000 (2)0.013 (3)0.007 (2)
C410.032 (3)0.025 (2)0.042 (3)0.002 (2)0.022 (3)0.005 (2)
C420.034 (3)0.027 (2)0.037 (3)0.001 (2)0.018 (2)0.003 (2)
C430.028 (3)0.031 (3)0.049 (4)0.002 (2)0.019 (3)0.005 (2)
C440.049 (4)0.022 (2)0.047 (4)0.000 (2)0.030 (3)0.003 (2)
C450.063 (4)0.058 (4)0.039 (3)0.003 (3)0.013 (3)0.003 (3)
C460.031 (3)0.066 (4)0.050 (4)0.007 (3)0.010 (3)0.009 (3)
C470.040 (3)0.041 (3)0.022 (3)0.005 (2)0.002 (2)0.007 (2)
C480.030 (3)0.048 (3)0.035 (3)0.013 (2)0.010 (3)0.003 (2)
C490.049 (4)0.035 (3)0.034 (3)0.012 (2)0.015 (3)0.004 (2)
C500.038 (3)0.040 (3)0.015 (3)0.009 (2)0.006 (2)0.000 (2)
C510.035 (3)0.040 (3)0.022 (3)0.013 (2)0.006 (2)0.002 (2)
C520.041 (3)0.034 (3)0.024 (3)0.011 (2)0.006 (2)0.005 (2)
C530.041 (4)0.059 (4)0.041 (3)0.003 (3)0.006 (3)0.010 (3)
C540.051 (4)0.037 (3)0.031 (3)0.008 (3)0.013 (3)0.004 (2)
C550.029 (3)0.035 (3)0.019 (3)0.006 (2)0.006 (2)0.0032 (19)
C560.032 (3)0.035 (3)0.019 (3)0.007 (2)0.007 (2)0.005 (2)
C570.040 (3)0.028 (2)0.022 (3)0.004 (2)0.007 (2)0.0059 (19)
C580.029 (3)0.038 (3)0.030 (3)0.001 (2)0.008 (2)0.010 (2)
C590.038 (3)0.041 (3)0.034 (3)0.008 (2)0.015 (3)0.005 (2)
C600.034 (3)0.036 (3)0.029 (3)0.006 (2)0.010 (2)0.003 (2)
C610.029 (3)0.036 (3)0.031 (3)0.001 (2)0.008 (2)0.000 (2)
C620.042 (4)0.049 (3)0.053 (4)0.003 (3)0.020 (3)0.013 (3)
F10.0287 (17)0.0303 (15)0.049 (2)0.0016 (12)0.0168 (15)0.0003 (13)
F20.0270 (18)0.0545 (19)0.043 (2)0.0157 (13)0.0155 (15)0.0033 (15)
F30.057 (3)0.0339 (18)0.042 (2)0.0280 (14)0.0208 (19)0.0054 (13)
F40.068 (3)0.0177 (14)0.059 (2)0.0018 (16)0.0237 (19)0.0010 (15)
F50.0349 (19)0.0228 (14)0.058 (2)0.0049 (12)0.0222 (16)0.0023 (13)
F60.0291 (16)0.085 (2)0.0216 (14)0.0025 (15)0.0076 (12)0.0059 (15)
F70.0211 (15)0.091 (2)0.0463 (19)0.0014 (16)0.0135 (14)0.0028 (18)
F80.039 (2)0.0525 (18)0.041 (2)0.0020 (14)0.0307 (16)0.0015 (14)
F90.0469 (19)0.091 (2)0.0217 (15)0.0092 (17)0.0177 (14)0.0082 (16)
F100.0276 (16)0.096 (2)0.0263 (16)0.0127 (16)0.0096 (12)0.0107 (16)
F110.0240 (16)0.0322 (15)0.049 (2)0.0036 (12)0.0148 (14)0.0014 (14)
F120.0205 (16)0.065 (2)0.0341 (18)0.0129 (14)0.0110 (14)0.0022 (15)
F130.058 (3)0.042 (2)0.041 (2)0.0328 (15)0.0189 (19)0.0037 (13)
F140.057 (2)0.0180 (14)0.068 (3)0.0067 (14)0.025 (2)0.0039 (15)
F150.0298 (17)0.0219 (13)0.056 (2)0.0019 (12)0.0207 (15)0.0001 (13)
F160.0299 (15)0.072 (2)0.0256 (15)0.0038 (15)0.0079 (12)0.0014 (15)
F170.0236 (16)0.071 (2)0.054 (2)0.0014 (14)0.0169 (14)0.0087 (17)
F180.048 (2)0.0521 (19)0.053 (2)0.0003 (14)0.0421 (19)0.0033 (15)
F190.061 (2)0.101 (3)0.0254 (16)0.0199 (19)0.0259 (15)0.0176 (17)
F200.0312 (17)0.089 (2)0.0211 (15)0.0173 (16)0.0087 (12)0.0095 (15)
Geometric parameters (Å, º) top
Cu1—O31.913 (3)C33—C341.387 (8)
Cu1—O21.917 (3)C33—H330.9500
Cu1—O11.921 (3)C34—C351.406 (8)
Cu1—O41.921 (3)C34—C381.526 (8)
O1—C71.271 (5)C35—C361.379 (8)
O2—C91.263 (5)C35—H350.9500
O3—C221.263 (5)C36—H360.9500
O4—C241.270 (5)C37—H37A0.9800
C1—F11.336 (5)C37—H37B0.9800
C1—C21.375 (7)C37—H37C0.9800
C1—C61.391 (7)C38—H38A0.9800
C2—F21.336 (6)C38—H38B0.9800
C2—C31.371 (7)C38—H38C0.9800
C3—F31.333 (5)C39—C401.374 (8)
C3—C41.383 (8)C39—C441.399 (8)
C4—F41.337 (6)C39—C451.502 (8)
C4—C51.372 (7)C40—C411.375 (8)
C5—F51.349 (6)C40—H400.9500
C5—C61.383 (6)C41—C421.370 (7)
C6—C71.505 (6)C41—H410.9500
C7—C81.390 (6)C42—C431.396 (8)
C8—C91.399 (6)C42—C461.519 (7)
C8—H80.9500C43—C441.395 (8)
C9—C101.508 (7)C43—H430.9500
C10—C151.375 (7)C44—H440.9500
C10—C111.390 (7)C45—H45A0.9800
C11—F61.332 (6)C45—H45B0.9800
C11—C121.375 (7)C45—H45C0.9800
C12—F71.336 (6)C46—H46A0.9800
C12—C131.358 (8)C46—H46B0.9800
C13—F81.352 (6)C46—H46C0.9800
C13—C141.375 (8)C47—C481.382 (7)
C14—F91.346 (6)C47—C521.399 (8)
C14—C151.377 (7)C47—C531.491 (8)
C15—F101.340 (6)C48—C491.375 (8)
C16—F111.336 (5)C48—H480.9500
C16—C171.379 (7)C49—C501.394 (8)
C16—C211.388 (7)C49—H490.9500
C17—F121.344 (6)C50—C511.384 (7)
C17—C181.362 (7)C50—C541.507 (8)
C18—F131.343 (5)C51—C521.381 (8)
C18—C191.374 (8)C51—H510.9500
C19—F141.340 (5)C52—H520.9500
C19—C201.388 (7)C53—H53A0.9800
C20—F151.336 (5)C53—H53B0.9800
C20—C211.388 (6)C53—H53C0.9800
C21—C221.496 (6)C54—H54A0.9800
C22—C231.400 (6)C54—H54B0.9800
C23—C241.386 (6)C54—H54C0.9800
C23—H230.9500C55—C561.390 (7)
C24—C251.505 (7)C55—C601.391 (7)
C25—C301.376 (7)C55—C611.504 (7)
C25—C261.378 (7)C56—C571.396 (7)
C26—F161.348 (5)C56—H560.9500
C26—C271.379 (7)C57—C581.390 (8)
C27—F171.340 (6)C57—H570.9500
C27—C281.375 (8)C58—C591.379 (7)
C28—F181.337 (6)C58—C621.527 (8)
C28—C291.365 (8)C59—C601.391 (8)
C29—F191.340 (6)C59—H590.9500
C29—C301.377 (7)C60—H600.9500
C30—F201.346 (6)C61—H61A0.9800
C31—C321.376 (8)C61—H61B0.9800
C31—C361.410 (7)C61—H61C0.9800
C31—C371.490 (8)C62—H62A0.9800
C32—C331.368 (8)C62—H62B0.9800
C32—H320.9500C62—H62C0.9800
O3—Cu1—O286.38 (14)C33—C34—C38121.7 (5)
O3—Cu1—O1179.80 (19)C35—C34—C38121.6 (5)
O2—Cu1—O193.42 (13)C36—C35—C34121.7 (6)
O3—Cu1—O493.40 (14)C36—C35—H35119.2
O2—Cu1—O4179.57 (18)C34—C35—H35119.2
O1—Cu1—O486.80 (13)C35—C36—C31120.3 (6)
C7—O1—Cu1125.0 (3)C35—C36—H36119.8
C9—O2—Cu1125.0 (3)C31—C36—H36119.8
C22—O3—Cu1126.0 (3)C31—C37—H37A109.5
C24—O4—Cu1124.9 (3)C31—C37—H37B109.5
F1—C1—C2117.5 (5)H37A—C37—H37B109.5
F1—C1—C6119.6 (4)C31—C37—H37C109.5
C2—C1—C6122.7 (4)H37A—C37—H37C109.5
F2—C2—C3119.9 (4)H37B—C37—H37C109.5
F2—C2—C1120.4 (5)C34—C38—H38A109.5
C3—C2—C1119.6 (5)C34—C38—H38B109.5
F3—C3—C2120.5 (5)H38A—C38—H38B109.5
F3—C3—C4119.9 (5)C34—C38—H38C109.5
C2—C3—C4119.6 (4)H38A—C38—H38C109.5
F4—C4—C5121.4 (5)H38B—C38—H38C109.5
F4—C4—C3119.2 (4)C40—C39—C44117.7 (6)
C5—C4—C3119.4 (5)C40—C39—C45120.7 (5)
F5—C5—C4117.0 (4)C44—C39—C45121.7 (6)
F5—C5—C6120.0 (4)C39—C40—C41121.8 (5)
C4—C5—C6123.1 (5)C39—C40—H40119.1
C5—C6—C1115.6 (4)C41—C40—H40119.1
C5—C6—C7123.1 (4)C42—C41—C40121.8 (5)
C1—C6—C7121.2 (4)C42—C41—H41119.1
O1—C7—C8126.8 (4)C40—C41—H41119.1
O1—C7—C6114.3 (4)C41—C42—C43117.3 (5)
C8—C7—C6118.8 (4)C41—C42—C46121.6 (5)
C7—C8—C9122.0 (4)C43—C42—C46121.2 (5)
C7—C8—H8119.0C44—C43—C42121.4 (5)
C9—C8—H8119.0C44—C43—H43119.3
O2—C9—C8127.0 (5)C42—C43—H43119.3
O2—C9—C10115.1 (4)C43—C44—C39120.0 (5)
C8—C9—C10117.9 (4)C43—C44—H44120.0
C15—C10—C11117.3 (5)C39—C44—H44120.0
C15—C10—C9121.6 (5)C39—C45—H45A109.5
C11—C10—C9121.0 (5)C39—C45—H45B109.5
F6—C11—C12118.9 (5)H45A—C45—H45B109.5
F6—C11—C10119.6 (4)C39—C45—H45C109.5
C12—C11—C10121.5 (5)H45A—C45—H45C109.5
F7—C12—C13120.3 (5)H45B—C45—H45C109.5
F7—C12—C11120.1 (5)C42—C46—H46A109.5
C13—C12—C11119.6 (5)C42—C46—H46B109.5
F8—C13—C12120.6 (5)H46A—C46—H46B109.5
F8—C13—C14118.8 (5)C42—C46—H46C109.5
C12—C13—C14120.6 (5)H46A—C46—H46C109.5
F9—C14—C13119.9 (5)H46B—C46—H46C109.5
F9—C14—C15120.9 (5)C48—C47—C52116.9 (5)
C13—C14—C15119.3 (5)C48—C47—C53121.8 (6)
F10—C15—C10120.1 (4)C52—C47—C53121.3 (5)
F10—C15—C14118.1 (5)C49—C48—C47122.2 (5)
C10—C15—C14121.7 (5)C49—C48—H48118.9
F11—C16—C17117.7 (5)C47—C48—H48118.9
F11—C16—C21120.3 (4)C48—C49—C50121.1 (5)
C17—C16—C21122.0 (5)C48—C49—H49119.5
F12—C17—C18120.1 (4)C50—C49—H49119.5
F12—C17—C16119.9 (5)C51—C50—C49117.0 (5)
C18—C17—C16119.9 (5)C51—C50—C54121.2 (5)
F13—C18—C17120.2 (5)C49—C50—C54121.8 (5)
F13—C18—C19119.5 (5)C52—C51—C50121.9 (5)
C17—C18—C19120.3 (4)C52—C51—H51119.0
F14—C19—C18120.6 (4)C50—C51—H51119.0
F14—C19—C20120.0 (5)C51—C52—C47120.9 (5)
C18—C19—C20119.5 (5)C51—C52—H52119.6
F15—C20—C19117.5 (4)C47—C52—H52119.6
F15—C20—C21120.9 (4)C47—C53—H53A109.5
C19—C20—C21121.7 (5)C47—C53—H53B109.5
C16—C21—C20116.7 (4)H53A—C53—H53B109.5
C16—C21—C22120.4 (4)C47—C53—H53C109.5
C20—C21—C22122.8 (4)H53A—C53—H53C109.5
O3—C22—C23125.7 (4)H53B—C53—H53C109.5
O3—C22—C21115.3 (4)C50—C54—H54A109.5
C23—C22—C21119.0 (4)C50—C54—H54B109.5
C24—C23—C22123.1 (4)H54A—C54—H54B109.5
C24—C23—H23118.5C50—C54—H54C109.5
C22—C23—H23118.5H54A—C54—H54C109.5
O4—C24—C23126.7 (5)H54B—C54—H54C109.5
O4—C24—C25114.6 (4)C56—C55—C60118.2 (5)
C23—C24—C25118.7 (4)C56—C55—C61120.4 (5)
C30—C25—C26116.3 (5)C60—C55—C61121.4 (5)
C30—C25—C24122.0 (5)C55—C56—C57120.7 (5)
C26—C25—C24121.6 (5)C55—C56—H56119.6
F16—C26—C25120.1 (4)C57—C56—H56119.6
F16—C26—C27117.4 (4)C58—C57—C56120.9 (5)
C25—C26—C27122.5 (5)C58—C57—H57119.6
F17—C27—C28120.0 (5)C56—C57—H57119.6
F17—C27—C26120.6 (5)C59—C58—C57118.0 (5)
C28—C27—C26119.4 (5)C59—C58—C62121.5 (5)
F18—C28—C29120.4 (5)C57—C58—C62120.4 (5)
F18—C28—C27120.0 (5)C58—C59—C60121.6 (5)
C29—C28—C27119.6 (5)C58—C59—H59119.2
F19—C29—C28119.7 (5)C60—C59—H59119.2
F19—C29—C30120.4 (5)C59—C60—C55120.5 (5)
C28—C29—C30119.9 (5)C59—C60—H60119.7
F20—C30—C25119.8 (5)C55—C60—H60119.7
F20—C30—C29117.9 (5)C55—C61—H61A109.5
C25—C30—C29122.3 (5)C55—C61—H61B109.5
C32—C31—C36117.4 (6)H61A—C61—H61B109.5
C32—C31—C37122.0 (5)C55—C61—H61C109.5
C36—C31—C37120.5 (5)H61A—C61—H61C109.5
C33—C32—C31122.0 (5)H61B—C61—H61C109.5
C33—C32—H32119.0C58—C62—H62A109.5
C31—C32—H32119.0C58—C62—H62B109.5
C32—C33—C34121.8 (6)H62A—C62—H62B109.5
C32—C33—H33119.1C58—C62—H62C109.5
C34—C33—H33119.1H62A—C62—H62C109.5
C33—C34—C35116.7 (6)H62B—C62—H62C109.5
F1—C1—C2—F21.6 (7)F15—C20—C21—C16179.3 (4)
C6—C1—C2—F2176.8 (5)C19—C20—C21—C161.8 (7)
F1—C1—C2—C3178.2 (5)F15—C20—C21—C222.6 (7)
C6—C1—C2—C33.0 (8)C19—C20—C21—C22176.2 (5)
F2—C2—C3—F30.5 (7)Cu1—O3—C22—C230.1 (7)
C1—C2—C3—F3179.3 (5)Cu1—O3—C22—C21179.1 (3)
F2—C2—C3—C4176.9 (5)C16—C21—C22—O343.8 (6)
C1—C2—C3—C42.9 (8)C20—C21—C22—O3134.2 (5)
F3—C3—C4—F40.7 (7)C16—C21—C22—C23136.9 (5)
C2—C3—C4—F4177.1 (5)C20—C21—C22—C2345.1 (7)
F3—C3—C4—C5177.7 (5)O3—C22—C23—C243.2 (8)
C2—C3—C4—C51.3 (8)C21—C22—C23—C24176.1 (4)
F4—C4—C5—F51.7 (7)Cu1—O4—C24—C234.9 (7)
C3—C4—C5—F5179.9 (5)Cu1—O4—C24—C25177.3 (3)
F4—C4—C5—C6178.7 (5)C22—C23—C24—O40.4 (8)
C3—C4—C5—C60.2 (8)C22—C23—C24—C25177.4 (4)
F5—C5—C6—C1179.8 (4)O4—C24—C25—C30128.2 (5)
C4—C5—C6—C10.2 (7)C23—C24—C25—C3053.7 (6)
F5—C5—C6—C72.4 (7)O4—C24—C25—C2650.7 (6)
C4—C5—C6—C7177.2 (5)C23—C24—C25—C26127.3 (5)
F1—C1—C6—C5176.6 (4)C30—C25—C26—F16179.3 (4)
C2—C1—C6—C51.5 (7)C24—C25—C26—F161.7 (6)
F1—C1—C6—C76.0 (7)C30—C25—C26—C270.4 (6)
C2—C1—C6—C7178.9 (5)C24—C25—C26—C27178.6 (4)
Cu1—O1—C7—C80.8 (7)F16—C26—C27—F170.7 (6)
Cu1—O1—C7—C6179.3 (3)C25—C26—C27—F17179.0 (4)
C5—C6—C7—O1134.0 (5)F16—C26—C27—C28179.4 (4)
C1—C6—C7—O143.3 (6)C25—C26—C27—C280.9 (7)
C5—C6—C7—C846.1 (7)F17—C27—C28—F181.2 (7)
C1—C6—C7—C8136.6 (5)C26—C27—C28—F18178.8 (4)
O1—C7—C8—C96.4 (8)F17—C27—C28—C29178.6 (4)
C6—C7—C8—C9173.7 (4)C26—C27—C28—C291.4 (7)
Cu1—O2—C9—C85.0 (7)F18—C28—C29—F190.0 (7)
Cu1—O2—C9—C10174.2 (3)C27—C28—C29—F19179.8 (4)
C7—C8—C9—O23.2 (8)F18—C28—C29—C30179.7 (4)
C7—C8—C9—C10177.7 (4)C27—C28—C29—C300.5 (7)
O2—C9—C10—C15108.7 (5)C26—C25—C30—F20179.6 (4)
C8—C9—C10—C1570.5 (6)C24—C25—C30—F200.6 (6)
O2—C9—C10—C1168.1 (5)C26—C25—C30—C291.3 (7)
C8—C9—C10—C11112.7 (5)C24—C25—C30—C29177.8 (4)
C15—C10—C11—F6179.3 (4)F19—C29—C30—F200.4 (7)
C9—C10—C11—F63.8 (6)C28—C29—C30—F20179.3 (4)
C15—C10—C11—C120.5 (7)F19—C29—C30—C25178.9 (4)
C9—C10—C11—C12177.5 (4)C28—C29—C30—C250.8 (8)
F6—C11—C12—F71.2 (7)C36—C31—C32—C331.3 (7)
C10—C11—C12—F7179.9 (4)C37—C31—C32—C33179.9 (5)
F6—C11—C12—C13179.6 (4)C31—C32—C33—C340.6 (8)
C10—C11—C12—C131.7 (7)C32—C33—C34—C350.1 (7)
F7—C12—C13—F80.4 (7)C32—C33—C34—C38179.1 (5)
C11—C12—C13—F8178.8 (4)C33—C34—C35—C360.0 (7)
F7—C12—C13—C14179.7 (5)C38—C34—C35—C36179.0 (5)
C11—C12—C13—C141.4 (7)C34—C35—C36—C310.8 (8)
F8—C13—C14—F90.7 (7)C32—C31—C36—C351.4 (7)
C12—C13—C14—F9179.5 (4)C37—C31—C36—C35180.0 (5)
F8—C13—C14—C15179.7 (4)C44—C39—C40—C410.1 (7)
C12—C13—C14—C150.1 (7)C45—C39—C40—C41179.0 (5)
C11—C10—C15—F10178.5 (4)C39—C40—C41—C420.7 (8)
C9—C10—C15—F101.6 (6)C40—C41—C42—C430.3 (7)
C11—C10—C15—C141.0 (7)C40—C41—C42—C46179.5 (5)
C9—C10—C15—C14175.9 (4)C41—C42—C43—C440.8 (7)
F9—C14—C15—F100.7 (7)C46—C42—C43—C44179.4 (5)
C13—C14—C15—F10178.9 (4)C42—C43—C44—C391.6 (7)
F9—C14—C15—C10178.3 (4)C40—C39—C44—C431.2 (7)
C13—C14—C15—C101.3 (7)C45—C39—C44—C43179.9 (5)
F11—C16—C17—F121.6 (7)C52—C47—C48—C490.2 (8)
C21—C16—C17—F12176.3 (5)C53—C47—C48—C49179.1 (5)
F11—C16—C17—C18177.5 (5)C47—C48—C49—C500.6 (9)
C21—C16—C17—C180.4 (7)C48—C49—C50—C510.7 (8)
F12—C17—C18—F132.6 (7)C48—C49—C50—C54177.0 (5)
C16—C17—C18—F13178.5 (5)C49—C50—C51—C520.2 (8)
F12—C17—C18—C19175.5 (5)C54—C50—C51—C52177.6 (5)
C16—C17—C18—C190.3 (7)C50—C51—C52—C470.6 (8)
F13—C18—C19—F140.8 (8)C48—C47—C52—C510.7 (8)
C17—C18—C19—F14178.9 (5)C53—C47—C52—C51178.5 (5)
F13—C18—C19—C20178.1 (4)C60—C55—C56—C570.7 (7)
C17—C18—C19—C200.0 (8)C61—C55—C56—C57178.8 (5)
F14—C19—C20—F151.0 (7)C55—C56—C57—C580.4 (8)
C18—C19—C20—F15180.0 (5)C56—C57—C58—C590.5 (8)
F14—C19—C20—C21179.9 (5)C56—C57—C58—C62179.6 (5)
C18—C19—C20—C211.1 (8)C57—C58—C59—C601.0 (8)
F11—C16—C21—C20176.4 (4)C62—C58—C59—C60179.9 (5)
C17—C16—C21—C201.5 (7)C58—C59—C60—C551.3 (9)
F11—C16—C21—C225.5 (7)C56—C55—C60—C591.1 (8)
C17—C16—C21—C22176.6 (4)C61—C55—C60—C59178.4 (5)

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Cu(C15HF10O2)2]·C8H10[Cu(C15HF10O2)2]·2C8H10[Cu(C15HF10O2)2]·4C8H10
Mr976.031082.191294.49
Crystal system, space groupOrthorhombic, PbcaTriclinic, P1Monoclinic, Pn
Temperature (K)120120100
a, b, c (Å)11.1299 (10), 13.1194 (12), 23.797 (2)7.5688 (4), 11.8976 (6), 12.2578 (6)13.8034 (16), 14.2545 (17), 14.9313 (17)
α, β, γ (°)90, 90, 9090.7758 (5), 99.1187 (5), 105.8474 (5)90, 108.0612 (13), 90
V3)3474.7 (5)1046.57 (9)2793.1 (6)
Z412
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.780.660.51
Crystal size (mm)0.40 × 0.25 × 0.050.40 × 0.40 × 0.200.22 × 0.15 × 0.10
Data collection
DiffractometerBruker D8 goniometer
diffractometer
Bruker D8 goniometer
diffractometer
Bruker D8 goniometer
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Multi-scan
(SADABS; Bruker, 2013)
Multi-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.85, 0.960.81, 0.880.91, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
18319, 3967, 3079 12038, 4714, 4520 31741, 12693, 10311
Rint0.0320.0180.034
(sin θ/λ)max1)0.6490.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.02 0.027, 0.074, 1.03 0.040, 0.093, 1.03
No. of reflections3967471412693
No. of parameters287324793
No. of restraints002
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.510.35, 0.500.37, 0.39
Absolute structure??Refined as an inversion twin; 6303 Bijvoet pairs (Parsons et al., 2013)
Absolute structure parameter??0.494 (13)

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2013), SHELXTL (Sheldrick, 2008), Generate Report (Bruker, 2013).

Comparison of selected bond lengths (Å) in (I)–(III) top
(I)(II)(III)
Cu1—O11.9224 (12)1.9219 (9)1.921 (3)
Cu1—O21.9073 (13)1.9061 (9)1.917 (3)
Cu1–O31.913 (3)
Cu1–O41.921 (3)
C7—O11.274 (2)1.2671 (16)1.271 (5)
C9—O21.271 (2)1.2670 (16)1.263 (5)
C22–O31.263 (5)
C24–O41.270 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds