Download citation
Download citation
link to html
Bis(4-picoline-[kappa]N)gold(I) di­bromido­aurate(I), [Au(C6H7N)2][AuBr2], (I), crystallizes in the monoclinic space group P21/n, with two half cations and one general anion in the asymmetric unit. The cations, located on centres of inversion, assemble to form chains parallel to the a axis, but there are no significant contacts between the cations. Cohesion is provided by flanking anions, which are connected to the cations by short Au...Au contacts and C-H...Br hydrogen bonds, and to each other by Br...Br contacts. The corresponding chloride derivative, [Au(C6H7N)2][AuCl2], (II), is isotypic. A previous structure determination of (II), reported in the space group P\overline{1} with very similar axis lengths to those of (I) [Lin et al. (2008). Inorg. Chem. 47, 2543-2551], might be identical to the structure presented here, except that its [gamma] angle of 88.79 (7)° seems to rule out a monoclinic cell. No phase transformation of (II) could be detected on the basis of data sets recorded at 100, 200 and 295 K.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113015047/sk3492sup1.cif
Contains datablocks I, II_100K, II_295K, II_200K, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113015047/sk3492Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113015047/sk3492II_100Ksup3.hkl
Contains datablock II_100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113015047/sk3492II_295Ksup4.hkl
Contains datablock II_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113015047/sk3492II_200Ksup5.hkl
Contains datablock II_200K

CCDC references: 956978; 956979; 956980; 956981

Comment top

Complexes of gold(I) halides with pyridines, picolines and lutidines L are generally of the form (L2Au)+.(AuX2)-, whereby the ions are linked by Au···Au contacts to form finite or infinite chains. The pioneering work on these complexes was performed by Strähle and co-workers (see e.g. Adams et al., 1982; Conzelmann et al., 1984). However, the complex (2-picoline)AuCl is molecular (Jones & Ahrens, 1998).

We are interested in amine complexes of gold (Döring & Jones, 2013a, and references therein) and have recently begun to study amine complexes of gold(I) bromide (Döring & Jones, 2013b). We began by determining the structure of the 4-picoline complex of AuBr, (I), which adopts the usual ionic form. A comparison with the structure of the analogous chloro derivative, (II) (Lin et al., 2008), revealed some apparent inconsistencies, which led us to redetermine the latter structure.

Compound (I) crystallizes in space group P21/n with Z = 4. The asymmetric unit contains two half cations, in which the Au atoms occupy inversion centres, and a complete anion (Fig. 1). Fig. 2 shows the packing of the various ions. The cations assemble to form chains parallel to the a axis; the cations based on Au1 and Au3 occupy alternate positions, and the N—Au—N vectors are perpendicular to the chain direction. The Au1···Au3 distances within the chain are, at 4.1243 (2) Å, too long to represent significant aurophilic interactions.

The cations centred on Au1 are flanked by the anions via a short contact Au1···Au2 = 3.1796 (2) Å. Further support for the chain is provided by four `weak' hydrogen bonds of C—H···Br type (Table 2) involving the ortho H atoms of the picoline ligands. We have previously drawn attention to the importance of such interactions in the packing of bis(3-bromopyridine)gold(I) dichloroaurate(I) (Freytag & Jones, 2000), and thus in general for other gold complexes with pyridine-type ligands. Fig. 2 also shows the short Br···Br contacts of 3.5098 (7) Å between neighbouring anions. These are the shortest known between AuBr2- anions, the previous shortest according to a search of the Cambridge Structural Database (CSD, Version?; Allen, 2002) being 3.677 Å in a tetrathiafulvalene charge-transfer complex (Beno et al., 1990), but they are probably too linear [Au—Br···Br = 173.53 (2) and 170.55 (2)°] to be regarded as significant stabilizing interactions (Pedireddi et al., 1994). Similarly, Au3···Br contacts of 3.6–3.7 Å are also probably too long to be significant, and are not shown in Fig. 2.

The structure of (II), as published by Lin et al. (2008), was reported in space group P1 with cell constants (at room temperature) a = 8.121 (8), b = 9.827 (7) and c = 19.982 (7) Å, α = 89.72 (4), β = 82.21 (4) and γ = 88.79 (7), and Z = 4 (four independent cations with inversion symmetry and two independent anions on general positions). General features of the packing were closely analogous to those of (I). In general, analogous chloro and bromo derivatives may well be isotypic. The general similarity of the cell of (II) to that of (I) is clear, if the complementary angle for β is used, but the value of γ seems to rule out a monoclinic setting for (II). We therefore decided to redetermine the structure of (II) at low temperature.

The structure of (II) at 100 K is shown in Fig. 3. Compounds (I) and (II) are indeed isotypic at 100 K. There are significant shifts in the cell constants, especially β, but the coordinates of (I) can be used as a starting point for the refinement of (II) and vice versa. Details of C—H···Cl hydrogen bonds within the chains are given in Table 3. Further borderline contacts between chains, not observed for the bromo derivative, are given in the Supplementary Materials. Contact distances: Au1···Au2 = 3.1874 (2), Au1···Au3 = 3.9524 (2) and Cl1···Cl2 between anions = 3.4128 (14) Å. A database search revealed no other structures with short Cl···Cl contacts between AuCl2- anions. No separate packing diagram is presented because of the close similarity to the packing of (I).

If the structure of (II) is indeed monoclinic at 100 K but triclinic at room temperature, presumably a phase transition must take place somewhere between these two temperatures. We therefore remeasured the structure at 200 and 295 K. However, the monoclinic cell remained essentially unchanged, apart from slight changes in cell constants, especially the β angle [at 200 K, a = 7.9579 (4), b = 9.6670 (5) and c = 19.9987 (9) Å, β = 98.250 (5)° and V = 1522.55 (13) Å3; at 295 K, a = 8.0221 (7), b = 9.7523 (6) and c = 19.9889 (19) Å, β = 97.552 (6)° and V = 1550.26 (18) Å3], corresponding to the expected increase in cell volume with temperature. In particular, there was no evidence for a significant deviation of α or γ from 90°. Details of these structures are contained in the deposited CIF files.

Finally, we used the deposited structure of (II) (Lin et al., 2008) to calculate structure factors (using the program XPREP, which forms part of the SHELX suite; Sheldrick, 2008). The same program was then used to check for higher symmetry, increasing the angle tolerance to 2°. The program chose a monoclinic cell [space group P21/n, same axes, α = 89.72, β = 97.79 and γ = 91.21°, matrix 1 0 0 / 0 1 0 / 0 0 1] with an R(int) value of 0.02, and the intensity data thus transformed could be used to refine our structure of (II) with a simulated R value of essentially zero. It therefore seems possible that the two structures are identical, and that errors in the apparent values for the α and γ angles may have led to the false assumption of triclinic symmetry for (II). Clearly, the crystal quality was only moderate, in view of the reported wR2 value of 0.218. We too were once misled in one such case when the preliminary cell from a poor-quality crystal had an angle just greater than 91°; the program decided on a triclinic cell and, in the pre-CheckCIF era, we carelessly failed to check this assumption, leading to the publication of a structure in an incorrect space group (Ahrens et al., 2000; CSD refcode DUHQUS, later corrected as DUHQUS01, space group C2/c). However, we cannot with total certainty rule out the coexistence of two closely similar structures, one triclinic and one monoclinic. The powder patterns would be almost identical, and the compound is not especially stable, so extensive attempts to interconvert putative polymorphs would probably be unsuccessful.

We contacted the starred author of the previous report but he was unable to comment for health reasons.

Related literature top

For related literature, see: Adams et al. (1982); Ahrens et al. (2000); Allen (2002); Beno et al. (1990); Conzelmann et al. (1984); Döring & Jones (2013a, 2013b); Freytag & Jones (2000); Jones & Ahrens (1998); Lin et al. (2008); Pedireddi et al. (1994); Sheldrick (2008).

Experimental top

Compounds (I) (II) were obtained by reaction of 4-picoline with (tht)AuX (tht = tetrahydrothiophene and X = Br or Cl) [Please give quantities or mole ratios]. Overlayering the solutions with diethyl ether (X = Br) or petroleum ether (X = Cl) provided single crystals.

Refinement top

Methyl groups were refined as idealized rigid groups allowed to rotate but not tip, with C—H = 0.98 Å and H—C—H = 109.5°, and with Uiso(H) = 1.5Ueq(C). Other H atoms were refined using a riding model starting from calculated positions, with aromatic C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). The methyl H atoms of the room-temperature structure were indistinct.

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the ??% probability level. [Please complete] Both cations have been extended by symmetry over the relevant inversion centres Two methyl H atoms on the extreme left are eclipsed. No secondary interactions (see text) are shown.
[Figure 2] Fig. 2. A packing diagram for (I), showing a chain of ions parallel to the a axis. Ortho H atoms are retained. Dashed lines represent various types of interionic contact (see text). C—H···Br hydrogen bonds are numbered according to their order in Table 2.
[Figure 3] Fig. 3. The structure of (II) at 100 K, with the atom-numbering scheme. Displacement ellipsoids are drawn at the ??% probability level. [Please complete] Both cations have been extended by symmetry over the relevant inversion centres No secondary interactions (see text) are shown.
(I) Bis(4-picoline-κN)gold(I) dibromidoaurate(I) top
Crystal data top
[Au(C6H7N)2][AuBr2]F(000) = 1312
Mr = 740.01Dx = 3.103 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12461 reflections
a = 8.2485 (3) Åθ = 2.6–30.3°
b = 9.7291 (3) ŵ = 23.53 mm1
c = 19.8055 (6) ÅT = 100 K
β = 94.737 (3)°Hexagonal tablet, colourless
V = 1583.97 (9) Å30.15 × 0.08 × 0.05 mm
Z = 4
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
4090 independent reflections
Radiation source: Enhance (Mo) X-ray Source3452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 16.1419 pixels mm-1θmax = 28.7°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1313
Tmin = 0.282, Tmax = 1.000l = 2626
78671 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0176P)2 + 2.0928P]
where P = (Fo2 + 2Fc2)/3
4090 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 1.37 e Å3
Crystal data top
[Au(C6H7N)2][AuBr2]V = 1583.97 (9) Å3
Mr = 740.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2485 (3) ŵ = 23.53 mm1
b = 9.7291 (3) ÅT = 100 K
c = 19.8055 (6) Å0.15 × 0.08 × 0.05 mm
β = 94.737 (3)°
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
4090 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3452 reflections with I > 2σ(I)
Tmin = 0.282, Tmax = 1.000Rint = 0.072
78671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.08Δρmax = 1.10 e Å3
4090 reflectionsΔρmin = 1.37 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.00000.50000.00000.01804 (6)
Au20.01325 (2)0.730233 (17)0.114269 (9)0.01520 (5)
Au30.50000.50000.00000.03044 (8)
Br10.30111 (6)0.73618 (5)0.11015 (2)0.02044 (10)
Br20.27195 (6)0.73941 (5)0.12396 (2)0.02214 (11)
N110.0267 (5)0.3507 (4)0.07140 (19)0.0168 (8)
C120.1275 (6)0.3670 (5)0.1275 (2)0.0197 (10)
H120.19040.44870.13270.024*
C130.1426 (6)0.2683 (5)0.1780 (2)0.0205 (10)
H130.21330.28400.21760.025*
C140.0551 (6)0.1468 (5)0.1711 (2)0.0197 (10)
C150.0461 (6)0.1301 (5)0.1126 (2)0.0224 (11)
H150.10770.04800.10600.027*
C160.0588 (6)0.2317 (5)0.0636 (2)0.0211 (10)
H160.12880.21790.02360.025*
C170.0678 (7)0.0406 (5)0.2258 (3)0.0325 (13)
H17A0.00380.04030.21090.049*
H17B0.02600.07840.26680.049*
H17C0.18200.01420.23560.049*
N210.5229 (6)0.3462 (4)0.0686 (2)0.0266 (10)
C220.4648 (7)0.2191 (5)0.0534 (3)0.0289 (12)
H220.41560.20130.00920.035*
C230.4752 (6)0.1142 (5)0.1008 (2)0.0244 (11)
H230.43310.02590.08870.029*
C240.5455 (6)0.1366 (5)0.1650 (2)0.0215 (11)
C250.6075 (7)0.2671 (5)0.1800 (3)0.0256 (11)
H250.65860.28590.22380.031*
C260.5950 (7)0.3689 (5)0.1317 (3)0.0278 (12)
H260.63800.45740.14270.033*
C270.5548 (7)0.0271 (5)0.2185 (3)0.0288 (12)
H27A0.48880.05190.20250.043*
H27B0.51350.06360.25990.043*
H27C0.66820.00180.22810.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02986 (15)0.01182 (11)0.01237 (12)0.00069 (10)0.00133 (10)0.00101 (9)
Au20.01685 (9)0.01383 (8)0.01463 (8)0.00144 (7)0.00049 (6)0.00024 (7)
Au30.0595 (2)0.01621 (13)0.01688 (14)0.00243 (13)0.01097 (13)0.00097 (10)
Br10.0165 (2)0.0222 (2)0.0224 (2)0.00326 (18)0.00048 (18)0.00025 (18)
Br20.0165 (2)0.0252 (3)0.0244 (3)0.00093 (19)0.0002 (2)0.00162 (19)
N110.026 (2)0.0121 (18)0.0123 (19)0.0002 (16)0.0033 (16)0.0018 (14)
C120.027 (3)0.012 (2)0.020 (2)0.0009 (19)0.001 (2)0.0011 (18)
C130.026 (3)0.015 (2)0.019 (2)0.0005 (19)0.005 (2)0.0025 (18)
C140.028 (3)0.018 (2)0.013 (2)0.004 (2)0.002 (2)0.0018 (17)
C150.031 (3)0.015 (2)0.022 (3)0.007 (2)0.003 (2)0.0007 (18)
C160.027 (3)0.019 (2)0.016 (2)0.004 (2)0.001 (2)0.0025 (18)
C170.054 (4)0.019 (3)0.024 (3)0.007 (2)0.006 (3)0.008 (2)
N210.049 (3)0.015 (2)0.018 (2)0.0018 (19)0.012 (2)0.0013 (16)
C220.043 (3)0.022 (3)0.022 (3)0.001 (2)0.005 (2)0.003 (2)
C230.038 (3)0.014 (2)0.020 (3)0.004 (2)0.001 (2)0.0052 (18)
C240.032 (3)0.014 (2)0.020 (2)0.004 (2)0.007 (2)0.0033 (18)
C250.042 (3)0.020 (2)0.015 (2)0.001 (2)0.002 (2)0.0025 (19)
C260.044 (3)0.022 (3)0.018 (3)0.003 (2)0.005 (2)0.005 (2)
C270.042 (3)0.020 (3)0.024 (3)0.000 (2)0.001 (2)0.000 (2)
Geometric parameters (Å, º) top
Au1—N112.027 (4)C23—C241.370 (7)
Au1—N11i2.027 (4)C24—C251.391 (7)
Au1—Au2i3.1796 (2)C24—C271.500 (6)
Au1—Au23.1797 (2)C25—C261.376 (7)
Au2—Br22.3777 (5)C12—H120.9500
Au2—Br12.3833 (5)C13—H130.9500
Au3—N212.019 (4)C15—H150.9500
Au3—N21ii2.019 (4)C16—H160.9500
N11—C121.341 (6)C17—H17A0.9800
N11—C161.357 (6)C17—H17B0.9800
C12—C131.385 (6)C17—H17C0.9800
C13—C141.385 (6)C22—H220.9500
C14—C151.381 (7)C23—H230.9500
C14—C171.494 (6)C25—H250.9500
C15—C161.383 (6)C26—H260.9500
N21—C221.351 (6)C27—H27A0.9800
N21—C261.356 (6)C27—H27B0.9800
C22—C231.385 (7)C27—H27C0.9800
N11—Au1—N11i180.0N21—C26—C25121.8 (5)
N11—Au1—Au2i89.25 (10)N11—C12—H12119.1
N11i—Au1—Au2i90.75 (10)C13—C12—H12119.1
N11—Au1—Au290.75 (10)C12—C13—H13119.8
N11i—Au1—Au289.25 (10)C14—C13—H13119.8
Au2i—Au1—Au2180.0C14—C15—H15119.7
Br2—Au2—Br1175.569 (18)C16—C15—H15119.7
Br2—Au2—Au196.191 (13)N11—C16—H16119.3
Br1—Au2—Au188.194 (13)C15—C16—H16119.3
N21—Au3—N21ii180.0C14—C17—H17A109.5
C12—N11—C16118.5 (4)C14—C17—H17B109.5
C12—N11—Au1121.1 (3)H17A—C17—H17B109.5
C16—N11—Au1120.4 (3)C14—C17—H17C109.5
N11—C12—C13121.9 (4)H17A—C17—H17C109.5
C12—C13—C14120.4 (4)H17B—C17—H17C109.5
C15—C14—C13117.2 (4)N21—C22—H22119.2
C15—C14—C17121.9 (4)C23—C22—H22119.2
C13—C14—C17120.9 (4)C24—C23—H23119.7
C14—C15—C16120.7 (4)C22—C23—H23119.7
N11—C16—C15121.4 (4)C26—C25—H25119.9
C22—N21—C26118.3 (4)C24—C25—H25119.9
C22—N21—Au3121.1 (4)N21—C26—H26119.1
C26—N21—Au3120.6 (3)C25—C26—H26119.1
N21—C22—C23121.5 (5)C24—C27—H27A109.5
C24—C23—C22120.7 (5)C24—C27—H27B109.5
C23—C24—C25117.6 (4)H27A—C27—H27B109.5
C23—C24—C27122.4 (4)C24—C27—H27C109.5
C25—C24—C27120.0 (5)H27A—C27—H27C109.5
C26—C25—C24120.2 (5)H27B—C27—H27C109.5
N11—Au1—Au2—Br291.17 (11)C17—C14—C15—C16178.3 (5)
N11i—Au1—Au2—Br288.84 (11)C12—N11—C16—C151.4 (7)
N11—Au1—Au2—Br189.47 (11)Au1—N11—C16—C15178.1 (4)
N11i—Au1—Au2—Br190.53 (11)C14—C15—C16—N110.3 (8)
Au2i—Au1—N11—C12140.7 (4)C26—N21—C22—C231.0 (8)
Au2—Au1—N11—C1239.3 (4)Au3—N21—C22—C23177.8 (4)
Au2i—Au1—N11—C1639.8 (3)N21—C22—C23—C240.1 (8)
Au2—Au1—N11—C16140.2 (3)C22—C23—C24—C250.9 (8)
C16—N11—C12—C132.0 (7)C22—C23—C24—C27178.1 (5)
Au1—N11—C12—C13177.5 (4)C23—C24—C25—C261.0 (8)
N11—C12—C13—C141.4 (7)C27—C24—C25—C26178.1 (5)
C12—C13—C14—C150.2 (7)C22—N21—C26—C251.0 (8)
C12—C13—C14—C17178.8 (5)Au3—N21—C26—C25177.9 (4)
C13—C14—C15—C160.3 (7)C24—C25—C26—N210.0 (8)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Br10.952.993.892 (5)160
C16—H16···Br1i0.952.943.847 (5)161
C22—H22···Br2i0.952.863.756 (5)158
C26—H26···Br2iii0.952.873.775 (5)159
Symmetry codes: (i) x, y+1, z; (iii) x+1, y, z.
(II_100K) Bis(4-picoline-κN)gold(I) dichloridoaurate(I) top
Crystal data top
[Au(C6H7N)2][AuCl2]F(000) = 1168
Mr = 651.09Dx = 2.886 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7483 reflections
a = 7.9048 (3) Åθ = 2.6–30.4°
b = 9.5597 (3) ŵ = 19.90 mm1
c = 20.1036 (7) ÅT = 100 K
β = 99.421 (4)°Block, colourless
V = 1498.68 (9) Å30.10 × 0.05 × 0.02 mm
Z = 4
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
3726 independent reflections
Radiation source: Enhance (Mo) X-ray Source3169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.4°
w scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1212
Tmin = 0.433, Tmax = 1.000l = 2626
37223 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0129P)2 + 0.7856P]
where P = (Fo2 + 2Fc2)/3
3726 reflections(Δ/σ)max = 0.004
168 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Au(C6H7N)2][AuCl2]V = 1498.68 (9) Å3
Mr = 651.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9048 (3) ŵ = 19.90 mm1
b = 9.5597 (3) ÅT = 100 K
c = 20.1036 (7) Å0.10 × 0.05 × 0.02 mm
β = 99.421 (4)°
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
3726 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3169 reflections with I > 2σ(I)
Tmin = 0.433, Tmax = 1.000Rint = 0.059
37223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.040H-atom parameters constrained
S = 1.04Δρmax = 0.86 e Å3
3726 reflectionsΔρmin = 0.92 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.00000.50000.00000.01521 (6)
Au20.01655 (2)0.725156 (17)0.117825 (9)0.01450 (5)
Au30.50000.50000.00000.02088 (6)
Cl10.29978 (14)0.72685 (12)0.11165 (6)0.0208 (2)
Cl20.26357 (14)0.73204 (12)0.12859 (6)0.0214 (2)
N110.0236 (4)0.3462 (4)0.06997 (18)0.0152 (8)
C120.1261 (5)0.3626 (4)0.1300 (2)0.0157 (9)
H120.19570.44390.13740.019*
C130.1332 (6)0.2651 (4)0.1809 (2)0.0178 (10)
H130.20530.28090.22290.021*
C140.0347 (5)0.1432 (4)0.1710 (2)0.0162 (9)
C150.0651 (5)0.1255 (5)0.1086 (2)0.0180 (10)
H150.13170.04290.09930.022*
C160.0690 (5)0.2272 (5)0.0593 (2)0.0172 (9)
H160.13880.21280.01670.021*
C170.0321 (6)0.0412 (5)0.2270 (2)0.0251 (11)
H17A0.07890.04620.24260.038*
H17B0.12390.06400.26440.038*
H17C0.04960.05350.21080.038*
N210.5169 (5)0.3414 (4)0.06687 (19)0.0203 (8)
C220.4513 (6)0.2142 (5)0.0486 (2)0.0210 (10)
H220.40150.19770.00300.025*
C230.4555 (6)0.1075 (5)0.0952 (2)0.0224 (10)
H230.40710.01930.08120.027*
C240.5287 (6)0.1267 (5)0.1621 (2)0.0173 (10)
C250.5994 (6)0.2572 (4)0.1792 (2)0.0178 (10)
H250.65400.27470.22420.021*
C260.5910 (6)0.3616 (5)0.1317 (2)0.0206 (10)
H260.63880.45060.14480.025*
C270.5290 (6)0.0145 (5)0.2140 (2)0.0228 (11)
H27A0.41110.00400.22070.034*
H27B0.59740.04510.25660.034*
H27C0.57880.07110.19850.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02321 (13)0.01053 (12)0.01154 (12)0.00073 (9)0.00179 (10)0.00109 (9)
Au20.01771 (8)0.01269 (8)0.01244 (8)0.00077 (7)0.00051 (6)0.00074 (7)
Au30.03403 (15)0.01536 (13)0.01342 (13)0.00216 (10)0.00437 (11)0.00088 (10)
Cl10.0170 (5)0.0239 (6)0.0207 (6)0.0024 (4)0.0006 (4)0.0004 (5)
Cl20.0183 (5)0.0261 (6)0.0197 (6)0.0003 (4)0.0026 (4)0.0024 (5)
N110.0199 (19)0.0111 (19)0.015 (2)0.0004 (14)0.0035 (16)0.0003 (15)
C120.018 (2)0.010 (2)0.018 (2)0.0014 (16)0.0005 (19)0.0041 (18)
C130.024 (2)0.014 (2)0.013 (2)0.0022 (18)0.0013 (19)0.0024 (19)
C140.020 (2)0.014 (2)0.016 (2)0.0028 (17)0.0065 (19)0.0021 (19)
C150.019 (2)0.015 (2)0.021 (3)0.0013 (18)0.005 (2)0.0010 (19)
C160.022 (2)0.015 (2)0.014 (2)0.0020 (19)0.0025 (18)0.0022 (19)
C170.034 (3)0.018 (2)0.022 (3)0.003 (2)0.001 (2)0.004 (2)
N210.029 (2)0.015 (2)0.017 (2)0.0011 (16)0.0029 (17)0.0006 (16)
C220.030 (3)0.017 (2)0.014 (2)0.001 (2)0.001 (2)0.005 (2)
C230.030 (3)0.016 (2)0.021 (3)0.003 (2)0.000 (2)0.001 (2)
C240.022 (2)0.016 (2)0.015 (2)0.0012 (18)0.0061 (19)0.0000 (19)
C250.022 (2)0.018 (3)0.013 (2)0.0011 (18)0.0008 (18)0.0024 (18)
C260.028 (3)0.017 (2)0.018 (3)0.0032 (19)0.007 (2)0.006 (2)
C270.032 (3)0.018 (3)0.017 (3)0.000 (2)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
Au1—N11i2.022 (4)C23—C241.385 (6)
Au1—N112.022 (4)C24—C251.388 (6)
Au1—Au23.1874 (2)C24—C271.496 (6)
Au1—Au2i3.1875 (2)C25—C261.376 (6)
Au2—Cl22.2608 (11)C12—H120.9500
Au2—Cl12.2626 (11)C13—H130.9500
Au3—N212.016 (4)C15—H150.9500
Au3—N21ii2.016 (4)C16—H160.9500
N11—C121.348 (5)C17—H17A0.9800
N11—C161.351 (5)C17—H17B0.9800
C12—C131.379 (6)C17—H17C0.9800
C13—C141.397 (6)C22—H220.9500
C14—C151.380 (6)C23—H230.9500
C14—C171.492 (6)C25—H250.9500
C15—C161.385 (6)C26—H260.9500
N21—C221.350 (6)C27—H27A0.9800
N21—C261.352 (6)C27—H27B0.9800
C22—C231.382 (6)C27—H27C0.9800
N11i—Au1—N11180.0N21—C26—C25122.0 (4)
N11i—Au1—Au290.79 (10)N11—C12—H12119.0
N11—Au1—Au289.21 (10)C13—C12—H12119.0
N11i—Au1—Au2i89.21 (10)C12—C13—H13119.9
N11—Au1—Au2i90.79 (10)C14—C13—H13119.9
Au2—Au1—Au2i180.0C14—C15—H15119.8
Cl2—Au2—Cl1176.89 (4)C16—C15—H15119.8
Cl2—Au2—Au199.73 (3)N11—C16—H16119.0
Cl1—Au2—Au183.38 (3)C15—C16—H16119.0
N21—Au3—N21ii180.0C14—C17—H17A109.5
C12—N11—C16118.1 (4)C14—C17—H17B109.5
C12—N11—Au1120.7 (3)H17A—C17—H17B109.5
C16—N11—Au1121.1 (3)C14—C17—H17C109.5
N11—C12—C13122.1 (4)H17A—C17—H17C109.5
C12—C13—C14120.3 (4)H17B—C17—H17C109.5
C15—C14—C13117.0 (4)N21—C22—H22119.5
C15—C14—C17122.0 (4)C23—C22—H22119.5
C13—C14—C17121.0 (4)C22—C23—H23119.3
C14—C15—C16120.4 (4)C24—C23—H23119.3
N11—C16—C15122.0 (4)C26—C25—H25119.7
C22—N21—C26118.5 (4)C24—C25—H25119.7
C22—N21—Au3121.0 (3)N21—C26—H26119.0
C26—N21—Au3120.4 (3)C25—C26—H26119.0
N21—C22—C23121.0 (4)C24—C27—H27A109.5
C22—C23—C24121.3 (4)C24—C27—H27B109.5
C23—C24—C25116.6 (4)H27A—C27—H27B109.5
C23—C24—C27122.3 (4)C24—C27—H27C109.5
C25—C24—C27121.1 (4)H27A—C27—H27C109.5
C26—C25—C24120.5 (4)H27B—C27—H27C109.5
N11i—Au1—Au2—Cl293.66 (10)C17—C14—C15—C16175.3 (4)
N11—Au1—Au2—Cl286.34 (10)C12—N11—C16—C152.1 (6)
N11i—Au1—Au2—Cl186.39 (10)Au1—N11—C16—C15174.7 (3)
N11—Au1—Au2—Cl193.61 (10)C14—C15—C16—N110.1 (7)
Au2—Au1—N11—C1237.4 (3)C26—N21—C22—C231.7 (7)
Au2i—Au1—N11—C12142.5 (3)Au3—N21—C22—C23176.8 (3)
Au2—Au1—N11—C16139.3 (3)N21—C22—C23—C240.8 (7)
Au2i—Au1—N11—C1640.7 (3)C22—C23—C24—C250.9 (7)
C16—N11—C12—C132.8 (6)C22—C23—C24—C27177.7 (4)
Au1—N11—C12—C13174.1 (3)C23—C24—C25—C261.8 (6)
N11—C12—C13—C141.2 (6)C27—C24—C25—C26176.9 (4)
C12—C13—C14—C151.1 (6)C22—N21—C26—C250.8 (7)
C12—C13—C14—C17176.0 (4)Au3—N21—C26—C25177.7 (3)
C13—C14—C15—C161.7 (6)C24—C25—C26—N211.0 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl10.952.903.783 (4)155
C16—H16···Cl1i0.952.753.644 (5)158
C17—H17B···Cl1iii0.982.923.745 (5)143
C22—H22···Cl2i0.952.773.664 (5)156
C25—H25···Cl2iii0.952.973.876 (5)159
C26—H26···Cl2iv0.952.833.727 (5)157
C27—H27C···Cl2v0.982.763.721 (5)165
Symmetry codes: (i) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y1, z.
(II_295K) Bis(4-picolino)gold(I) dichloroaurate(I) top
Crystal data top
[Au(C6H7N)2]·[AuCl2]F(000) = 1168
Mr = 651.09Dx = 2.790 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5451 reflections
a = 8.0221 (7) Åθ = 2.6–21.9°
b = 9.7523 (6) ŵ = 19.23 mm1
c = 19.9889 (10) ÅT = 295 K
β = 97.552 (6)°Block, colourless
V = 1550.26 (18) Å30.10 × 0.05 × 0.02 mm
Z = 4
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
3283 independent reflections
Radiation source: Enhance (Mo) X-ray Source2251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 16.1419 pixels mm-1θmax = 26.7°, θmin = 2.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1212
Tmin = 0.392, Tmax = 1.000l = 2525
48444 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0217P)2]
where P = (Fo2 + 2Fc2)/3
3283 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Au(C6H7N)2]·[AuCl2]V = 1550.26 (18) Å3
Mr = 651.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0221 (7) ŵ = 19.23 mm1
b = 9.7523 (6) ÅT = 295 K
c = 19.9889 (10) Å0.10 × 0.05 × 0.02 mm
β = 97.552 (6)°
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
3283 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2251 reflections with I > 2σ(I)
Tmin = 0.392, Tmax = 1.000Rint = 0.091
48444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.06Δρmax = 0.80 e Å3
3283 reflectionsΔρmin = 0.88 e Å3
168 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.00000.50000.00000.05325 (14)
Au20.00990 (4)0.72769 (3)0.118601 (15)0.05146 (11)
Au30.50000.50000.00000.07254 (18)
Cl10.2890 (3)0.7347 (2)0.11267 (12)0.0735 (6)
Cl20.2669 (3)0.7285 (3)0.12808 (11)0.0759 (7)
N110.0245 (8)0.3499 (6)0.0702 (3)0.0484 (16)
C120.1207 (10)0.3669 (8)0.1300 (4)0.053 (2)
H120.18220.44750.13770.063*
C130.1315 (10)0.2698 (8)0.1801 (4)0.053 (2)
H130.19810.28610.22100.064*
C140.0444 (10)0.1483 (8)0.1701 (4)0.050 (2)
C150.0490 (10)0.1316 (8)0.1087 (4)0.057 (2)
H150.10810.05030.09950.068*
C160.0584 (10)0.2315 (8)0.0600 (4)0.056 (2)
H160.12420.21630.01880.067*
C170.0504 (12)0.0434 (9)0.2262 (4)0.078 (3)
H17A0.07070.04580.20870.116*
H17B0.05490.04320.24410.116*
H17C0.13930.06640.26140.116*
N210.5204 (9)0.3433 (7)0.0662 (3)0.0651 (19)
C220.4577 (12)0.2167 (9)0.0492 (4)0.072 (3)
H220.40810.20110.00510.086*
C230.4653 (11)0.1124 (9)0.0944 (4)0.067 (2)
H230.42230.02690.08070.081*
C240.5360 (10)0.1321 (9)0.1602 (4)0.056 (2)
C250.6011 (11)0.2601 (8)0.1773 (4)0.059 (2)
H250.65180.27700.22110.071*
C260.5912 (11)0.3625 (9)0.1302 (4)0.065 (2)
H260.63500.44830.14290.078*
C270.5443 (12)0.0179 (8)0.2125 (4)0.080 (3)
H27A0.43540.00560.22660.120*
H27B0.62400.04200.25080.120*
H27C0.57880.06580.19310.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0820 (4)0.0378 (3)0.0389 (3)0.0009 (2)0.0038 (2)0.00287 (18)
Au20.0680 (2)0.04282 (19)0.04147 (18)0.00235 (17)0.00048 (14)0.00302 (14)
Au30.1132 (5)0.0569 (3)0.0482 (3)0.0065 (3)0.0130 (3)0.0014 (2)
Cl10.0663 (14)0.0821 (17)0.0696 (14)0.0138 (12)0.0004 (11)0.0026 (12)
Cl20.0674 (15)0.0905 (19)0.0690 (15)0.0030 (12)0.0054 (12)0.0093 (12)
N110.074 (5)0.034 (4)0.037 (4)0.001 (3)0.005 (3)0.003 (3)
C120.077 (6)0.038 (5)0.042 (5)0.010 (4)0.003 (4)0.005 (4)
C130.071 (6)0.040 (5)0.045 (5)0.006 (4)0.007 (4)0.003 (4)
C140.062 (5)0.043 (5)0.043 (5)0.006 (4)0.001 (4)0.003 (4)
C150.076 (6)0.043 (5)0.048 (5)0.019 (4)0.005 (4)0.000 (4)
C160.075 (6)0.052 (5)0.039 (5)0.006 (5)0.001 (4)0.000 (4)
C170.102 (8)0.080 (7)0.047 (5)0.001 (6)0.009 (5)0.002 (5)
N210.098 (6)0.052 (5)0.045 (4)0.004 (4)0.008 (4)0.005 (3)
C220.096 (7)0.066 (7)0.049 (5)0.007 (5)0.004 (5)0.013 (5)
C230.092 (7)0.045 (5)0.063 (6)0.009 (5)0.003 (5)0.002 (4)
C240.064 (6)0.058 (6)0.045 (5)0.005 (4)0.009 (4)0.003 (4)
C250.079 (6)0.047 (6)0.052 (5)0.008 (5)0.004 (4)0.009 (4)
C260.093 (7)0.050 (6)0.053 (6)0.002 (5)0.013 (5)0.010 (4)
C270.107 (8)0.067 (7)0.064 (6)0.013 (6)0.006 (6)0.007 (5)
Geometric parameters (Å, º) top
Au1—N11i2.019 (6)C13—C141.376 (10)
Au1—N112.019 (6)C14—C151.362 (9)
Au1—Au2i3.2415 (3)C14—C171.514 (10)
Au1—Au23.2415 (3)C15—C161.372 (10)
Au2—Cl22.254 (2)N21—C261.342 (9)
Au2—Cl12.259 (2)N21—C221.359 (10)
Au3—N212.015 (7)C22—C231.356 (11)
Au3—N21ii2.015 (7)C23—C241.376 (10)
N11—C161.335 (9)C24—C251.379 (10)
N11—C121.345 (8)C24—C271.523 (11)
C12—C131.373 (10)C25—C261.368 (10)
N11i—Au1—N11179.999 (1)C15—C14—C13116.3 (7)
N11i—Au1—Au2i89.85 (16)C15—C14—C17123.2 (7)
N11—Au1—Au2i90.15 (16)C13—C14—C17120.5 (7)
N11i—Au1—Au290.15 (16)C14—C15—C16121.8 (7)
N11—Au1—Au289.85 (16)N11—C16—C15121.7 (7)
Au2i—Au1—Au2180.0C26—N21—C22117.5 (7)
Cl2—Au2—Cl1177.35 (8)C26—N21—Au3120.5 (6)
Cl2—Au2—Au197.72 (6)C22—N21—Au3121.9 (6)
Cl1—Au2—Au184.93 (6)C23—C22—N21122.1 (8)
N21—Au3—N21ii179.999 (1)C22—C23—C24120.6 (8)
C16—N11—C12117.3 (6)C23—C24—C25117.3 (8)
C16—N11—Au1121.3 (5)C23—C24—C27122.0 (8)
C12—N11—Au1121.4 (5)C25—C24—C27120.7 (7)
N11—C12—C13122.5 (7)C26—C25—C24120.2 (8)
C12—C13—C14120.4 (7)N21—C26—C25122.2 (8)
N11i—Au1—Au2—Cl292.80 (19)C17—C14—C15—C16176.7 (8)
N11—Au1—Au2—Cl287.20 (19)C12—N11—C16—C151.2 (12)
N11i—Au1—Au2—Cl187.03 (19)Au1—N11—C16—C15176.7 (6)
N11—Au1—Au2—Cl192.97 (19)C14—C15—C16—N110.4 (13)
Au2i—Au1—N11—C1638.4 (6)C26—N21—C22—C230.0 (13)
Au2—Au1—N11—C16141.6 (6)Au3—N21—C22—C23177.3 (7)
Au2i—Au1—N11—C12143.8 (6)N21—C22—C23—C240.8 (14)
Au2—Au1—N11—C1236.2 (6)C22—C23—C24—C251.3 (13)
C16—N11—C12—C131.9 (11)C22—C23—C24—C27179.1 (8)
Au1—N11—C12—C13176.0 (6)C23—C24—C25—C261.2 (13)
N11—C12—C13—C141.0 (12)C27—C24—C25—C26179.2 (8)
C12—C13—C14—C150.6 (12)C22—N21—C26—C250.1 (13)
C12—C13—C14—C17177.5 (8)Au3—N21—C26—C25177.2 (7)
C13—C14—C15—C161.3 (12)C24—C25—C26—N210.5 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl10.932.993.864 (8)157
C16—H16···Cl1i0.932.823.710 (8)160
C17—H17C···Cl1iii0.963.003.798 (9)142
C22—H22···Cl2i0.932.843.709 (9)157
C26—H26···Cl2iv0.932.873.748 (9)158
C27—H27C···Cl2v0.962.773.712 (9)167
Symmetry codes: (i) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y1, z.
(II_200K) Bis(4-picolino)gold(I) dichloroaurate(I) top
Crystal data top
[Au(C6H7N)2]·[AuCl2]F(000) = 1168
Mr = 651.09Dx = 2.840 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6856 reflections
a = 7.9579 (4) Åθ = 2.6–26.7°
b = 9.6670 (5) ŵ = 19.58 mm1
c = 19.9987 (9) ÅT = 200 K
β = 98.250 (5)°Block, colourless
V = 1522.55 (13) Å30.10 × 0.05 × 0.02 mm
Z = 4
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
3929 independent reflections
Radiation source: Enhance (Mo) X-ray Source2982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
Detector resolution: 16.1419 pixels mm-1θmax = 28.7°, θmin = 2.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1313
Tmin = 0.412, Tmax = 1.000l = 2727
57728 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0184P)2]
where P = (Fo2 + 2Fc2)/3
3929 reflections(Δ/σ)max = 0.013
168 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Au(C6H7N)2]·[AuCl2]V = 1522.55 (13) Å3
Mr = 651.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9579 (4) ŵ = 19.58 mm1
b = 9.6670 (5) ÅT = 200 K
c = 19.9987 (9) Å0.10 × 0.05 × 0.02 mm
β = 98.250 (5)°
Data collection top
Oxford Xcalibur
diffractometer with Eos detector
3929 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2982 reflections with I > 2σ(I)
Tmin = 0.412, Tmax = 1.000Rint = 0.088
57728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.05Δρmax = 0.76 e Å3
3929 reflectionsΔρmin = 0.98 e Å3
168 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.00000.50000.00000.03311 (9)
Au20.01229 (3)0.72619 (2)0.118343 (11)0.03148 (7)
Au30.50000.50000.00000.04560 (11)
Cl10.2937 (2)0.73117 (17)0.11232 (8)0.0444 (4)
Cl20.26575 (19)0.72982 (18)0.12844 (8)0.0458 (4)
N110.0240 (6)0.3469 (5)0.0704 (2)0.0310 (11)
C120.1225 (7)0.3640 (6)0.1300 (3)0.0343 (14)
H120.18800.44620.13750.041*
C130.1324 (7)0.2674 (6)0.1806 (3)0.0335 (13)
H130.20280.28380.22240.040*
C140.0403 (7)0.1461 (6)0.1710 (3)0.0310 (13)
C150.0559 (8)0.1276 (6)0.1087 (3)0.0380 (15)
H150.11810.04420.09930.046*
C160.0628 (7)0.2291 (6)0.0595 (3)0.0327 (13)
H160.13090.21450.01710.039*
C170.0427 (9)0.0414 (7)0.2266 (3)0.0489 (17)
H17A0.05740.05420.24930.073*
H17B0.14570.05360.25930.073*
H17C0.04130.05190.20740.073*
N210.5190 (6)0.3429 (5)0.0667 (2)0.0403 (12)
C220.4541 (8)0.2165 (7)0.0488 (3)0.0453 (16)
H220.40340.20080.00350.054*
C230.4601 (8)0.1101 (6)0.0950 (3)0.0409 (15)
H230.41340.02250.08110.049*
C240.5332 (7)0.1295 (6)0.1612 (3)0.0350 (14)
C250.6015 (8)0.2587 (6)0.1781 (3)0.0386 (15)
H250.65520.27580.22290.046*
C260.5923 (8)0.3614 (7)0.1312 (3)0.0421 (16)
H260.63930.44930.14440.051*
C270.5368 (9)0.0156 (6)0.2137 (3)0.0467 (17)
H27A0.42060.01540.21630.070*
H27B0.58800.05110.25790.070*
H27C0.60400.06240.20090.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0510 (2)0.02356 (17)0.02408 (17)0.00100 (14)0.00290 (14)0.00204 (13)
Au20.03985 (13)0.02709 (12)0.02623 (11)0.00144 (11)0.00044 (9)0.00162 (10)
Au30.0726 (3)0.0346 (2)0.03005 (19)0.00465 (18)0.00897 (18)0.00138 (15)
Cl10.0388 (8)0.0506 (10)0.0422 (9)0.0081 (7)0.0002 (7)0.0011 (7)
Cl20.0401 (8)0.0557 (11)0.0409 (9)0.0009 (7)0.0033 (7)0.0057 (8)
N110.043 (3)0.026 (3)0.023 (2)0.002 (2)0.004 (2)0.001 (2)
C120.047 (4)0.022 (3)0.034 (3)0.000 (3)0.006 (3)0.005 (3)
C130.042 (3)0.028 (3)0.028 (3)0.005 (3)0.004 (3)0.000 (2)
C140.043 (3)0.022 (3)0.028 (3)0.000 (3)0.007 (3)0.003 (2)
C150.050 (4)0.030 (4)0.032 (3)0.011 (3)0.001 (3)0.001 (3)
C160.044 (3)0.030 (3)0.023 (3)0.006 (3)0.000 (3)0.002 (2)
C170.062 (4)0.046 (4)0.035 (4)0.001 (3)0.003 (3)0.007 (3)
N210.060 (3)0.029 (3)0.032 (3)0.004 (3)0.009 (3)0.003 (2)
C220.062 (4)0.041 (4)0.032 (3)0.006 (3)0.005 (3)0.007 (3)
C230.057 (4)0.031 (4)0.034 (3)0.005 (3)0.003 (3)0.007 (3)
C240.039 (3)0.036 (4)0.031 (3)0.002 (3)0.009 (3)0.004 (3)
C250.052 (4)0.034 (4)0.029 (3)0.004 (3)0.005 (3)0.005 (3)
C260.057 (4)0.031 (4)0.038 (4)0.005 (3)0.009 (3)0.010 (3)
C270.065 (5)0.029 (4)0.043 (4)0.002 (3)0.001 (3)0.004 (3)
Geometric parameters (Å, º) top
Au1—N112.032 (4)C13—C141.381 (7)
Au1—N11i2.033 (4)C14—C151.378 (7)
Au1—Au2i3.2133 (2)C14—C171.501 (8)
Au1—Au23.2134 (2)C15—C161.385 (7)
Au2—Cl22.2507 (15)N21—C261.350 (7)
Au2—Cl12.2602 (16)N21—C221.355 (7)
Au3—N212.012 (5)C22—C231.378 (8)
Au3—N21ii2.012 (5)C23—C241.380 (8)
N11—C161.334 (7)C24—C251.385 (8)
N11—C121.340 (7)C24—C271.520 (8)
C12—C131.371 (8)C25—C261.360 (8)
N11—Au1—N11i180.0 (3)C15—C14—C13116.9 (5)
N11—Au1—Au2i90.27 (12)C15—C14—C17121.9 (5)
N11i—Au1—Au2i89.73 (12)C13—C14—C17121.2 (5)
N11—Au1—Au289.73 (12)C14—C15—C16120.7 (5)
N11i—Au1—Au290.27 (12)N11—C16—C15121.5 (5)
Au2i—Au1—Au2180.0C26—N21—C22117.9 (5)
Cl2—Au2—Cl1177.04 (6)C26—N21—Au3121.0 (4)
Cl2—Au2—Au198.64 (4)C22—N21—Au3121.1 (4)
Cl1—Au2—Au184.31 (4)N21—C22—C23121.5 (6)
N21—Au3—N21ii179.998 (1)C22—C23—C24120.6 (6)
C16—N11—C12118.3 (5)C23—C24—C25117.0 (6)
C16—N11—Au1120.9 (4)C23—C24—C27121.9 (6)
C12—N11—Au1120.8 (4)C25—C24—C27121.1 (5)
N11—C12—C13122.5 (5)C26—C25—C24120.6 (6)
C12—C13—C14120.1 (5)N21—C26—C25122.4 (6)
N11—Au1—Au2—Cl286.86 (13)C17—C14—C15—C16176.6 (6)
N11i—Au1—Au2—Cl293.14 (13)C12—N11—C16—C151.6 (8)
N11—Au1—Au2—Cl193.26 (13)Au1—N11—C16—C15175.9 (4)
N11i—Au1—Au2—Cl186.74 (13)C14—C15—C16—N110.7 (9)
Au2i—Au1—N11—C1639.3 (4)C26—N21—C22—C230.9 (9)
Au2—Au1—N11—C16140.7 (4)Au3—N21—C22—C23177.2 (5)
Au2i—Au1—N11—C12143.3 (4)N21—C22—C23—C240.1 (10)
Au2—Au1—N11—C1236.7 (4)C22—C23—C24—C251.0 (9)
C16—N11—C12—C132.3 (8)C22—C23—C24—C27178.0 (6)
Au1—N11—C12—C13175.2 (4)C23—C24—C25—C261.4 (9)
N11—C12—C13—C140.7 (9)C27—C24—C25—C26177.7 (6)
C12—C13—C14—C151.5 (9)C22—N21—C26—C250.6 (9)
C12—C13—C14—C17177.3 (6)Au3—N21—C26—C25177.5 (5)
C13—C14—C15—C162.2 (9)C24—C25—C26—N210.6 (10)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl10.952.943.836 (6)157
C16—H16···Cl1i0.952.773.677 (6)159
C22—H22···Cl2i0.952.793.682 (6)157
C25—H25···Cl2iii0.953.013.912 (6)159
C26—H26···Cl2iv0.952.853.739 (7)157
C27—H27C···Cl2v0.982.763.712 (7)163
Symmetry codes: (i) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y1, z.

Experimental details

(I)(II_100K)(II_295K)(II_200K)
Crystal data
Chemical formula[Au(C6H7N)2][AuBr2][Au(C6H7N)2][AuCl2][Au(C6H7N)2]·[AuCl2][Au(C6H7N)2]·[AuCl2]
Mr740.01651.09651.09651.09
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)100100295200
a, b, c (Å)8.2485 (3), 9.7291 (3), 19.8055 (6)7.9048 (3), 9.5597 (3), 20.1036 (7)8.0221 (7), 9.7523 (6), 19.9889 (10)7.9579 (4), 9.6670 (5), 19.9987 (9)
β (°) 94.737 (3) 99.421 (4) 97.552 (6) 98.250 (5)
V3)1583.97 (9)1498.68 (9)1550.26 (18)1522.55 (13)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)23.5319.9019.2319.58
Crystal size (mm)0.15 × 0.08 × 0.050.10 × 0.05 × 0.020.10 × 0.05 × 0.020.10 × 0.05 × 0.02
Data collection
DiffractometerOxford Xcalibur
diffractometer with Eos detector
Oxford Xcalibur
diffractometer with Eos detector
Oxford Xcalibur
diffractometer with Eos detector
Oxford Xcalibur
diffractometer with Eos detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Multi-scan
(CrysAlis PRO; Agilent, 2013)
Multi-scan
(CrysAlis PRO; Agilent, 2013)
Multi-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.282, 1.0000.433, 1.0000.392, 1.0000.412, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
78671, 4090, 3452 37223, 3726, 3169 48444, 3283, 2251 57728, 3929, 2982
Rint0.0720.0590.0910.088
(sin θ/λ)max1)0.6760.6670.6330.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.048, 1.08 0.023, 0.040, 1.04 0.035, 0.065, 1.06 0.031, 0.055, 1.05
No. of reflections4090372632833929
No. of parameters168168168168
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 1.370.86, 0.920.80, 0.880.76, 0.98

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Br10.952.993.892 (5)160
C16—H16···Br1i0.952.943.847 (5)161
C22—H22···Br2i0.952.863.756 (5)158
C26—H26···Br2ii0.952.873.775 (5)159
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (II_100K) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl10.952.903.783 (4)155
C16—H16···Cl1i0.952.753.644 (5)158
C22—H22···Cl2i0.952.773.664 (5)156
C26—H26···Cl2ii0.952.833.727 (5)157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (II_295K) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl10.932.993.864 (8)157
C16—H16···Cl1i0.932.823.710 (8)160
C17—H17C···Cl1ii0.963.003.798 (9)142
C22—H22···Cl2i0.932.843.709 (9)157
C26—H26···Cl2iii0.932.873.748 (9)158
C27—H27C···Cl2iv0.962.773.712 (9)167
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1, z.
Hydrogen-bond geometry (Å, º) for (II_200K) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl10.952.943.836 (6)157
C16—H16···Cl1i0.952.773.677 (6)159
C22—H22···Cl2i0.952.793.682 (6)157
C25—H25···Cl2ii0.953.013.912 (6)159
C26—H26···Cl2iii0.952.853.739 (7)157
C27—H27C···Cl2iv0.982.763.712 (7)163
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1, z.
Selected geometric parameters (Å, °) for (I) and (II) top
Bond/angle(I) (X = Br)(II) (X = Cl)
Au1—N112.027 (4)2.022 (4)
Au2—Br12.3833 (5)2.2626 (11)
Au2—Br22.3777 (5)2.2608 (11)
Au3—N212.019 (4)2.016 (4)
Br1—Au2—Br2175.569 (18)176.89 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds