Download citation
Download citation
link to html
In (2SR,4RS)-2-exo-vinyl-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C12H13NO, (I), the mol­ecules are linked by two independent C-H...[pi](arene) hydrogen bonds to form sheets, such that all of the mol­ecules in a given sheet are of the same configuration. The mol­ecules of (2SR,4RS)-7-chloro-2-exo-(2-methyl­prop-1-en­yl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C14H16ClNO, (II), are linked by a C-H...O hydrogen bond into C(4) chains, where all the mol­ecules in a given chain are of the same configuration, whereas the mol­ecules of (2SR,4RS)-8-chloro-9-methyl-2-exo-(2-methylprop-1-en­yl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C15H18ClNO, (III), are linked into centrosymmetric dimers by pairs of symmetry-related C-H...[pi](arene) hydrogen bonds. (2RS,4RS)-8-Chloro-9-methyl-2-endo-(2-methyl­prop-1-en­yl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C15H18ClNO, (IV), is a diastereoisomer of (III) and, as for (II), a single C-H...O hydrogen bond links the mol­ecules into C(4) chains, each containing mol­ecules of a single configuration. The struc­ture of (2SR,4RS)-8-chloro-9-methyl-2-exo-(prop-1-en-2-yl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C14H16ClNO, (V), contains a C-H...O hydrogen bond which links pairs of mol­ecules into centrosymmetric R22(6) dimers. (2SR,4RS)-7,9-Dichloro-2-exo-(prop-1-en-2-yl)-2,3,4,5-tetrahydro-1H-1,4-ep­oxy-1-benzazepine, C13H13Cl2NO, (VI), is an inversion twin containing both the (2S,4R) and (2R,4S) enantio­mers in the space group P21, and a C-H...O hydrogen bond links mol­ecules of a given configuration into simple C(3) chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110009017/sk3373sup1.cif
Contains datablocks global, I, II, III, IV, V, VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009017/sk3373Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009017/sk3373IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009017/sk3373IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009017/sk3373IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009017/sk3373Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009017/sk3373VIsup7.hkl
Contains datablock VI

CCDC references: 774910; 774911; 774912; 774913; 774914; 774915

Comment top

We report here the structures of six differently-substituted 2-vinyl-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepines, (I)–(VI) (Fig. 1), which exhibit interesting variations in their intermolecular hydrogen-bonding arrangements. The work reported here is a continuation of a wider structural study of substituted tetrahydroepoxybenzazepines (Acosta et al., 2008, 2010; Blanco et al., 2008; Gómez et al., 2008, 2009, 2010), and the underlying synthetic rationale and the potential applications of these compounds have already been discussed (Acosta et al., 2008).

Compounds (I)–(V) (see scheme and Fig. 1) all crystallize as racemic mixtures in centrosymmetric space groups. In each of (I)–(V), the reference molecule was selected as having the R configuration at atom C4, and on this basis the reference molecules have the S configuration at atom C2 in (I)–(III) and (V), but in (IV) the reference molecule has the R configuration at C2, so that (III) and (IV) are, in fact, diastereoisomers. In addition, (II) and (V) are positional isomers. By contrast, (VI) crystallizes as an inversion twin in the Sohnke space group P21. For the crystal selected for data collection, the twin fractions were found to be unequal, 0.39 (7) for the (2S,4R) form and 0.61 (7) for the (2R,4S) form, although the deviations from 0.5 are not large compared with the experimental uncertainty. As the synthesis of these compounds involves no reagent or solvent capable of imparting any enantiomeric bias, it is to be expected that (V) [(VI)?], as well as (I)–(V), was synthesized as a true racemic mixture, and it is therefore possible that this compound crystallizes with somewhat different twin fractions in the various individual crystals.

The ring-puckering parameters (Cremer & Pople, 1975) for (I)–(VI) (Table 1) show that the overall shape of the fused heterocyclic system varies very little, regardless of the number and location of the methyl groups in the vinyl substituent or the configuration at atom C2. On the other hand, the orientation of the vinyl group relative to the fused bicyclic system, as defined by the values of the N1—C2—C21—C22 torsion angle (Table 1), shows considerable variation, in particular between the two diasteroisomers (III) and (IV), as expected from the different configurations at C2, but less expectedly for the two prop-1-en-2-yl derivatives, (V) and (VI).

The supramolecular aggregation in (I)–(VI) depends upon C—H···O and C—H···π(arene) hydrogen bonds (Table 2), but (I) is the only example in this group where the crystal structure contains two independent C—H···π(arene) hydrogen bonds.

In (I), the hydrogen bond having atom C6 as the donor links molecules related by the 21 screw axis along (1/4, y, 1/4), while the hydrogen bond in which atom C22 acts as the donor links molecules related by the 21 screw axis along (3/4, y, 1/2), so forming two chain motifs, both running parallel to the [010] direction but in opposite senses. The combination of these chains generates a sheet lying parallel to (001) in the domain 0 < z < 1/2 (Fig. 2) in which all of the molecules have the (2S,4R) configuration. A second sheet, lying in the domain 1/2 < z < 1.0, is related to the first sheet by inversion and contains only molecules with the (2R,4S) configuration. Within the sheet, each aryl ring accepts one hydrogen bond on each face and the angle subtended at the ring centroid Cg1 (ring C5a/C6–C9/C9a) of the reference molecule by the two H···Cg contacts, H6i···Cg1···H22ii, is 167° [symmetry codes: (i) 1/2 - x, 1/2 + y, 1/2 - z; (ii) 3/2 - x, -1/2 + y, 1/2 - z]. Between adjacent sheets, the only direction-specific interaction is a C—H···O contact (Table 2) with an H···O distance which is long and a C—H···O angle which is small, so that this contact cannot realistically be regarded as a structurally significant hydrogen bond. Aromatic ππ stacking interactions are absent from the structure of (I), because of the presence of C—H···π(arene) hydrogen bonds on each face of the aryl ring, so that the supramolecular aggregation in (I) is two-dimensional.

In contrast with the crystal structure of (I), those of (II)–(VI) each contain only a single hydrogen bond, all of the C—H···O type apart from (III), where the hydrogen bond is of the C—H···π(arene) type (Table 2). As found for (I), aromatic ππ stacking interactions are absent from the structures of all of (II)–(VI).

In each of (II) and (IV), molecules related by translation are linked by the C—H···O hydrogen bond to form simple C(4) chains (Bernstein et al., 1995) running parallel to the [100] direction (Fig. 3), but it is clear that, although the same donor and acceptor atoms are involved in these two structures, the mutual orientations of the molecules within the chains are different, as are the dimensions of the C—H···O hydrogen bonds. These differences may be associated with either or both of the differences in the molecular configurations, (2SR,4RS) for (II) and (2RS,4RS) for (IV), and in the space groups, P21/c for (II) and P1 for (IV). In the structure of (II) there are four chains passing through each unit cell, but in the structure of (IV) there are only two. In any specific chain, all of the molecules have the same configuration. As there are no direction-specific interactions between the chains in (II) and (IV), these hydrogen-bonded structures are both one-dimensional.

The hydrogen-bonded structures of (III) and (V), by contrast, both consist of centrosymmetric dimers, built from pairs of symmetry-related C—H···π(arene) hydrogen bonds in (III) (Fig. 4) and from pairs of symmetry-related C—H···O hydrogen bonds in (V), so forming an R22(6) ring having a chair-type conformation (Fig. 5). Within each of these dimers, the two molecules involved are of the opposite configuration and the hydrogen-bonded aggregation in (III) and (V) is thus finite, or zero-dimensional.

The single hydrogen bond in the structure of (VI) utilizes the same donor and acceptor atoms as that in (V), but rather than forming a cyclic dimer as in (V), in (VI) this hydrogen bond now generates a C(3) chain running parallel to the [010] direction and linking molecules related by the 21 screw axis along (1, y, 1/2) (Fig. 6). Again, therefore, the hydrogen-bonded structure is one-dimensional and all the molecules in a specific chain are of the same configuration.

In each of (I), (II), (IV) and (VI), the molecules within a given hydrogen-bonded aggregate, whether the sheet in (I) or the chains in (II), (IV) and (VI), all have the same configuration, whereas in (III) and (V) the hydrogen-bonded dimers both contain pairs of molecules having opposite configurations. Hence, the hydrogen bonding appears to mediate molecular-scale enantiomeric sorting in (I), (II) (IV) and (VI), but enantiomeric pairing in (III) and (V). Within the structure of each of (II)–(IV), atom C5 acts as the hydrogen-bond donor. However, in (II) and (IV), where C—H···O hydrogen bonds are present, these involve the bisectional H atom at C5, denoted H5B, and chain motifs result, but in (III), where a C—H···π(arene) hydrogen bond is present, this involves the axial H atom at C5, denoted H5A, and a ring motif results. Similarly, although the same combination of hydrogen-bond donor and acceptor are present in the structures of (V) and (VI), in (V) this interaction gives rise to a ring motif, whereas in (VI) a chain results, so that the hydrogen-bonded structures of (V) and (VI) are of different dimensionalities. These subtle differences in the hydrogen-bonding patterns do not appear to have any simple or readily-accessible explanations.

Experimental top

For the preparation of (I)–(VI), sodium tungstate dihydrate (5–10 mol%), followed by 30% aqueous hydrogen peroxide solution (0.30 mol), were added to a stirred solution of the appropriately substituted 2-allyl-N-alkenylaniline (0.10 mol) in methanol (30 ml). The resulting mixtures were then stirred at ambient temperature for either 8 h [for (I) and (II)] or 72 h [for each of (III)–(VI)]. Each mixture was then filtered and the solvent removed under reduced pressure. Toluene (30 ml) was added to the solid residue and the resulting solution was heated at 355–360 K for 5–7 h. After cooling each solution to ambient temperature, the solvent was removed under reduced pressure and the crude product was purified by chromatography on silica gel using heptane–ethyl acetate (compositions in the range from 90:1 to 10:1 v/v) as eluent. Crystallization from methanol–dichloromethane (1:1 v/v) gave colourless crystals of (I)–(VI) suitable for single-crystal X-ray diffraction.

For (I), yield 58%, m.p. 335–336 K; MS (70 eV) m/z (%) 187 (M+, 31), 170 (18), 157 (10), 130 (22), 105 (38), 104 (100), 78 (36).

For (II), yield 49%, m.p. 350–351 K; MS (70 eV) m/z (%) 249 [M+ (35Cl), 43], 232 (29), 164 (9), 139 (100), 104 (33), 77 (30).

For (III), yield 45%, m.p. 367–368 K; MS (70 eV) m/z (%) 263 [M+ (35Cl), 45], 246 (27), 178 (12), 153 (100), 144 (39), 118 (36), 103 (18), 91 (36).

For (IV), yield 25%, m.p. 380–381 K; MS (70 eV) m/z (%) 263 [M+ (35Cl), 64], 246 (33), 178 (15), 153 (100), 144 (39), 118 (36), 103 (18), 91 (39).

For (V), yield 65%, m.p. 375–376 K; MS (70 eV) m/z (%) 249 [M+ (35Cl), 59], 166 (9), 153 (100), 141 (36), 118 (29), 91 (33), 77 (24).

For (VI), yield 63%, m.p. 370–371 K; MS (70 eV) m/z (%) 269 [M+ (35Cl), 61], 172 (100), 151 (30), 138 (61), 123 (33), 102 (30), 75 (36).

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic or alkenyl H), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. When the initial refinement for (VI) appeared to be complete, the value of the Flack x parameter (Flack, 1983), x = 0.59 (8), indicated that the refinement should be handled as an inversion twin, leading to twin fractions of 0.39 (7) for the (2S,4R) form and 0.61 (7) for the (2R,4S) form.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I)–(VI), showing the atom-labelling schemes. (a) (I), (b) (II), (c) (III), (d) (IV), (e) (V) and (f) (VI). The (2R,4R) enantiomer is shown for (IV) and the (2S,4R) enantiomers for the remainder. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet parallel to (001). Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms not involved in the motifs shown have been omitted.
[Figure 3] Fig. 3. Parts of the crystal structures of (a) (II) and (b) (IV), showing the formation of C(4) chains along [100]. Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) or a dollar sign ($) are at the symmetry positions (-1 + x, y, z) and (1 + x, y, z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (III), showing the formation of a hydrogen-bonded dimer built from paired C—H···π(arene) hydrogen bonds (dashed lines). For the sake of clarity, the unit-cell outline and H atoms bonded to C atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (2 - x, 1 - y, 1 - z).
[Figure 5] Fig. 5. Part of the crystal structure of (IV), showing the formation of a hydrogen-bonded dimer built from paired C—H···O hydrogen bonds (dashed lines). For the sake of clarity, H atoms bonded to C atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 6] Fig. 6. Part of the crystal structure of (VI), showing the formation of a C(3) chain parallel to [010]. Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash symbol (#) or a dollar sign ($) are at the symmetry positions (2 - x, 1/2 + y, 1 - z), (2 - x, -1/2 + y, 1 - z), and (x, 1 + y, z), respectively.
(I) (2SR,4RS)-2-exo-vinyl-2,3,4,5-tetrahydro-1H- 1,4-epoxy-1-benzazepine top
Crystal data top
C12H13NOF(000) = 400
Mr = 187.23Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2200 reflections
a = 9.8070 (13) Åθ = 3.0–27.5°
b = 7.3982 (7) ŵ = 0.08 mm1
c = 13.738 (2) ÅT = 120 K
β = 105.441 (11)°Block, colourless
V = 960.8 (2) Å30.31 × 0.29 × 0.20 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2200 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.969, Tmax = 0.984l = 1517
13902 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1879P]
where P = (Fo2 + 2Fc2)/3
2200 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H13NOV = 960.8 (2) Å3
Mr = 187.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8070 (13) ŵ = 0.08 mm1
b = 7.3982 (7) ÅT = 120 K
c = 13.738 (2) Å0.31 × 0.29 × 0.20 mm
β = 105.441 (11)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2200 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1488 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.984Rint = 0.054
13902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
2200 reflectionsΔρmin = 0.24 e Å3
127 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O140.49055 (10)0.45113 (14)0.10465 (8)0.0253 (3)
N10.57935 (12)0.40949 (16)0.20407 (9)0.0207 (3)
C20.67762 (15)0.2748 (2)0.18020 (12)0.0214 (3)
H20.71760.19590.24010.026*
C30.58270 (16)0.1630 (2)0.09360 (12)0.0261 (4)
H3A0.62780.14730.03770.031*
H3B0.56240.04250.11780.031*
C40.44854 (16)0.2754 (2)0.06014 (12)0.0262 (4)
H40.41700.28430.01520.031*
C50.32915 (15)0.2113 (2)0.10149 (12)0.0266 (4)
H5A0.24200.27970.06960.032*
H5B0.31070.08150.08570.032*
C5a0.36800 (14)0.2388 (2)0.21397 (12)0.0220 (3)
C60.28380 (15)0.1747 (2)0.27298 (12)0.0254 (4)
H60.19820.11330.24170.031*
C70.32186 (16)0.1984 (2)0.37583 (13)0.0286 (4)
H70.26250.15420.41500.034*
C80.44640 (16)0.2864 (2)0.42228 (12)0.0285 (4)
H80.47380.30050.49360.034*
C90.53088 (15)0.3537 (2)0.36484 (12)0.0242 (4)
H90.61600.41570.39630.029*
C9a0.49104 (14)0.33046 (19)0.26153 (11)0.0199 (3)
C210.79369 (16)0.3709 (2)0.15017 (12)0.0255 (4)
H210.76840.45800.09770.031*
C220.92861 (16)0.3425 (2)0.19176 (13)0.0312 (4)
H22A0.95730.25620.24450.037*
H22B0.99760.40820.16920.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O140.0301 (6)0.0237 (6)0.0199 (6)0.0008 (5)0.0029 (4)0.0037 (5)
N10.0213 (6)0.0231 (7)0.0170 (7)0.0007 (5)0.0038 (5)0.0021 (5)
C20.0237 (7)0.0196 (8)0.0226 (8)0.0003 (6)0.0091 (6)0.0016 (6)
C30.0292 (8)0.0251 (8)0.0263 (9)0.0048 (7)0.0113 (7)0.0052 (7)
C40.0331 (9)0.0242 (8)0.0192 (8)0.0050 (7)0.0032 (7)0.0023 (7)
C50.0247 (8)0.0276 (9)0.0244 (9)0.0035 (6)0.0009 (6)0.0014 (7)
C5a0.0207 (7)0.0190 (8)0.0258 (9)0.0030 (6)0.0054 (6)0.0004 (7)
C60.0185 (7)0.0219 (8)0.0363 (10)0.0005 (6)0.0080 (7)0.0008 (7)
C70.0293 (8)0.0272 (9)0.0351 (10)0.0032 (7)0.0187 (7)0.0047 (7)
C80.0339 (9)0.0309 (9)0.0230 (9)0.0057 (7)0.0117 (7)0.0013 (7)
C90.0227 (8)0.0255 (8)0.0245 (9)0.0004 (6)0.0067 (6)0.0017 (7)
C9a0.0200 (7)0.0184 (8)0.0223 (8)0.0031 (6)0.0075 (6)0.0019 (6)
C210.0314 (8)0.0220 (8)0.0271 (9)0.0024 (7)0.0145 (7)0.0018 (7)
C220.0294 (9)0.0268 (9)0.0415 (11)0.0040 (7)0.0168 (8)0.0050 (8)
Geometric parameters (Å, º) top
O14—N11.4441 (15)C5a—C61.386 (2)
O14—C41.4488 (18)C5a—C9a1.387 (2)
N1—C9a1.4419 (18)C6—C71.373 (2)
N1—C21.4822 (18)C6—H60.9500
C2—C211.490 (2)C7—C81.381 (2)
C2—C31.542 (2)C7—H70.9500
C2—H21.0000C8—C91.380 (2)
C3—C41.521 (2)C8—H80.9500
C3—H3A0.9900C9—C9a1.379 (2)
C3—H3B0.9900C9—H90.9500
C4—C51.508 (2)C21—C221.311 (2)
C4—H41.0000C21—H210.9500
C5—C5a1.504 (2)C22—H22A0.9500
C5—H5A0.9900C22—H22B0.9500
C5—H5B0.9900
N1—O14—C4103.88 (10)C4—C5—H5B109.8
C9a—N1—O14107.78 (10)H5A—C5—H5B108.2
C9a—N1—C2111.67 (11)C6—C5a—C9a118.10 (14)
O14—N1—C2101.42 (10)C6—C5a—C5121.82 (13)
N1—C2—C21109.30 (12)C9a—C5a—C5120.08 (13)
N1—C2—C3103.70 (11)C7—C6—C5a121.15 (14)
C21—C2—C3113.02 (12)C7—C6—H6119.4
N1—C2—H2110.2C5a—C6—H6119.4
C21—C2—H2110.2C6—C7—C8120.01 (14)
C3—C2—H2110.2C6—C7—H7120.0
C4—C3—C2103.64 (12)C8—C7—H7120.0
C4—C3—H3A111.0C9—C8—C7119.83 (15)
C2—C3—H3A111.0C9—C8—H8120.1
C4—C3—H3B111.0C7—C8—H8120.1
C2—C3—H3B111.0C9a—C9—C8119.66 (14)
H3A—C3—H3B109.0C9a—C9—H9120.2
O14—C4—C5106.59 (12)C8—C9—H9120.2
O14—C4—C3103.72 (11)C9—C9a—C5a121.23 (14)
C5—C4—C3114.21 (13)C9—C9a—N1117.78 (13)
O14—C4—H4110.7C5a—C9a—N1120.96 (13)
C5—C4—H4110.7C22—C21—C2124.03 (16)
C3—C4—H4110.7C22—C21—H21118.0
C5a—C5—C4109.56 (12)C2—C21—H21118.0
C5a—C5—H5A109.8C21—C22—H22A120.0
C4—C5—H5A109.8C21—C22—H22B120.0
C5a—C5—H5B109.8H22A—C22—H22B120.0
C4—O14—N1—C9a67.70 (13)C5—C5a—C6—C7178.92 (14)
C4—O14—N1—C249.71 (12)C5a—C6—C7—C80.4 (2)
C9a—N1—C2—C21162.66 (12)C6—C7—C8—C91.3 (2)
O14—N1—C2—C2182.79 (13)C7—C8—C9—C9a0.8 (2)
C9a—N1—C2—C376.55 (14)C8—C9—C9a—C5a0.7 (2)
O14—N1—C2—C338.00 (13)C8—C9—C9a—N1177.46 (13)
N1—C2—C3—C413.57 (15)C6—C5a—C9a—C91.6 (2)
C21—C2—C3—C4104.67 (14)C5—C5a—C9a—C9178.38 (14)
N1—O14—C4—C580.17 (13)C6—C5a—C9a—N1176.48 (13)
N1—O14—C4—C340.70 (13)C5—C5a—C9a—N13.5 (2)
C2—C3—C4—O1415.76 (15)O14—N1—C9a—C9151.29 (12)
C2—C3—C4—C599.84 (14)C2—N1—C9a—C998.15 (15)
O14—C4—C5—C5a46.92 (16)O14—N1—C9a—C5a26.85 (17)
C3—C4—C5—C5a66.99 (17)C2—N1—C9a—C5a83.71 (16)
C4—C5—C5a—C6173.27 (14)N1—C2—C21—C22126.62 (16)
C4—C5—C5a—C9a6.71 (19)C3—C2—C21—C22118.46 (17)
C9a—C5a—C6—C71.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O14i1.002.603.209 (2)119
C6—H6···Cg1ii0.952.833.616 (2)141
C22—H22B···Cg1iii0.952.783.529 (2)136
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
(II) (2SR,4RS)-7-chloro-2-exo-(2-methylprop-1-enyl)- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C14H16ClNOF(000) = 528
Mr = 249.73Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2783 reflections
a = 5.6445 (5) Åθ = 2.9–27.5°
b = 25.744 (3) ŵ = 0.30 mm1
c = 8.3894 (11) ÅT = 120 K
β = 95.124 (9)°Block, colourless
V = 1214.2 (2) Å30.44 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2783 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3133
Tmin = 0.895, Tmax = 0.943l = 1010
15979 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.6916P]
where P = (Fo2 + 2Fc2)/3
2783 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H16ClNOV = 1214.2 (2) Å3
Mr = 249.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6445 (5) ŵ = 0.30 mm1
b = 25.744 (3) ÅT = 120 K
c = 8.3894 (11) Å0.44 × 0.24 × 0.20 mm
β = 95.124 (9)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2783 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1929 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.943Rint = 0.046
15979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
2783 reflectionsΔρmin = 0.30 e Å3
156 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.16222 (10)0.32441 (2)0.23221 (7)0.03279 (19)
O140.6846 (3)0.09756 (6)0.24447 (18)0.0245 (4)
N10.7332 (3)0.13466 (7)0.3718 (2)0.0217 (4)
C20.6430 (4)0.10686 (8)0.5090 (3)0.0222 (5)
H20.59990.13240.59150.027*
C30.4167 (4)0.07945 (9)0.4333 (3)0.0272 (5)
H3A0.41180.04280.46810.033*
H3B0.27140.09730.46240.033*
C40.4392 (4)0.08314 (9)0.2551 (3)0.0265 (5)
H40.40360.04890.20190.032*
C50.2867 (4)0.12530 (9)0.1758 (3)0.0264 (5)
H5A0.29460.12400.05850.032*
H5B0.11910.12030.19840.032*
C5a0.3753 (4)0.17692 (8)0.2393 (3)0.0223 (5)
C60.2452 (4)0.22204 (9)0.2096 (3)0.0240 (5)
H60.09700.22080.14650.029*
C70.3294 (4)0.26844 (9)0.2709 (3)0.0245 (5)
C80.5437 (4)0.27184 (9)0.3622 (3)0.0269 (5)
H80.60010.30430.40390.032*
C90.6748 (4)0.22718 (9)0.3921 (3)0.0261 (5)
H90.82410.22880.45390.031*
C9a0.5901 (4)0.18016 (8)0.3324 (3)0.0214 (5)
C210.8280 (4)0.07077 (8)0.5795 (3)0.0228 (5)
H210.92880.05540.50800.027*
C220.8670 (4)0.05784 (8)0.7323 (3)0.0231 (5)
C231.0662 (4)0.02214 (9)0.7886 (3)0.0293 (5)
H23A1.15900.01360.69880.044*
H23B1.00100.00980.83080.044*
H23C1.16920.03920.87310.044*
C240.7217 (4)0.07689 (9)0.8602 (3)0.0303 (5)
H24A0.58800.09750.81190.045*
H24B0.82070.09850.93570.045*
H24C0.66070.04720.91710.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0318 (3)0.0249 (3)0.0410 (4)0.0046 (2)0.0002 (3)0.0038 (2)
O140.0234 (8)0.0267 (8)0.0236 (8)0.0011 (6)0.0031 (6)0.0062 (6)
N10.0253 (10)0.0214 (9)0.0184 (9)0.0004 (7)0.0022 (7)0.0007 (7)
C20.0225 (11)0.0224 (11)0.0223 (11)0.0000 (9)0.0054 (9)0.0008 (9)
C30.0210 (12)0.0250 (12)0.0359 (13)0.0019 (9)0.0038 (10)0.0050 (10)
C40.0240 (12)0.0233 (12)0.0317 (13)0.0032 (9)0.0007 (10)0.0055 (10)
C50.0249 (12)0.0283 (12)0.0253 (12)0.0010 (10)0.0016 (9)0.0023 (9)
C5a0.0246 (11)0.0245 (11)0.0179 (11)0.0006 (9)0.0028 (9)0.0004 (9)
C60.0211 (11)0.0279 (12)0.0227 (12)0.0003 (9)0.0007 (9)0.0009 (9)
C70.0249 (12)0.0237 (11)0.0255 (12)0.0034 (9)0.0050 (9)0.0064 (9)
C80.0304 (13)0.0223 (11)0.0279 (13)0.0033 (9)0.0028 (10)0.0011 (9)
C90.0257 (12)0.0251 (11)0.0269 (12)0.0040 (9)0.0009 (9)0.0023 (9)
C9a0.0235 (11)0.0222 (11)0.0193 (11)0.0003 (9)0.0051 (9)0.0015 (8)
C210.0232 (11)0.0205 (11)0.0252 (12)0.0006 (9)0.0048 (9)0.0011 (9)
C220.0218 (11)0.0195 (11)0.0280 (12)0.0034 (9)0.0019 (9)0.0003 (9)
C230.0305 (13)0.0275 (12)0.0294 (13)0.0021 (10)0.0004 (10)0.0028 (10)
C240.0352 (14)0.0317 (13)0.0238 (12)0.0052 (10)0.0015 (10)0.0004 (10)
Geometric parameters (Å, º) top
Cl7—C71.737 (2)C6—C71.369 (3)
O14—N11.441 (2)C6—H60.9500
O14—C41.445 (3)C7—C81.376 (3)
N1—C9a1.444 (3)C8—C91.378 (3)
N1—C21.483 (3)C8—H80.9500
C2—C211.481 (3)C9—C9a1.379 (3)
C2—C31.545 (3)C9—H90.9500
C2—H21.0000C21—C221.324 (3)
C3—C41.514 (3)C21—H210.9500
C3—H3A0.9900C22—C241.490 (3)
C3—H3B0.9900C22—C231.496 (3)
C4—C51.503 (3)C23—H23A0.9800
C4—H41.0000C23—H23B0.9800
C5—C5a1.501 (3)C23—H23C0.9800
C5—H5A0.9900C24—H24A0.9800
C5—H5B0.9900C24—H24B0.9800
C5a—C61.385 (3)C24—H24C0.9800
C5a—C9a1.385 (3)
N1—O14—C4104.15 (15)C7—C6—H6119.9
O14—N1—C9a107.59 (15)C5a—C6—H6119.9
O14—N1—C2101.51 (15)C6—C7—C8121.5 (2)
C9a—N1—C2110.19 (16)C6—C7—Cl7119.30 (17)
C21—C2—N1109.52 (17)C8—C7—Cl7119.16 (18)
C21—C2—C3113.90 (18)C7—C8—C9118.7 (2)
N1—C2—C3103.30 (17)C7—C8—H8120.7
C21—C2—H2110.0C9—C8—H8120.7
N1—C2—H2110.0C8—C9—C9a120.2 (2)
C3—C2—H2110.0C8—C9—H9119.9
C4—C3—C2103.77 (17)C9a—C9—H9119.9
C4—C3—H3A111.0C9—C9a—C5a121.0 (2)
C2—C3—H3A111.0C9—C9a—N1117.40 (19)
C4—C3—H3B111.0C5a—C9a—N1121.59 (19)
C2—C3—H3B111.0C22—C21—C2126.5 (2)
H3A—C3—H3B109.0C22—C21—H21116.7
O14—C4—C5107.54 (18)C2—C21—H21116.7
O14—C4—C3104.04 (17)C21—C22—C24124.0 (2)
C5—C4—C3112.79 (19)C21—C22—C23121.0 (2)
O14—C4—H4110.7C24—C22—C23114.9 (2)
C5—C4—H4110.7C22—C23—H23A109.5
C3—C4—H4110.7C22—C23—H23B109.5
C5a—C5—C4108.83 (18)H23A—C23—H23B109.5
C5a—C5—H5A109.9C22—C23—H23C109.5
C4—C5—H5A109.9H23A—C23—H23C109.5
C5a—C5—H5B109.9H23B—C23—H23C109.5
C4—C5—H5B109.9C22—C24—H24A109.5
H5A—C5—H5B108.3C22—C24—H24B109.5
C6—C5a—C9a118.3 (2)H24A—C24—H24B109.5
C6—C5a—C5121.62 (19)C22—C24—H24C109.5
C9a—C5a—C5120.03 (19)H24A—C24—H24C109.5
C7—C6—C5a120.2 (2)H24B—C24—H24C109.5
C4—O14—N1—C9a66.33 (19)C5a—C6—C7—Cl7179.82 (16)
C4—O14—N1—C249.39 (18)C6—C7—C8—C90.1 (3)
O14—N1—C2—C2183.46 (19)Cl7—C7—C8—C9179.96 (17)
C9a—N1—C2—C21162.74 (18)C7—C8—C9—C9a0.7 (3)
O14—N1—C2—C338.25 (19)C8—C9—C9a—C5a1.3 (3)
C9a—N1—C2—C375.6 (2)C8—C9—C9a—N1178.31 (19)
C21—C2—C3—C4104.3 (2)C6—C5a—C9a—C91.0 (3)
N1—C2—C3—C414.4 (2)C5—C5a—C9a—C9180.0 (2)
N1—O14—C4—C580.02 (19)C6—C5a—C9a—N1178.52 (18)
N1—O14—C4—C339.8 (2)C5—C5a—C9a—N10.4 (3)
C2—C3—C4—O1414.7 (2)O14—N1—C9a—C9152.18 (18)
C2—C3—C4—C5101.6 (2)C2—N1—C9a—C998.0 (2)
O14—C4—C5—C5a48.9 (2)O14—N1—C9a—C5a28.2 (3)
C3—C4—C5—C5a65.2 (2)C2—N1—C9a—C5a81.6 (2)
C4—C5—C5a—C6168.4 (2)N1—C2—C21—C22146.9 (2)
C4—C5—C5a—C9a10.5 (3)C3—C2—C21—C2298.0 (3)
C9a—C5a—C6—C70.3 (3)C2—C21—C22—C242.0 (4)
C5—C5a—C6—C7179.2 (2)C2—C21—C22—C23177.9 (2)
C5a—C6—C7—C80.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O14i0.992.583.570 (3)174
Symmetry code: (i) x1, y, z.
(III) (2SR,4RS)-8-chloro-9-methyl-2-exo-(2-methylprop-1-enyl)- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C15H18ClNOF(000) = 560
Mr = 263.75Dx = 1.338 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3013 reflections
a = 11.0631 (7) Åθ = 3.1–27.5°
b = 5.7212 (5) ŵ = 0.28 mm1
c = 21.203 (6) ÅT = 120 K
β = 102.587 (16)°Prism, colourless
V = 1309.8 (4) Å30.40 × 0.19 × 0.12 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2306 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 9.091 pixels mm-1θmax = 25.1°, θmin = 3.1°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.869, Tmax = 0.967l = 2525
16325 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0562P)2 + 1.9086P]
where P = (Fo2 + 2Fc2)/3
2306 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H18ClNOV = 1309.8 (4) Å3
Mr = 263.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0631 (7) ŵ = 0.28 mm1
b = 5.7212 (5) ÅT = 120 K
c = 21.203 (6) Å0.40 × 0.19 × 0.12 mm
β = 102.587 (16)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2306 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1661 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.967Rint = 0.105
16325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.11Δρmax = 0.43 e Å3
2306 reflectionsΔρmin = 0.39 e Å3
166 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl81.00257 (9)0.68005 (19)0.25837 (5)0.0350 (3)
O140.7434 (2)0.6716 (4)0.49115 (11)0.0227 (6)
N10.7273 (2)0.7165 (5)0.42340 (13)0.0196 (7)
C20.6038 (3)0.6127 (6)0.39709 (17)0.0193 (8)
H20.59470.57270.35040.023*
C30.6066 (3)0.3878 (6)0.43802 (18)0.0249 (9)
H3A0.52880.36980.45340.030*
H3B0.61890.24760.41280.030*
C40.7161 (3)0.4250 (6)0.49432 (18)0.0243 (9)
H40.69400.38480.53630.029*
C50.8310 (3)0.2957 (6)0.48660 (18)0.0262 (9)
H5A0.89510.30690.52710.031*
H5B0.81110.12850.47800.031*
C5a0.8797 (3)0.3974 (6)0.43209 (17)0.0198 (8)
C60.9766 (3)0.2972 (6)0.40988 (18)0.0250 (8)
H61.01690.16340.43130.030*
C71.0152 (3)0.3863 (6)0.35810 (18)0.0269 (9)
H71.08300.31790.34410.032*
C80.9545 (3)0.5773 (7)0.32623 (18)0.0252 (9)
C90.8578 (3)0.6884 (6)0.34598 (16)0.0203 (8)
C9a0.8237 (3)0.5961 (6)0.39995 (17)0.0186 (8)
C210.5061 (3)0.7815 (6)0.40570 (17)0.0196 (8)
H210.52340.87450.44370.024*
C220.3978 (3)0.8148 (6)0.36585 (17)0.0198 (8)
C230.3536 (4)0.6824 (7)0.30516 (19)0.0341 (10)
H23A0.42350.60110.29340.051*
H23B0.31660.79070.27050.051*
H23C0.29130.56800.31140.051*
C240.3078 (3)0.9934 (6)0.37990 (19)0.0265 (9)
H24A0.33931.06030.42290.040*
H24B0.22760.91870.37860.040*
H24C0.29771.11780.34740.040*
C910.7918 (3)0.8926 (6)0.31029 (18)0.0239 (8)
H91A0.85210.99760.29740.036*
H91B0.74700.97680.33830.036*
H91C0.73300.83740.27170.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl80.0258 (5)0.0425 (6)0.0397 (6)0.0035 (5)0.0136 (4)0.0059 (5)
O140.0279 (13)0.0155 (12)0.0234 (13)0.0016 (10)0.0030 (10)0.0020 (10)
N10.0191 (15)0.0155 (14)0.0238 (16)0.0009 (12)0.0038 (12)0.0001 (12)
C20.0169 (17)0.0147 (17)0.025 (2)0.0026 (14)0.0027 (14)0.0038 (14)
C30.0209 (19)0.0137 (18)0.041 (2)0.0017 (14)0.0092 (16)0.0022 (16)
C40.032 (2)0.0124 (17)0.030 (2)0.0016 (16)0.0091 (16)0.0060 (15)
C50.0257 (19)0.0176 (18)0.032 (2)0.0002 (16)0.0017 (16)0.0024 (17)
C5a0.0176 (17)0.0139 (17)0.0248 (19)0.0021 (14)0.0023 (14)0.0020 (15)
C60.0212 (19)0.0172 (18)0.034 (2)0.0045 (15)0.0005 (16)0.0010 (17)
C70.0113 (17)0.029 (2)0.038 (2)0.0015 (15)0.0006 (16)0.0019 (18)
C80.0149 (17)0.026 (2)0.034 (2)0.0037 (15)0.0035 (15)0.0023 (17)
C90.0159 (17)0.0213 (18)0.0224 (19)0.0051 (15)0.0015 (14)0.0024 (16)
C9a0.0134 (17)0.0141 (17)0.0259 (19)0.0007 (13)0.0014 (14)0.0058 (15)
C210.0239 (19)0.0103 (16)0.026 (2)0.0009 (14)0.0095 (15)0.0018 (14)
C220.0206 (18)0.0134 (16)0.0269 (19)0.0038 (15)0.0085 (14)0.0007 (15)
C230.027 (2)0.034 (2)0.039 (2)0.0059 (19)0.0013 (17)0.005 (2)
C240.024 (2)0.0175 (18)0.039 (2)0.0037 (16)0.0091 (17)0.0022 (17)
C910.0235 (19)0.0196 (18)0.029 (2)0.0007 (15)0.0066 (16)0.0011 (16)
Geometric parameters (Å, º) top
Cl8—C81.741 (4)C6—H60.9500
O14—N11.432 (4)C7—C81.380 (5)
O14—C41.448 (4)C7—H70.9500
N1—C9a1.446 (4)C8—C91.385 (5)
N1—C21.482 (4)C9—C9a1.385 (5)
C2—C211.491 (5)C9—C911.493 (5)
C2—C31.548 (5)C21—C221.320 (5)
C2—H21.0000C21—H210.9500
C3—C41.519 (5)C22—C231.481 (5)
C3—H3A0.9900C22—C241.501 (5)
C3—H3B0.9900C23—H23A0.9800
C4—C51.510 (5)C23—H23B0.9800
C4—H41.0000C23—H23C0.9800
C5—C5a1.495 (5)C24—H24A0.9800
C5—H5A0.9900C24—H24B0.9800
C5—H5B0.9900C24—H24C0.9800
C5a—C61.386 (5)C91—H91A0.9800
C5a—C9a1.399 (5)C91—H91B0.9800
C6—C71.361 (5)C91—H91C0.9800
N1—O14—C4103.9 (2)C6—C7—H7120.4
O14—N1—C9a108.7 (2)C8—C7—H7120.4
O14—N1—C2102.1 (2)C7—C8—C9122.7 (4)
C9a—N1—C2111.6 (3)C7—C8—Cl8117.9 (3)
N1—C2—C21109.1 (3)C9—C8—Cl8119.3 (3)
N1—C2—C3102.6 (3)C8—C9—C9a116.2 (3)
C21—C2—C3113.3 (3)C8—C9—C91122.0 (3)
N1—C2—H2110.5C9a—C9—C91121.7 (3)
C21—C2—H2110.5C9—C9a—C5a122.8 (3)
C3—C2—H2110.5C9—C9a—N1117.2 (3)
C4—C3—C2103.8 (3)C5a—C9a—N1120.1 (3)
C4—C3—H3A111.0C22—C21—C2126.6 (3)
C2—C3—H3A111.0C22—C21—H21116.7
C4—C3—H3B111.0C2—C21—H21116.7
C2—C3—H3B111.0C21—C22—C23124.3 (3)
H3A—C3—H3B109.0C21—C22—C24121.3 (3)
O14—C4—C5106.5 (3)C23—C22—C24114.3 (3)
O14—C4—C3103.8 (3)C22—C23—H23A109.5
C5—C4—C3113.1 (3)C22—C23—H23B109.5
O14—C4—H4111.1H23A—C23—H23B109.5
C5—C4—H4111.1C22—C23—H23C109.5
C3—C4—H4111.1H23A—C23—H23C109.5
C5a—C5—C4110.3 (3)H23B—C23—H23C109.5
C5a—C5—H5A109.6C22—C24—H24A109.5
C4—C5—H5A109.6C22—C24—H24B109.5
C5a—C5—H5B109.6H24A—C24—H24B109.5
C4—C5—H5B109.6C22—C24—H24C109.5
H5A—C5—H5B108.1H24A—C24—H24C109.5
C6—C5a—C9a117.6 (3)H24B—C24—H24C109.5
C6—C5a—C5122.5 (3)C9—C91—H91A109.5
C9a—C5a—C5119.8 (3)C9—C91—H91B109.5
C7—C6—C5a121.4 (3)H91A—C91—H91B109.5
C7—C6—H6119.3C9—C91—H91C109.5
C5a—C6—H6119.3H91A—C91—H91C109.5
C6—C7—C8119.2 (3)H91B—C91—H91C109.5
C4—O14—N1—C9a67.8 (3)C7—C8—C9—C9a0.4 (5)
C4—O14—N1—C250.2 (3)Cl8—C8—C9—C9a179.4 (2)
O14—N1—C2—C2181.3 (3)C7—C8—C9—C91179.0 (3)
C9a—N1—C2—C21162.9 (3)Cl8—C8—C9—C910.9 (5)
O14—N1—C2—C339.2 (3)C8—C9—C9a—C5a2.1 (5)
C9a—N1—C2—C376.7 (3)C91—C9—C9a—C5a176.4 (3)
N1—C2—C3—C414.9 (3)C8—C9—C9a—N1176.9 (3)
C21—C2—C3—C4102.6 (3)C91—C9—C9a—N14.5 (5)
N1—O14—C4—C579.8 (3)C6—C5a—C9a—C92.8 (5)
N1—O14—C4—C339.8 (3)C5—C5a—C9a—C9174.8 (3)
C2—C3—C4—O1414.2 (4)C6—C5a—C9a—N1176.2 (3)
C2—C3—C4—C5100.7 (3)C5—C5a—C9a—N16.1 (5)
O14—C4—C5—C5a45.8 (4)O14—N1—C9a—C9153.5 (3)
C3—C4—C5—C5a67.6 (4)C2—N1—C9a—C994.7 (3)
C4—C5—C5a—C6173.0 (3)O14—N1—C9a—C5a25.6 (4)
C4—C5—C5a—C9a4.5 (4)C2—N1—C9a—C5a86.2 (4)
C9a—C5a—C6—C70.9 (5)N1—C2—C21—C22144.9 (3)
C5—C5a—C6—C7176.7 (3)C3—C2—C21—C22101.5 (4)
C5a—C6—C7—C81.5 (5)C2—C21—C22—C231.5 (6)
C6—C7—C8—C92.2 (5)C2—C21—C22—C24179.3 (3)
C6—C7—C8—Cl8177.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1i0.992.793.730 (4)158
Symmetry code: (i) x+2, y+2, z+1.
(IV) (2RS,4RS)-8-chloro-9-methyl-2-endo-(2-methylprop-1-enyl)- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C15H18ClNOZ = 2
Mr = 263.75F(000) = 280
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2890 (9) ÅCell parameters from 3005 reflections
b = 9.3076 (16) Åθ = 2.8–27.5°
c = 13.551 (3) ŵ = 0.28 mm1
α = 94.554 (15)°T = 120 K
β = 94.684 (15)°Plate, colourless
γ = 97.298 (14)°0.32 × 0.26 × 0.11 mm
V = 656.7 (2) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3005 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.932, Tmax = 0.970l = 1717
16228 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.038P)2 + 0.5092P]
where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H18ClNOγ = 97.298 (14)°
Mr = 263.75V = 656.7 (2) Å3
Triclinic, P1Z = 2
a = 5.2890 (9) ÅMo Kα radiation
b = 9.3076 (16) ŵ = 0.28 mm1
c = 13.551 (3) ÅT = 120 K
α = 94.554 (15)°0.32 × 0.26 × 0.11 mm
β = 94.684 (15)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3005 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2348 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.970Rint = 0.041
16228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.11Δρmax = 0.29 e Å3
3005 reflectionsΔρmin = 0.36 e Å3
166 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl80.73078 (12)0.74226 (5)0.21073 (4)0.03620 (17)
O140.6146 (2)0.07431 (14)0.12657 (10)0.0230 (3)
N10.6629 (3)0.18689 (17)0.20756 (12)0.0191 (3)
C20.5250 (4)0.1133 (2)0.28500 (15)0.0242 (4)
H20.63090.04040.31100.029*
C30.2807 (4)0.0301 (2)0.22771 (15)0.0254 (4)
H3A0.24830.07060.24700.031*
H3B0.13000.08000.23950.031*
C40.3402 (4)0.0311 (2)0.12007 (15)0.0234 (4)
H40.29260.06780.08400.028*
C50.2183 (4)0.1429 (2)0.06578 (15)0.0228 (4)
H5A0.23980.12810.00610.027*
H5B0.03270.13210.07390.027*
C5a0.3407 (4)0.2930 (2)0.10635 (14)0.0191 (4)
C60.2486 (4)0.4150 (2)0.07421 (16)0.0274 (5)
H60.10160.40400.02770.033*
C70.3654 (4)0.5516 (2)0.10817 (16)0.0297 (5)
H70.30050.63490.08550.036*
C80.5780 (4)0.5666 (2)0.17553 (15)0.0246 (4)
C90.6787 (4)0.4489 (2)0.21219 (14)0.0194 (4)
C9a0.5537 (3)0.31158 (19)0.17540 (13)0.0169 (4)
C210.4772 (4)0.2126 (2)0.37011 (15)0.0260 (4)
H210.35200.27550.35840.031*
C220.5935 (4)0.2218 (2)0.46155 (16)0.0297 (5)
C230.8029 (5)0.1396 (3)0.4932 (2)0.0474 (7)
H23A0.85820.08740.43480.071*
H23B0.74180.06970.53920.071*
H23C0.94740.20710.52660.071*
C240.5118 (5)0.3198 (3)0.54187 (18)0.0465 (7)
H24A0.36810.36650.51520.070*
H24B0.65510.39450.56700.070*
H24C0.45830.26290.59620.070*
C910.9103 (4)0.4665 (2)0.28569 (15)0.0255 (4)
H91A1.03280.54790.27030.038*
H91B0.99010.37700.28200.038*
H91C0.85950.48600.35290.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl80.0492 (4)0.0189 (2)0.0386 (3)0.0047 (2)0.0108 (3)0.0011 (2)
O140.0171 (7)0.0209 (7)0.0292 (8)0.0013 (5)0.0032 (6)0.0088 (6)
N10.0174 (8)0.0195 (7)0.0192 (8)0.0025 (6)0.0003 (6)0.0038 (6)
C20.0249 (10)0.0244 (10)0.0238 (10)0.0030 (8)0.0023 (8)0.0055 (8)
C30.0234 (10)0.0245 (10)0.0270 (11)0.0019 (8)0.0031 (8)0.0013 (8)
C40.0189 (10)0.0212 (9)0.0272 (11)0.0027 (7)0.0026 (8)0.0074 (8)
C50.0161 (9)0.0304 (10)0.0197 (10)0.0016 (8)0.0012 (8)0.0047 (8)
C5a0.0157 (9)0.0250 (9)0.0163 (9)0.0021 (7)0.0035 (7)0.0010 (7)
C60.0247 (11)0.0327 (11)0.0247 (11)0.0062 (9)0.0035 (8)0.0043 (9)
C70.0346 (12)0.0259 (10)0.0305 (12)0.0091 (9)0.0018 (9)0.0066 (9)
C80.0293 (11)0.0195 (9)0.0242 (10)0.0016 (8)0.0085 (9)0.0022 (8)
C90.0175 (9)0.0225 (9)0.0175 (9)0.0004 (7)0.0051 (7)0.0025 (7)
C9a0.0143 (9)0.0203 (9)0.0165 (9)0.0030 (7)0.0048 (7)0.0008 (7)
C210.0268 (11)0.0254 (10)0.0261 (11)0.0035 (8)0.0034 (9)0.0043 (8)
C220.0261 (11)0.0358 (11)0.0238 (11)0.0089 (9)0.0024 (9)0.0039 (9)
C230.0361 (14)0.0610 (17)0.0424 (15)0.0000 (12)0.0087 (12)0.0116 (13)
C240.0486 (16)0.0589 (17)0.0268 (12)0.0062 (13)0.0027 (11)0.0066 (11)
C910.0200 (10)0.0282 (10)0.0250 (11)0.0032 (8)0.0006 (8)0.0044 (8)
Geometric parameters (Å, º) top
Cl8—C81.741 (2)C6—H60.9500
O14—N11.4392 (19)C7—C81.375 (3)
O14—C41.450 (2)C7—H70.9500
N1—C9a1.442 (2)C8—C91.387 (3)
N1—C21.488 (3)C9—C9a1.396 (2)
C2—C211.479 (3)C9—C911.497 (3)
C2—C31.536 (3)C21—C221.329 (3)
C2—H21.0000C21—H210.9500
C3—C41.518 (3)C22—C231.479 (3)
C3—H3A0.9900C22—C241.491 (3)
C3—H3B0.9900C23—H23A0.9800
C4—C51.501 (3)C23—H23B0.9800
C4—H41.0000C23—H23C0.9800
C5—C5a1.505 (3)C24—H24A0.9800
C5—H5A0.9900C24—H24B0.9800
C5—H5B0.9900C24—H24C0.9800
C5a—C61.378 (3)C91—H91A0.9800
C5a—C9a1.388 (3)C91—H91B0.9800
C6—C71.368 (3)C91—H91C0.9800
N1—O14—C4104.10 (13)C6—C7—H7120.4
O14—N1—C9a107.54 (14)C8—C7—H7120.4
O14—N1—C2100.29 (14)C7—C8—C9122.85 (18)
C9a—N1—C2113.92 (15)C7—C8—Cl8117.31 (16)
C21—C2—N1114.18 (16)C9—C8—Cl8119.78 (16)
C21—C2—C3114.01 (17)C8—C9—C9a116.06 (18)
N1—C2—C3104.22 (16)C8—C9—C91122.44 (17)
C21—C2—H2108.0C9a—C9—C91121.50 (17)
N1—C2—H2108.0C5a—C9a—C9122.34 (17)
C3—C2—H2108.0C5a—C9a—N1120.22 (16)
C4—C3—C2103.08 (16)C9—C9a—N1117.35 (16)
C4—C3—H3A111.1C22—C21—C2125.9 (2)
C2—C3—H3A111.1C22—C21—H21117.1
C4—C3—H3B111.1C2—C21—H21117.0
C2—C3—H3B111.1C21—C22—C23125.2 (2)
H3A—C3—H3B109.1C21—C22—C24119.9 (2)
O14—C4—C5106.92 (15)C23—C22—C24114.9 (2)
O14—C4—C3103.98 (15)C22—C23—H23A109.5
C5—C4—C3113.35 (16)C22—C23—H23B109.5
O14—C4—H4110.8H23A—C23—H23B109.5
C5—C4—H4110.8C22—C23—H23C109.5
C3—C4—H4110.8H23A—C23—H23C109.5
C4—C5—C5a109.79 (16)H23B—C23—H23C109.5
C4—C5—H5B109.7C22—C24—H24A109.5
C5a—C5—H5B109.7C22—C24—H24B109.5
C4—C5—H5A109.7H24A—C24—H24B109.5
C5a—C5—H5A109.7C22—C24—H24C109.5
H5B—C5—H5A108.2H24A—C24—H24C109.5
C6—C5a—C9a118.50 (18)H24B—C24—H24C109.5
C6—C5a—C5121.01 (18)C9—C91—H91A109.5
C9a—C5a—C5120.47 (17)C9—C91—H91B109.5
C7—C6—C5a121.11 (19)H91A—C91—H91B109.5
C7—C6—H6119.4C9—C91—H91C109.5
C5a—C6—H6119.4H91A—C91—H91C109.5
C6—C7—C8119.13 (19)H91B—C91—H91C109.5
C4—O14—N1—C9a69.19 (17)C7—C8—C9—C9a1.0 (3)
C4—O14—N1—C250.12 (16)Cl8—C8—C9—C9a176.12 (14)
O14—N1—C2—C21164.40 (16)C7—C8—C9—C91179.91 (19)
C9a—N1—C2—C2149.8 (2)Cl8—C8—C9—C912.9 (3)
O14—N1—C2—C339.38 (17)C6—C5a—C9a—C90.8 (3)
C9a—N1—C2—C375.18 (19)C5—C5a—C9a—C9177.59 (17)
C21—C2—C3—C4140.31 (17)C6—C5a—C9a—N1177.20 (17)
N1—C2—C3—C415.18 (19)C5—C5a—C9a—N11.2 (3)
N1—O14—C4—C579.45 (17)C8—C9—C9a—C5a0.1 (3)
N1—O14—C4—C340.72 (17)C91—C9—C9a—C5a179.21 (17)
C2—C3—C4—O1414.57 (19)C8—C9—C9a—N1176.37 (17)
C2—C3—C4—C5101.17 (18)C91—C9—C9a—N12.7 (3)
O14—C4—C5—C5a45.5 (2)O14—N1—C9a—C5a29.7 (2)
C3—C4—C5—C5a68.5 (2)C2—N1—C9a—C5a80.5 (2)
C4—C5—C5a—C6174.80 (18)O14—N1—C9a—C9146.86 (15)
C4—C5—C5a—C9a6.9 (2)C2—N1—C9a—C9102.95 (19)
C9a—C5a—C6—C70.9 (3)N1—C2—C21—C22108.4 (2)
C5—C5a—C6—C7177.50 (19)C3—C2—C21—C22132.0 (2)
C5a—C6—C7—C80.0 (3)C2—C21—C22—C233.6 (4)
C6—C7—C8—C91.0 (3)C2—C21—C22—C24175.6 (2)
C6—C7—C8—Cl8176.25 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O14i0.992.393.358 (3)166
Symmetry code: (i) x1, y, z.
(V) (2SR,4RS)-8-chloro-9-methyl-2-exo-(prop-1-en-2-yl)- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C14H16ClNOF(000) = 528
Mr = 249.73Dx = 1.382 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2759 reflections
a = 8.6828 (11) Åθ = 3.0–27.5°
b = 10.1456 (6) ŵ = 0.30 mm1
c = 14.2976 (16) ÅT = 120 K
β = 107.587 (9)°Needle, colourless
V = 1200.6 (2) Å30.50 × 0.17 × 0.14 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2759 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 117
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.844, Tmax = 0.959l = 1818
14152 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.033P)2 + 0.6821P]
where P = (Fo2 + 2Fc2)/3
2759 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H16ClNOV = 1200.6 (2) Å3
Mr = 249.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6828 (11) ŵ = 0.30 mm1
b = 10.1456 (6) ÅT = 120 K
c = 14.2976 (16) Å0.50 × 0.17 × 0.14 mm
β = 107.587 (9)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2759 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2083 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.959Rint = 0.045
14152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
2759 reflectionsΔρmin = 0.28 e Å3
156 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl80.17493 (5)0.51162 (5)0.04294 (3)0.02313 (13)
O140.56116 (15)0.44942 (12)0.39932 (9)0.0181 (3)
N10.56968 (17)0.44244 (14)0.30049 (10)0.0154 (3)
C20.7240 (2)0.50923 (18)0.30829 (13)0.0163 (4)
H20.71740.55040.24360.020*
C30.7334 (2)0.61983 (18)0.38466 (14)0.0196 (4)
H3A0.83900.61880.43650.024*
H3B0.71670.70760.35300.024*
C40.5964 (2)0.58590 (18)0.42662 (14)0.0186 (4)
H40.63230.59600.49960.022*
C50.4426 (2)0.66211 (18)0.38113 (13)0.0200 (4)
H5A0.36400.64360.41720.024*
H5B0.46590.75780.38560.024*
C5a0.3718 (2)0.62281 (17)0.27530 (13)0.0167 (4)
C60.2428 (2)0.69009 (18)0.21303 (14)0.0188 (4)
H60.19530.76110.23780.023*
C70.1822 (2)0.65572 (18)0.11573 (14)0.0186 (4)
H70.09380.70250.07320.022*
C80.2519 (2)0.55219 (18)0.08087 (13)0.0175 (4)
C90.3788 (2)0.47884 (17)0.13986 (13)0.0163 (4)
C9a0.4367 (2)0.51727 (17)0.23824 (13)0.0154 (4)
C210.8665 (2)0.41759 (18)0.33704 (13)0.0181 (4)
C220.8561 (2)0.29420 (19)0.36188 (14)0.0239 (4)
H22A0.94960.23990.37890.029*
H22B0.75510.25920.36280.029*
C231.0216 (2)0.4792 (2)0.33394 (16)0.0287 (5)
H23A1.10690.41220.34840.043*
H23B1.05190.54980.38290.043*
H23C1.00760.51590.26850.043*
C910.4504 (2)0.36465 (18)0.10169 (14)0.0207 (4)
H91A0.36370.31120.05860.031*
H91B0.51360.31070.15680.031*
H91C0.52100.39720.06460.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl80.0201 (2)0.0286 (3)0.0186 (2)0.00090 (19)0.00268 (17)0.0012 (2)
O140.0235 (7)0.0183 (7)0.0148 (6)0.0017 (5)0.0089 (5)0.0008 (5)
N10.0172 (8)0.0166 (8)0.0132 (7)0.0004 (6)0.0056 (6)0.0009 (6)
C20.0166 (9)0.0157 (9)0.0170 (9)0.0017 (7)0.0058 (7)0.0010 (7)
C30.0188 (9)0.0180 (9)0.0220 (10)0.0020 (7)0.0062 (8)0.0022 (8)
C40.0221 (10)0.0168 (9)0.0171 (9)0.0024 (7)0.0060 (7)0.0035 (7)
C50.0217 (10)0.0182 (10)0.0215 (10)0.0002 (7)0.0087 (8)0.0036 (8)
C5a0.0166 (9)0.0157 (9)0.0194 (9)0.0030 (7)0.0079 (7)0.0006 (7)
C60.0179 (9)0.0150 (9)0.0255 (10)0.0006 (7)0.0097 (8)0.0001 (8)
C70.0136 (9)0.0169 (9)0.0249 (10)0.0007 (7)0.0052 (7)0.0029 (8)
C80.0168 (9)0.0195 (9)0.0159 (9)0.0042 (7)0.0044 (7)0.0013 (7)
C90.0161 (8)0.0150 (9)0.0194 (9)0.0032 (7)0.0078 (7)0.0002 (7)
C9a0.0140 (8)0.0142 (9)0.0196 (9)0.0019 (7)0.0073 (7)0.0013 (7)
C210.0179 (9)0.0214 (10)0.0144 (9)0.0024 (7)0.0038 (7)0.0016 (7)
C220.0236 (10)0.0235 (11)0.0237 (10)0.0045 (8)0.0057 (8)0.0007 (8)
C230.0181 (10)0.0294 (12)0.0382 (12)0.0028 (8)0.0077 (9)0.0023 (9)
C910.0218 (10)0.0204 (10)0.0205 (10)0.0013 (8)0.0072 (8)0.0028 (8)
Geometric parameters (Å, º) top
Cl8—C81.7420 (18)C6—C71.375 (3)
O14—N11.4389 (18)C6—H60.9500
O14—C41.446 (2)C7—C81.379 (3)
N1—C9a1.443 (2)C7—H70.9500
N1—C21.476 (2)C8—C91.385 (3)
C2—C211.502 (2)C9—C9a1.399 (2)
C2—C31.551 (2)C9—C911.494 (2)
C2—H21.0000C21—C221.312 (3)
C3—C41.524 (3)C21—C231.498 (3)
C3—H3A0.9900C22—H22A0.9500
C3—H3B0.9900C22—H22B0.9500
C4—C51.510 (3)C23—H23A0.9800
C4—H41.0000C23—H23B0.9800
C5—C5a1.505 (3)C23—H23C0.9800
C5—H5A0.9900C91—H91A0.9800
C5—H5B0.9900C91—H91B0.9800
C5a—C61.382 (3)C91—H91C0.9800
C5a—C9a1.387 (2)
N1—O14—C4104.04 (12)C7—C6—H6119.5
O14—N1—C9a108.11 (13)C5a—C6—H6119.5
O14—N1—C2102.60 (12)C6—C7—C8118.91 (17)
C9a—N1—C2110.15 (14)C6—C7—H7120.5
N1—C2—C21112.98 (15)C8—C7—H7120.5
N1—C2—C3103.81 (14)C7—C8—C9123.00 (17)
C21—C2—C3113.06 (14)C7—C8—Cl8118.15 (14)
N1—C2—H2108.9C9—C8—Cl8118.84 (14)
C21—C2—H2108.9C8—C9—C9a116.15 (16)
C3—C2—H2108.9C8—C9—C91122.45 (16)
C4—C3—C2103.45 (14)C9a—C9—C91121.40 (16)
C4—C3—H3A111.1C5a—C9a—C9122.37 (16)
C2—C3—H3A111.1C5a—C9a—N1120.81 (16)
C4—C3—H3B111.1C9—C9a—N1116.82 (15)
C2—C3—H3B111.1C22—C21—C23122.83 (18)
H3A—C3—H3B109.0C22—C21—C2123.14 (17)
O14—C4—C5106.64 (14)C23—C21—C2114.03 (16)
O14—C4—C3103.70 (14)C21—C22—H22A120.0
C5—C4—C3114.12 (16)C21—C22—H22B120.0
O14—C4—H4110.7H22A—C22—H22B120.0
C5—C4—H4110.7C21—C23—H23A109.5
C3—C4—H4110.7C21—C23—H23B109.5
C5a—C5—C4109.68 (15)H23A—C23—H23B109.5
C5a—C5—H5A109.7C21—C23—H23C109.5
C4—C5—H5A109.7H23A—C23—H23C109.5
C5a—C5—H5B109.7H23B—C23—H23C109.5
C4—C5—H5B109.7C9—C91—H91A109.5
H5A—C5—H5B108.2C9—C91—H91B109.5
C6—C5a—C9a118.60 (17)H91A—C91—H91B109.5
C6—C5a—C5121.47 (16)C9—C91—H91C109.5
C9a—C5a—C5119.93 (16)H91A—C91—H91C109.5
C7—C6—C5a120.94 (17)H91B—C91—H91C109.5
C4—O14—N1—C9a67.83 (15)C7—C8—C9—C9a1.4 (3)
C4—O14—N1—C248.57 (15)Cl8—C8—C9—C9a179.20 (13)
O14—N1—C2—C2187.38 (16)C7—C8—C9—C91178.36 (17)
C9a—N1—C2—C21157.70 (14)Cl8—C8—C9—C911.1 (2)
O14—N1—C2—C335.46 (16)C6—C5a—C9a—C91.6 (3)
C9a—N1—C2—C379.46 (16)C5—C5a—C9a—C9178.10 (16)
N1—C2—C3—C410.65 (18)C6—C5a—C9a—N1179.01 (15)
C21—C2—C3—C4112.14 (16)C5—C5a—C9a—N11.3 (3)
N1—O14—C4—C579.72 (16)C8—C9—C9a—C5a0.1 (3)
N1—O14—C4—C341.07 (16)C91—C9—C9a—C5a179.88 (17)
C2—C3—C4—O1417.77 (17)C8—C9—C9a—N1179.53 (15)
C2—C3—C4—C597.83 (17)C91—C9—C9a—N10.7 (2)
O14—C4—C5—C5a47.42 (19)O14—N1—C9a—C5a28.2 (2)
C3—C4—C5—C5a66.5 (2)C2—N1—C9a—C5a83.20 (19)
C4—C5—C5a—C6171.23 (16)O14—N1—C9a—C9152.41 (14)
C4—C5—C5a—C9a8.5 (2)C2—N1—C9a—C996.21 (18)
C9a—C5a—C6—C71.7 (3)N1—C2—C21—C226.3 (2)
C5—C5a—C6—C7178.05 (17)C3—C2—C21—C22111.2 (2)
C5a—C6—C7—C80.2 (3)N1—C2—C21—C23173.15 (15)
C6—C7—C8—C91.4 (3)C3—C2—C21—C2369.3 (2)
C6—C7—C8—Cl8179.22 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O14i1.002.573.202 (2)121
Symmetry code: (i) x+1, y+1, z+1.
(VI) 7,9-dichloro-2-exo-(prop-1-en-2-yl)-2,3,4,5-tetrahydro- 1H-1,4-epoxy-1-benzazepine top
Crystal data top
C13H13Cl2NOF(000) = 280
Mr = 270.14Dx = 1.483 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2751 reflections
a = 10.4753 (13) Åθ = 3.2–27.5°
b = 5.4759 (8) ŵ = 0.52 mm1
c = 10.9632 (12) ÅT = 120 K
β = 105.791 (13)°Block, colourless
V = 605.13 (13) Å30.30 × 0.25 × 0.16 mm
Z = 2
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2751 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 77
Tmin = 0.826, Tmax = 0.922l = 1414
10313 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0738P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2751 reflectionsΔρmax = 0.42 e Å3
156 parametersΔρmin = 0.56 e Å3
1 restraintAbsolute structure: Flack (1983), with 1223 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.61 (7)
Crystal data top
C13H13Cl2NOV = 605.13 (13) Å3
Mr = 270.14Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.4753 (13) ŵ = 0.52 mm1
b = 5.4759 (8) ÅT = 120 K
c = 10.9632 (12) Å0.30 × 0.25 × 0.16 mm
β = 105.791 (13)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2751 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2385 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.922Rint = 0.053
10313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.42 e Å3
S = 1.05Δρmin = 0.56 e Å3
2751 reflectionsAbsolute structure: Flack (1983), with 1223 Friedel pairs
156 parametersAbsolute structure parameter: 0.61 (7)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.27068 (6)0.76451 (14)0.35134 (6)0.0354 (2)
Cl90.51226 (6)0.11718 (13)0.12174 (6)0.03107 (19)
O140.86993 (18)0.3899 (4)0.38211 (17)0.0286 (5)
N10.7617 (2)0.3387 (4)0.2721 (2)0.0235 (5)
C20.8024 (3)0.4726 (5)0.1711 (3)0.0255 (6)
H20.72140.51930.10280.031*
C30.8690 (3)0.7046 (5)0.2378 (3)0.0281 (6)
H3A0.95530.73390.21980.034*
H3B0.81150.84930.21120.034*
C40.8875 (3)0.6476 (6)0.3783 (3)0.0299 (6)
H40.97850.69530.42960.036*
C50.7833 (3)0.7637 (6)0.4311 (2)0.0295 (6)
H5A0.80640.73950.52400.035*
H5B0.77940.94140.41390.035*
C5a0.6502 (3)0.6495 (5)0.3702 (2)0.0243 (6)
C60.5347 (3)0.7452 (7)0.3892 (2)0.0282 (6)
H60.53810.88040.44430.034*
C70.4142 (3)0.6412 (6)0.3269 (2)0.0276 (6)
C80.4050 (3)0.4469 (6)0.2457 (3)0.0265 (6)
H80.32140.37890.20270.032*
C90.5213 (3)0.3541 (5)0.2288 (2)0.0256 (6)
C9a0.6444 (2)0.4477 (5)0.2917 (2)0.0224 (5)
C210.8904 (3)0.3158 (5)0.1152 (2)0.0264 (6)
C220.8488 (3)0.2504 (7)0.0042 (3)0.0401 (7)
H22A0.90430.15530.04120.048*
H22B0.76310.29810.05360.048*
C231.0237 (3)0.2459 (7)0.1965 (3)0.0338 (6)
H23A1.06900.14430.14760.051*
H23B1.01370.15370.27000.051*
H23C1.07600.39350.22550.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0247 (3)0.0457 (5)0.0394 (4)0.0035 (3)0.0150 (3)0.0051 (3)
Cl90.0239 (3)0.0359 (4)0.0342 (3)0.0041 (3)0.0093 (2)0.0080 (3)
O140.0199 (9)0.0371 (12)0.0268 (10)0.0008 (8)0.0030 (7)0.0008 (8)
N10.0163 (10)0.0292 (12)0.0248 (10)0.0019 (9)0.0052 (8)0.0023 (9)
C20.0185 (12)0.0323 (16)0.0273 (13)0.0006 (11)0.0089 (10)0.0055 (11)
C30.0245 (13)0.0270 (15)0.0365 (15)0.0020 (11)0.0144 (11)0.0019 (12)
C40.0210 (13)0.0355 (18)0.0323 (13)0.0022 (12)0.0057 (10)0.0040 (13)
C50.0268 (13)0.0341 (15)0.0278 (13)0.0026 (13)0.0077 (10)0.0067 (14)
C5a0.0227 (12)0.0273 (16)0.0232 (12)0.0016 (12)0.0070 (9)0.0035 (11)
C60.0286 (13)0.0346 (16)0.0232 (12)0.0025 (13)0.0101 (10)0.0001 (12)
C70.0225 (12)0.0359 (17)0.0269 (13)0.0012 (13)0.0110 (10)0.0032 (13)
C80.0184 (12)0.0344 (15)0.0283 (13)0.0000 (11)0.0093 (11)0.0004 (11)
C90.0235 (13)0.0310 (16)0.0246 (13)0.0016 (12)0.0106 (10)0.0010 (12)
C9a0.0175 (12)0.0265 (14)0.0245 (13)0.0012 (10)0.0082 (9)0.0032 (11)
C210.0182 (12)0.0297 (17)0.0338 (14)0.0027 (11)0.0113 (11)0.0028 (12)
C220.0323 (15)0.055 (2)0.0368 (15)0.0029 (16)0.0157 (12)0.0042 (17)
C230.0216 (13)0.0347 (16)0.0462 (16)0.0006 (13)0.0113 (12)0.0021 (15)
Geometric parameters (Å, º) top
Cl7—C71.734 (3)C5—H5B0.9900
Cl9—C91.735 (3)C5a—C61.386 (4)
O14—C41.425 (4)C5a—C9a1.391 (4)
O14—N11.441 (3)C6—C71.383 (4)
N1—C9a1.433 (3)C6—H60.9500
N1—C21.483 (3)C7—C81.374 (4)
C2—C211.508 (4)C8—C91.378 (4)
C2—C31.536 (4)C8—H80.9500
C2—H21.0000C9—C9a1.385 (4)
C3—C41.531 (4)C21—C221.312 (4)
C3—H3A0.9900C21—C231.488 (4)
C3—H3B0.9900C22—H22A0.9500
C4—C51.508 (4)C22—H22B0.9500
C4—H41.0000C23—H23A0.9800
C5—C5a1.508 (4)C23—H23B0.9800
C5—H5A0.9900C23—H23C0.9800
C4—O14—N1104.29 (19)C6—C5a—C5121.1 (3)
C9a—N1—O14107.7 (2)C9a—C5a—C5118.9 (2)
C9a—N1—C2109.8 (2)C7—C6—C5a119.1 (3)
O14—N1—C2102.02 (19)C7—C6—H6120.4
N1—C2—C21110.7 (2)C5a—C6—H6120.4
N1—C2—C3103.8 (2)C8—C7—C6122.2 (3)
C21—C2—C3114.6 (2)C8—C7—Cl7119.4 (2)
N1—C2—H2109.2C6—C7—Cl7118.4 (2)
C21—C2—H2109.2C7—C8—C9117.6 (3)
C3—C2—H2109.2C7—C8—H8121.2
C4—C3—C2103.1 (2)C9—C8—H8121.2
C4—C3—H3A111.1C8—C9—C9a122.3 (3)
C2—C3—H3A111.1C8—C9—Cl9118.6 (2)
C4—C3—H3B111.1C9a—C9—Cl9119.1 (2)
C2—C3—H3B111.1C9—C9a—C5a118.7 (2)
H3A—C3—H3B109.1C9—C9a—N1119.4 (2)
O14—C4—C5107.1 (3)C5a—C9a—N1121.9 (2)
O14—C4—C3104.4 (2)C22—C21—C23122.1 (3)
C5—C4—C3113.1 (2)C22—C21—C2119.2 (3)
O14—C4—H4110.7C23—C21—C2118.7 (2)
C5—C4—H4110.7C21—C22—H22A120.0
C3—C4—H4110.7C21—C22—H22B120.0
C5a—C5—C4109.5 (2)H22A—C22—H22B120.0
C5a—C5—H5A109.8C21—C23—H23A109.5
C4—C5—H5A109.8C21—C23—H23B109.5
C5a—C5—H5B109.8H23A—C23—H23B109.5
C4—C5—H5B109.8C21—C23—H23C109.5
H5A—C5—H5B108.2H23A—C23—H23C109.5
C6—C5a—C9a120.0 (3)H23B—C23—H23C109.5
C4—O14—N1—C9a67.0 (2)C6—C7—C8—C90.9 (4)
C4—O14—N1—C248.5 (2)Cl7—C7—C8—C9180.0 (2)
C9a—N1—C2—C21159.2 (2)C7—C8—C9—C9a0.9 (4)
O14—N1—C2—C2186.8 (2)C7—C8—C9—Cl9177.3 (2)
C9a—N1—C2—C377.3 (3)C8—C9—C9a—C5a3.0 (4)
O14—N1—C2—C336.7 (2)Cl9—C9—C9a—C5a175.2 (2)
N1—C2—C3—C412.8 (3)C8—C9—C9a—N1178.5 (2)
C21—C2—C3—C4108.1 (3)Cl9—C9—C9a—N13.3 (4)
N1—O14—C4—C580.3 (2)C6—C5a—C9a—C93.3 (4)
N1—O14—C4—C339.9 (2)C5—C5a—C9a—C9175.5 (2)
C2—C3—C4—O1415.8 (3)C6—C5a—C9a—N1178.3 (2)
C2—C3—C4—C5100.2 (3)C5—C5a—C9a—N13.0 (4)
O14—C4—C5—C5a47.6 (3)O14—N1—C9a—C9155.3 (2)
C3—C4—C5—C5a66.8 (3)C2—N1—C9a—C994.4 (3)
C4—C5—C5a—C6171.3 (3)O14—N1—C9a—C5a26.3 (3)
C4—C5—C5a—C9a7.4 (4)C2—N1—C9a—C5a84.0 (3)
C9a—C5a—C6—C71.6 (4)N1—C2—C21—C22115.5 (3)
C5—C5a—C6—C7177.1 (3)C3—C2—C21—C22127.5 (3)
C5a—C6—C7—C80.5 (4)N1—C2—C21—C2366.1 (3)
C5a—C6—C7—Cl7179.7 (2)C3—C2—C21—C2350.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O14i1.002.483.389 (4)151
Symmetry code: (i) x+2, y+1/2, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC12H13NOC14H16ClNOC15H18ClNOC15H18ClNO
Mr187.23249.73263.75263.75
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/nTriclinic, P1
Temperature (K)120120120120
a, b, c (Å)9.8070 (13), 7.3982 (7), 13.738 (2)5.6445 (5), 25.744 (3), 8.3894 (11)11.0631 (7), 5.7212 (5), 21.203 (6)5.2890 (9), 9.3076 (16), 13.551 (3)
α, β, γ (°)90, 105.441 (11), 9090, 95.124 (9), 9090, 102.587 (16), 9094.554 (15), 94.684 (15), 97.298 (14)
V3)960.8 (2)1214.2 (2)1309.8 (4)656.7 (2)
Z4442
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.300.280.28
Crystal size (mm)0.31 × 0.29 × 0.200.44 × 0.24 × 0.200.40 × 0.19 × 0.120.32 × 0.26 × 0.11
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.969, 0.9840.895, 0.9430.869, 0.9670.932, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
13902, 2200, 1488 15979, 2783, 1929 16325, 2306, 1661 16228, 3005, 2348
Rint0.0540.0460.1050.041
(sin θ/λ)max1)0.6500.6500.5960.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.107, 1.06 0.048, 0.129, 1.08 0.068, 0.155, 1.11 0.049, 0.113, 1.11
No. of reflections2200278323063005
No. of parameters127156166166
No. of restraints0000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.240.29, 0.300.43, 0.390.29, 0.36
Absolute structure????
Absolute structure parameter????


(V)(VI)
Crystal data
Chemical formulaC14H16ClNOC13H13Cl2NO
Mr249.73270.14
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21
Temperature (K)120120
a, b, c (Å)8.6828 (11), 10.1456 (6), 14.2976 (16)10.4753 (13), 5.4759 (8), 10.9632 (12)
α, β, γ (°)90, 107.587 (9), 9090, 105.791 (13), 90
V3)1200.6 (2)605.13 (13)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.300.52
Crystal size (mm)0.50 × 0.17 × 0.140.30 × 0.25 × 0.16
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.844, 0.9590.826, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
14152, 2759, 2083 10313, 2751, 2385
Rint0.0450.053
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.093, 1.07 0.045, 0.115, 1.05
No. of reflections27592751
No. of parameters156156
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.280.42, 0.56
Absolute structure?Flack (1983), with 1223 Friedel pairs
Absolute structure parameter?0.61 (7)

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, °) for (I)–(VI) top
Ring-puckering parametersa
Five-membered ringSix-membered ring
CompoundQ2ϕ2Qθϕ
(I)0.449 (2)196.9 (2)0.629 (2)53.8 (2)345.3 (2)
(II)0.445 (2)198.4 (3)0.613 (2)51.1 (2)344.1 (3)
(III)0.449 (3)199.1 (5)0.631 (3)55.6 (3)345.3 (4)
(IV)0.445 (2)198.8 (3)0.623 (2)52.7 (2)347.9 (2)
(V)0.435 (2)193.5 (3)0.621 (2)52.4 (2)345.2 (2)
(VI)0.434 (3)196.6 (4)0.618 (3)53.5 (3)344.5 (3)
Torsion angles N1—C2—C21—C22
(I)126.62 (16)
(II)146.9 (2)
(III)144.9 (3)
(IV)-108.4 (2)
(V)-6.3 (2)
(VI)115.5 (3)
Note: (a) Ring-puckering parameters refer to the atom sequences O14/N1/C2/C3/C4 and O14/N1/C9a/C5a/C5/C4, respectively.
Parameters (Å, °) for hydrogen bonds and short intermolecular contacts in (I)–(VI) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C4—H4···O14i1.002.603.209 (2)119
C6—H6···Cg1ii0.952.583.469 (5)156
C22—H22B···Cg1iii0.952.713.610 (5)158
(II)C5—H5B···O14iv0.992.583.570 (3)174
(III)C5—H5A···Cg1v0.992.793.730 (4)158
(IV)C5—H5B···O14iv0.992.393.358 (3)166
(V)C4—H4···O14vi1.002.573.202 (2)121
(VI)C4—H4···O14vii1.002.483.389 (4)151
Note: Cg1 represents the centroid of the C5a/C6–C9/C9a ring. Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) 1/2 - x, -1/2 + y, 1/2 - z; (iii) 3/2 - x, 1/2 + y, 1/2 - z; (iv) -1 + x, y, z; (v) 2 - x, 2 - y, 1 - z; (vi) 1 - x, 1 - y, 1 - z; (vii) 2 - x, 1/2 + y, 1 - z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds