Download citation
Download citation
link to html
The title compound, C19H29NO, is a C17-oxime derivative of a potent aromatase inhibitor, which surprisingly has been found to have no inhibitory power. It crystallizes with two independent mol­ecules in the asymmetric unit. C=N-O-H...N hydrogen bonds link pairs of mol­ecules to form dimers almost parallel to the bc plane. Cohesion of the structure is also due to another three C-H...O hydrogen bonds directed along the a axis. This hydrogen-bonding scheme can be correlated to the almost complete loss of inhibitory power of the title compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108023299/sk3256sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108023299/sk3256Isup2.hkl
Contains datablock I

CCDC reference: 703735

Comment top

Following on from our previous work focused on the structure–activity relationships (SAR) of new steroidal aromatase inhibitors (Cepa et al., 2005), several D-ring derivatives of the potent aromatase inhibitor 5α-androst-3-en-17-one (structural studies by Paixão et al., 2001) have been recently prepared and evaluated.

The title compound, (I) (Fig. 1), a C17 oxime derivative, has almost zero inhibitory activity. Hence, it was important, from the point of view of SAR studies, to understand this change of behaviour. X-ray studies indicate that this compound crystallizes with two independent molecules which have almost identical geometry. The internal degree of structural similarity between the two molecules (Kálmán et al., 1991) can be inferred from the values ID(24) (distances)= 99.0% and ID(23) (valency angles)= 99.7%. Ring bond lengths and angles are within expected values (Allen et al., 1987).

Due to the CC double bond, ring A adopts a conformation intermediate between 10β-sofa and 1,10-half chair [asymmetry parameters (Duax & Norton, 1975): ΔCs(3)=10.9 (6) and 12.1 (5), ΔC2(3,4)=14.3 (7) and 12.4 (7), and ΔC2(1,2)=51.2 (7) and 50.2 (7)°, respectively, for molecules 1 and 2; puckering parameters (Cremer & Pople, 1975), calculated using the atom sequence C1—C10: q2=0.387 (5) and 0.380 (5) Å, and ϕ2= 313.1 (7) and 315.1 (8)°, respectively, for molecules 1 and 2]. Rings B and C have slightly flattened chair conformations. The five membered D-ring adopts a 14α-envelope conformation, slightly distorted towards 13β,14α-half chair [pseudo-rotation (Altona et al., 1968) and asymmetry parameters (Duax & Norton, 1975): Δ=–22.0 (5) and –23.5 (6), ϕm=43.6 (2) and 43.0 (2), ΔCs(14)=6.2 (4) and 5.5 (4), and ΔC2(13,14)=13.2 (4) and 13.8 (4) °, for molecules 1 and 2]. Due to the existence of only trans ring junctions, both molecules in the asymmetric unit have an almost planar distribution of the ring atoms (r.m.s. deviation 0.2466 and 0.2505, respectively, for molecules 1 and 2), with the planes being almost parallel to each other [angle between planes 4.50 (4)°].

The oxime moiety of both molecules lies on the plane of the D-ring 14α-envelope, as evidenced by the r.m.s. deviation of C13,C15—C17,O1,N1 of 0.0430 and 0.0384 for molecules 1 and 2, respectively. Two strong O—H···N hydrogen bonds lead to a crystal packing built up of dimers, with a six-membered ring O1—H1···N2—O2—H2···N1 (Fig. 2). These hydrogen bonds, in which the O atom acts as a donor, are almost parallel with the c axis. There are three additional C—H···O hydrogen bonds linking molecules along the a axis (Fig. 3), in which the same O atoms act as acceptors. The oxime C—N and N—O bond lengths are slightly smaller and significantly larger, respectively, than the values reported by Allen et al. (1987). These differences may be due to the special features of oxime moieties and their involvement in hydrogen bonds. In fact, the values determined fit well with the work of Jerslev (1983), who studied the correlations between these bond lengths in several oximes.

According to his work, the values obtained in the present study imply a certain degree of conjugation between the oxime moiety and the D-ring electronic distribution. Following Bertolasi et al. (1982), the large values obtained for the N—O bonds can be further related to the multiple hydrogen bonds in which the oxime group participates. The hydrogen bonding scheme determined in this study is, eventually, responsible for the almost total loss of aromatase inhibition behaviour. In fact, by replacing the C17 ketone with the C17 oxime group, the dual acceptor/donor hydrogen-bonding ability of this group can probably destabilize the structure of the receptor by hydrogen bonding to specific residues (Cepa et al., 2008).

Related literature top

For related literature, see: Allen et al. (1987); Altona et al. (1968); Bertolasi et al. (1982); Cepa et al. (2005, 2008); Cremer & Pople (1975); Duax & Norton (1975); Jerslev (1983); Kálmán et al. (1991); Paixão, Andrade, de Almeida, Tavares da Silva, Fernandes Roleira, Sá e Melo & Campos Neves (2001).

Experimental top

To a solution of 5α-androst-3-en-17-one (150 mg, 0.55 mmol) in methanol (7.0 ml), hydroxylamine hydrochloride (49.2 mg, 0.7 mmol) and CH3COONa.3H2O (90 mg, 0.66 mmol) were added. The reaction was stirred at 313 K for 5 h until all the starting material had been consumed. After addition of water (50 ml), the methanol was evaporated and the aqueous phase was extracted with methylene chloride (100 ml). The organic layer was then washed with NaHCO3 10% (2×50 ml), water (3×100 ml), dried over MgSO4, filtered and evaporated to dryness yielding 133.7 mg (84%) of the title oxime. Mp(cyclohexane) 432–434 K; IR νmax(KBr) cm-1: 3281 (O–H), 3013 (? C–H); 1H NMR (300 MHz, DMSO-d6) δ: 0.75 (3H, s, 19-H3), 0.82 (3H, s, 18-H3), 5.27 (1H, ddd, J4,3=9.5, J4,5α=4.5, J4,2α=2.5, 4-H), 5.54 (1H, ddd, J3,4=9.5, J3,2β=6.1, J3,2α=3.1, 3-H), 10.04 (1H, s, NOH); 13C NMR (75.6 MHz, DMSO-d6) δ: 11.7 (C19), 17.3 (C18), 20.2, 22.7, 23.0, 24.7, 26.8, 31.0, 33.5, 34.3, 34.5, 34.6, 43.3, 45.3, (C5), 52.9, 53.5, 125.3, (C3), 131.0 (C4), 167.9 (C17); ESI m/z 288.2 (M+H, 100%).

Refinement top

All H atoms were refined as riding on their parent atoms using SHELXL97 (Sheldrick, 2008). The absolute configuration was not determined from the X-ray data but was known from the synthesis route. Friedel pairs were merged before refinement. The structure contains small solvent accessible voids of 35 Å3 (Spek, 2003). No residual density ws found there.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: PLATON/HELENA (Spek, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. View of the unit cell parallel to the bc plane showing the dimers, with the six-membered rings O1—H1···N2—O2—H2···N1.
[Figure 3] Fig. 3. View of the unit cell along the a axis showing the three C—H···O hydrogen bonds, linking molecules.
5α-Androst-3-en-17-one oxime top
Crystal data top
C19H29NOF(000) = 632
Mr = 287.43Dx = 1.098 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54180 Å
a = 6.3510 (12) ÅCell parameters from 25 reflections
b = 42.306 (6) Åθ = 8.0–31.9°
c = 7.1764 (6) ŵ = 0.51 mm1
β = 115.651 (13)°T = 293 K
V = 1738.2 (5) Å3Prism, colourless
Z = 40.48 × 0.24 × 0.24 mm
Data collection top
Enraf–Nonius MACH-3
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 72.5°, θmin = 4.2°
Graphite monochromatorh = 07
profile data from ω–2θ scansk = 1552
3820 measured reflectionsl = 87
3472 independent reflections3 standard reflections every 240 min
2868 reflections with I > 2σ(I) intensity decay: 4.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.204P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3472 reflectionsΔρmax = 0.16 e Å3
386 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (5)
Crystal data top
C19H29NOV = 1738.2 (5) Å3
Mr = 287.43Z = 4
Monoclinic, P21Cu Kα radiation
a = 6.3510 (12) ŵ = 0.51 mm1
b = 42.306 (6) ÅT = 293 K
c = 7.1764 (6) Å0.48 × 0.24 × 0.24 mm
β = 115.651 (13)°
Data collection top
Enraf–Nonius MACH-3
diffractometer
Rint = 0.016
3820 measured reflections3 standard reflections every 240 min
3472 independent reflections intensity decay: 4.9%
2868 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.133H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
3472 reflectionsΔρmin = 0.13 e Å3
386 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5622 (5)0.75922 (6)0.6623 (4)0.0639 (6)
O10.5251 (5)0.79170 (6)0.6116 (4)0.0770 (7)
H10.57340.80220.71810.115*
C10.1888 (8)0.59646 (9)0.6761 (6)0.0800 (10)
H1A0.32520.60090.80420.096*
H1B0.05780.60770.68000.096*
C20.1383 (10)0.56117 (11)0.6638 (7)0.0986 (13)
H2A0.28480.54970.71610.118*
H2B0.06180.55620.75150.118*
C30.0116 (9)0.55053 (11)0.4502 (8)0.0963 (13)
H30.06790.52990.43050.116*
C40.0689 (8)0.56874 (10)0.2876 (7)0.0871 (11)
H40.16150.56020.15840.105*
C50.0056 (6)0.60240 (8)0.2975 (5)0.0689 (8)
H50.11670.61500.31070.083*
C60.0211 (7)0.61436 (8)0.1051 (5)0.0793 (10)
H6A0.12240.60940.01540.095*
H6B0.14880.60390.09040.095*
C70.0606 (6)0.64983 (8)0.1171 (5)0.0717 (9)
H7A0.07660.66030.11410.086*
H7B0.08080.65670.00310.086*
C80.2745 (5)0.65975 (7)0.3127 (4)0.0551 (6)
H80.41470.65200.30270.066*
C90.2685 (5)0.64534 (7)0.5088 (4)0.0548 (6)
H90.13000.65430.51620.066*
C100.2319 (6)0.60912 (7)0.4943 (4)0.0603 (7)
C110.4782 (6)0.65640 (8)0.7057 (5)0.0705 (8)
H11A0.46190.64830.82520.085*
H11B0.61990.64750.70760.085*
C120.5028 (6)0.69233 (8)0.7230 (4)0.0680 (8)
H12A0.37130.70130.73950.082*
H12B0.64450.69790.84380.082*
C130.5117 (5)0.70604 (7)0.5299 (4)0.0557 (7)
C140.2935 (5)0.69553 (7)0.3383 (4)0.0535 (6)
H140.16040.70190.36440.064*
C150.2898 (7)0.71750 (8)0.1690 (5)0.0689 (8)
H15A0.13480.71850.05530.083*
H15B0.39960.71050.11660.083*
C160.3625 (6)0.74974 (8)0.2781 (5)0.0684 (8)
H16A0.46560.76090.23290.082*
H16B0.22680.76280.25090.082*
C170.4877 (5)0.74133 (8)0.5051 (5)0.0588 (7)
C180.7419 (6)0.69719 (10)0.5206 (7)0.0807 (10)
H18A0.74200.70560.39630.121*
H18B0.75640.67460.52100.121*
H18C0.87090.70590.63850.121*
C190.4422 (6)0.59183 (9)0.4906 (6)0.0735 (9)
H19A0.48870.60220.39530.110*
H19B0.40020.57030.44780.110*
H19C0.56960.59210.62640.110*
N20.7478 (5)0.79799 (6)1.0431 (4)0.0625 (6)
O20.7739 (5)0.76556 (5)1.0955 (4)0.0754 (6)
H20.71770.75490.98970.113*
C210.3214 (7)0.95799 (9)1.0351 (6)0.0862 (11)
H21A0.19400.94611.04100.103*
H21B0.32380.95350.90350.103*
C220.2755 (10)0.99341 (11)1.0460 (8)0.1069 (15)
H22A0.36351.00530.98790.128*
H22B0.11100.99770.96260.128*
C230.3417 (8)1.00439 (10)1.2611 (8)0.0950 (12)
H230.29821.02471.28070.114*
C240.4578 (8)0.98696 (10)1.4236 (8)0.0869 (11)
H240.49680.99571.55330.104*
C250.5323 (7)0.95347 (8)1.4127 (5)0.0704 (8)
H250.40500.94001.40930.085*
C260.7473 (8)0.94298 (9)1.5986 (5)0.0800 (10)
H26A0.73120.94801.72370.096*
H26B0.88280.95411.60280.096*
C270.7814 (8)0.90735 (8)1.5877 (5)0.0771 (10)
H27A0.92520.90111.70390.093*
H27B0.65360.89631.59930.093*
C280.7913 (5)0.89752 (7)1.3874 (4)0.0556 (6)
H280.93550.90591.38810.067*
C290.5821 (5)0.91081 (7)1.1966 (4)0.0559 (7)
H290.44240.90111.19730.067*
C300.5511 (6)0.94693 (7)1.2093 (5)0.0603 (7)
C310.5894 (7)0.89993 (8)0.9952 (5)0.0705 (8)
H31A0.44980.90730.87870.085*
H31B0.72300.90950.98550.085*
C320.6059 (6)0.86397 (8)0.9809 (4)0.0665 (8)
H32A0.46350.85430.97230.080*
H32B0.62240.85850.85660.080*
C330.8128 (5)0.85132 (7)1.1681 (4)0.0558 (7)
C340.7914 (5)0.86164 (7)1.3648 (4)0.0546 (6)
H340.63630.85461.34570.066*
C350.9650 (7)0.84048 (9)1.5344 (5)0.0706 (8)
H35A0.92740.83921.65160.085*
H35B1.12350.84821.58120.085*
C360.9343 (7)0.80801 (8)1.4264 (5)0.0705 (8)
H36A1.08370.79751.46780.085*
H36B0.83190.79441.45910.085*
C370.8265 (5)0.81600 (8)1.1984 (4)0.0583 (7)
C381.0450 (7)0.86152 (10)1.1668 (7)0.0821 (11)
H38A1.17310.85331.28730.123*
H38B1.05370.88421.16730.123*
H38C1.05290.85341.04500.123*
C390.7545 (7)0.96533 (8)1.2004 (6)0.0762 (9)
H39A0.89970.95591.29360.114*
H39B0.74930.98691.23980.114*
H39C0.74190.96471.06220.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0652 (15)0.0652 (16)0.0618 (14)0.0069 (12)0.0280 (12)0.0147 (12)
O10.0887 (17)0.0652 (14)0.0729 (15)0.0087 (12)0.0311 (13)0.0143 (11)
C10.096 (2)0.081 (2)0.072 (2)0.009 (2)0.0441 (19)0.0028 (17)
C20.129 (4)0.085 (3)0.093 (3)0.018 (3)0.058 (3)0.004 (2)
C30.106 (3)0.076 (3)0.107 (3)0.020 (2)0.046 (3)0.006 (2)
C40.084 (3)0.081 (3)0.085 (3)0.0165 (19)0.026 (2)0.013 (2)
C50.0620 (18)0.068 (2)0.0656 (19)0.0043 (14)0.0172 (15)0.0102 (15)
C60.091 (3)0.074 (2)0.0451 (15)0.0070 (18)0.0035 (15)0.0109 (15)
C70.082 (2)0.070 (2)0.0407 (15)0.0057 (16)0.0054 (14)0.0080 (14)
C80.0554 (15)0.0636 (17)0.0417 (13)0.0003 (12)0.0166 (11)0.0082 (11)
C90.0526 (14)0.0632 (16)0.0471 (14)0.0029 (12)0.0201 (11)0.0068 (12)
C100.0626 (17)0.0655 (18)0.0520 (15)0.0007 (14)0.0241 (13)0.0054 (13)
C110.077 (2)0.072 (2)0.0459 (15)0.0012 (16)0.0110 (14)0.0033 (14)
C120.0707 (18)0.076 (2)0.0420 (14)0.0019 (15)0.0104 (13)0.0124 (13)
C130.0479 (14)0.0663 (17)0.0499 (15)0.0001 (12)0.0184 (11)0.0137 (13)
C140.0517 (14)0.0646 (17)0.0410 (13)0.0007 (12)0.0171 (11)0.0092 (11)
C150.080 (2)0.074 (2)0.0516 (16)0.0072 (16)0.0276 (15)0.0088 (14)
C160.074 (2)0.075 (2)0.0541 (16)0.0096 (16)0.0259 (15)0.0099 (14)
C170.0530 (15)0.0674 (18)0.0583 (16)0.0073 (13)0.0263 (13)0.0140 (13)
C180.0522 (16)0.095 (3)0.094 (3)0.0005 (16)0.0300 (16)0.022 (2)
C190.0689 (19)0.070 (2)0.079 (2)0.0092 (16)0.0297 (17)0.0021 (16)
N20.0638 (14)0.0642 (16)0.0630 (15)0.0063 (12)0.0307 (12)0.0147 (12)
O20.0868 (16)0.0646 (14)0.0722 (15)0.0004 (11)0.0319 (13)0.0151 (11)
C210.088 (3)0.070 (2)0.082 (2)0.0029 (18)0.019 (2)0.0028 (18)
C220.111 (3)0.075 (3)0.106 (3)0.015 (2)0.020 (3)0.003 (2)
C230.097 (3)0.069 (2)0.121 (4)0.009 (2)0.049 (3)0.007 (2)
C240.096 (3)0.076 (2)0.104 (3)0.000 (2)0.057 (3)0.017 (2)
C250.083 (2)0.0665 (19)0.076 (2)0.0034 (16)0.0472 (18)0.0099 (16)
C260.119 (3)0.072 (2)0.0547 (17)0.006 (2)0.0424 (19)0.0125 (15)
C270.115 (3)0.069 (2)0.0494 (16)0.0047 (19)0.0374 (17)0.0072 (15)
C280.0617 (16)0.0613 (17)0.0464 (14)0.0072 (12)0.0260 (12)0.0097 (12)
C290.0579 (15)0.0613 (17)0.0510 (14)0.0091 (12)0.0259 (12)0.0062 (12)
C300.0645 (17)0.0590 (17)0.0595 (16)0.0064 (13)0.0288 (14)0.0054 (13)
C310.095 (2)0.069 (2)0.0465 (15)0.0045 (17)0.0301 (16)0.0059 (14)
C320.082 (2)0.072 (2)0.0455 (14)0.0113 (16)0.0278 (14)0.0128 (13)
C330.0574 (16)0.0647 (17)0.0523 (15)0.0128 (12)0.0304 (13)0.0151 (13)
C340.0582 (15)0.0634 (17)0.0442 (13)0.0047 (13)0.0240 (12)0.0084 (12)
C350.077 (2)0.074 (2)0.0484 (16)0.0025 (16)0.0149 (14)0.0092 (14)
C360.077 (2)0.072 (2)0.0602 (18)0.0041 (16)0.0271 (16)0.0077 (15)
C370.0507 (15)0.0706 (19)0.0581 (16)0.0044 (13)0.0277 (13)0.0131 (14)
C380.079 (2)0.091 (3)0.100 (3)0.0212 (19)0.061 (2)0.023 (2)
C390.095 (2)0.0624 (19)0.087 (2)0.0158 (17)0.055 (2)0.0096 (16)
Geometric parameters (Å, º) top
N1—C171.268 (4)N2—C371.261 (4)
N1—O11.415 (4)N2—O21.413 (3)
O1—H10.8200O2—H20.8200
C1—C21.522 (6)C21—C301.527 (5)
C1—C101.541 (5)C21—C221.535 (5)
C1—H1A0.9700C21—H21A0.9700
C1—H1B0.9700C21—H21B0.9700
C2—C31.481 (7)C22—C231.488 (7)
C2—H2A0.9700C22—H22A0.9700
C2—H2B0.9700C22—H22B0.9700
C3—C41.312 (6)C23—C241.305 (6)
C3—H30.9300C23—H230.9300
C4—C51.493 (5)C24—C251.506 (5)
C4—H40.9300C24—H240.9300
C5—C61.513 (5)C25—C261.504 (6)
C5—C101.544 (4)C25—C301.541 (4)
C5—H50.9800C25—H250.9800
C6—C71.517 (5)C26—C271.530 (5)
C6—H6A0.9700C26—H26A0.9700
C6—H6B0.9700C26—H26B0.9700
C7—C81.530 (4)C27—C281.524 (4)
C7—H7A0.9700C27—H27A0.9700
C7—H7B0.9700C27—H27B0.9700
C8—C141.523 (4)C28—C341.527 (4)
C8—C91.549 (4)C28—C291.543 (4)
C8—H80.9800C28—H280.9800
C9—C111.536 (4)C29—C311.537 (4)
C9—C101.547 (4)C29—C301.548 (4)
C9—H90.9800C29—H290.9800
C10—C191.533 (4)C30—C391.533 (4)
C11—C121.528 (5)C31—C321.531 (5)
C11—H11A0.9700C31—H31A0.9700
C11—H11B0.9700C31—H31B0.9700
C12—C131.525 (4)C32—C331.513 (5)
C12—H12A0.9700C32—H32A0.9700
C12—H12B0.9700C32—H32B0.9700
C13—C171.503 (4)C33—C371.507 (4)
C13—C141.536 (4)C33—C341.538 (4)
C13—C181.539 (4)C33—C381.541 (4)
C14—C151.522 (4)C34—C351.529 (5)
C14—H140.9800C34—H340.9800
C15—C161.541 (4)C35—C361.547 (5)
C15—H15A0.9700C35—H35A0.9700
C15—H15B0.9700C35—H35B0.9700
C16—C171.514 (5)C36—C371.514 (4)
C16—H16A0.9700C36—H36A0.9700
C16—H16B0.9700C36—H36B0.9700
C18—H18A0.9600C38—H38A0.9600
C18—H18B0.9600C38—H38B0.9600
C18—H18C0.9600C38—H38C0.9600
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C17—N1—O1113.2 (3)C37—N2—O2113.3 (3)
N1—O1—H1109.5N2—O2—H2109.5
C2—C1—C10113.7 (3)C30—C21—C22113.1 (3)
C2—C1—H1A108.8C30—C21—H21A109.0
C10—C1—H1A108.8C22—C21—H21A109.0
C2—C1—H1B108.8C30—C21—H21B109.0
C10—C1—H1B108.8C22—C21—H21B109.0
H1A—C1—H1B107.7H21A—C21—H21B107.8
C3—C2—C1112.5 (4)C23—C22—C21112.5 (4)
C3—C2—H2A109.1C23—C22—H22A109.1
C1—C2—H2A109.1C21—C22—H22A109.1
C3—C2—H2B109.1C23—C22—H22B109.1
C1—C2—H2B109.1C21—C22—H22B109.1
H2A—C2—H2B107.8H22A—C22—H22B107.8
C4—C3—C2123.3 (4)C24—C23—C22123.2 (4)
C4—C3—H3118.4C24—C23—H23118.4
C2—C3—H3118.4C22—C23—H23118.4
C3—C4—C5123.9 (4)C23—C24—C25123.6 (4)
C3—C4—H4118.0C23—C24—H24118.2
C5—C4—H4118.0C25—C24—H24118.2
C4—C5—C6114.9 (3)C26—C25—C24114.6 (3)
C4—C5—C10111.7 (3)C26—C25—C30112.0 (3)
C6—C5—C10111.8 (3)C24—C25—C30111.9 (3)
C4—C5—H5105.9C26—C25—H25105.9
C6—C5—H5105.9C24—C25—H25105.9
C10—C5—H5105.9C30—C25—H25105.9
C5—C6—C7110.7 (3)C25—C26—C27109.8 (3)
C5—C6—H6A109.5C25—C26—H26A109.7
C7—C6—H6A109.5C27—C26—H26A109.7
C5—C6—H6B109.5C25—C26—H26B109.7
C7—C6—H6B109.5C27—C26—H26B109.7
H6A—C6—H6B108.1H26A—C26—H26B108.2
C6—C7—C8112.5 (3)C28—C27—C26112.4 (3)
C6—C7—H7A109.1C28—C27—H27A109.1
C8—C7—H7A109.1C26—C27—H27A109.1
C6—C7—H7B109.1C28—C27—H27B109.1
C8—C7—H7B109.1C26—C27—H27B109.1
H7A—C7—H7B107.8H27A—C27—H27B107.9
C14—C8—C7112.1 (2)C27—C28—C34112.0 (2)
C14—C8—C9108.2 (2)C27—C28—C29111.5 (3)
C7—C8—C9111.3 (3)C34—C28—C29107.9 (2)
C14—C8—H8108.4C27—C28—H28108.5
C7—C8—H8108.4C34—C28—H28108.5
C9—C8—H8108.4C29—C28—H28108.5
C11—C9—C10114.1 (2)C31—C29—C28111.1 (3)
C11—C9—C8111.3 (3)C31—C29—C30114.0 (2)
C10—C9—C8113.0 (2)C28—C29—C30112.9 (2)
C11—C9—H9105.9C31—C29—H29106.0
C10—C9—H9105.9C28—C29—H29106.0
C8—C9—H9105.9C30—C29—H29106.0
C19—C10—C1108.9 (3)C21—C30—C39109.5 (3)
C19—C10—C5111.7 (3)C21—C30—C25106.4 (3)
C1—C10—C5105.9 (3)C39—C30—C25111.2 (3)
C19—C10—C9111.5 (3)C21—C30—C29110.8 (3)
C1—C10—C9111.4 (2)C39—C30—C29111.6 (3)
C5—C10—C9107.3 (2)C25—C30—C29107.3 (2)
C12—C11—C9113.3 (2)C32—C31—C29113.0 (3)
C12—C11—H11A108.9C32—C31—H31A109.0
C9—C11—H11A108.9C29—C31—H31A109.0
C12—C11—H11B108.9C32—C31—H31B109.0
C9—C11—H11B108.9C29—C31—H31B109.0
H11A—C11—H11B107.7H31A—C31—H31B107.8
C13—C12—C11110.3 (2)C33—C32—C31110.5 (3)
C13—C12—H12A109.6C33—C32—H32A109.5
C11—C12—H12A109.6C31—C32—H32A109.5
C13—C12—H12B109.6C33—C32—H32B109.5
C11—C12—H12B109.6C31—C32—H32B109.5
H12A—C12—H12B108.1H32A—C32—H32B108.1
C17—C13—C12116.3 (2)C37—C33—C32116.9 (2)
C17—C13—C14100.1 (2)C37—C33—C3499.9 (2)
C12—C13—C14109.2 (2)C32—C33—C34109.1 (2)
C17—C13—C18106.6 (3)C37—C33—C38106.4 (3)
C12—C13—C18110.9 (3)C32—C33—C38111.2 (3)
C14—C13—C18113.4 (2)C34—C33—C38113.0 (2)
C15—C14—C8122.5 (2)C28—C34—C35122.1 (2)
C15—C14—C13103.5 (2)C28—C34—C33112.6 (2)
C8—C14—C13112.9 (2)C35—C34—C33104.2 (2)
C15—C14—H14105.5C28—C34—H34105.6
C8—C14—H14105.5C35—C34—H34105.6
C13—C14—H14105.5C33—C34—H34105.6
C14—C15—C16103.7 (2)C34—C35—C36103.3 (2)
C14—C15—H15A111.0C34—C35—H35A111.1
C16—C15—H15A111.0C36—C35—H35A111.1
C14—C15—H15B111.0C34—C35—H35B111.1
C16—C15—H15B111.0C36—C35—H35B111.1
H15A—C15—H15B109.0H35A—C35—H35B109.1
C17—C16—C15103.9 (3)C37—C36—C35104.1 (3)
C17—C16—H16A111.0C37—C36—H36A110.9
C15—C16—H16A111.0C35—C36—H36A110.9
C17—C16—H16B111.0C37—C36—H36B110.9
C15—C16—H16B111.0C35—C36—H36B110.9
H16A—C16—H16B109.0H36A—C36—H36B109.0
N1—C17—C13120.5 (3)N2—C37—C33119.7 (3)
N1—C17—C16129.6 (3)N2—C37—C36129.9 (3)
C13—C17—C16109.9 (2)C33—C37—C36110.4 (2)
C13—C18—H18A109.5C33—C38—H38A109.5
C13—C18—H18B109.5C33—C38—H38B109.5
H18A—C18—H18B109.5H38A—C38—H38B109.5
C13—C18—H18C109.5C33—C38—H38C109.5
H18A—C18—H18C109.5H38A—C38—H38C109.5
H18B—C18—H18C109.5H38B—C38—H38C109.5
C10—C19—H19A109.5C30—C39—H39A109.5
C10—C19—H19B109.5C30—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C10—C19—H19C109.5C30—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
C10—C1—C2—C339.3 (5)C21—C22—C23—C249.7 (7)
C1—C2—C3—C48.2 (7)C22—C23—C24—C251.9 (8)
C2—C3—C4—C51.1 (8)C23—C24—C25—C26152.8 (4)
C3—C4—C5—C6153.1 (4)C23—C24—C25—C3023.9 (6)
C3—C4—C5—C1024.4 (6)C24—C25—C26—C27170.2 (3)
C4—C5—C6—C7171.1 (3)C30—C25—C26—C2761.0 (4)
C10—C5—C6—C760.3 (4)C25—C26—C27—C2855.5 (4)
C5—C6—C7—C854.8 (4)C26—C27—C28—C34172.1 (3)
C6—C7—C8—C14172.1 (3)C26—C27—C28—C2951.1 (4)
C6—C7—C8—C950.7 (4)C27—C28—C29—C31178.2 (3)
C14—C8—C9—C1154.1 (3)C34—C28—C29—C3154.9 (3)
C7—C8—C9—C11177.7 (3)C27—C28—C29—C3052.2 (3)
C14—C8—C9—C10176.0 (2)C34—C28—C29—C30175.5 (2)
C7—C8—C9—C1052.3 (3)C22—C21—C30—C3959.3 (5)
C2—C1—C10—C1959.8 (4)C22—C21—C30—C2560.9 (5)
C2—C1—C10—C560.5 (4)C22—C21—C30—C29177.2 (4)
C2—C1—C10—C9176.8 (3)C26—C25—C30—C21178.9 (3)
C4—C5—C10—C1967.4 (4)C24—C25—C30—C2150.9 (4)
C6—C5—C10—C1962.8 (4)C26—C25—C30—C3962.0 (4)
C4—C5—C10—C151.0 (4)C24—C25—C30—C3968.2 (4)
C6—C5—C10—C1178.7 (3)C26—C25—C30—C2960.3 (4)
C4—C5—C10—C9170.1 (3)C24—C25—C30—C29169.5 (3)
C6—C5—C10—C959.7 (3)C31—C29—C30—C2160.9 (4)
C11—C9—C10—C1961.6 (3)C28—C29—C30—C21171.0 (3)
C8—C9—C10—C1966.9 (3)C31—C29—C30—C3961.4 (4)
C11—C9—C10—C160.3 (4)C28—C29—C30—C3966.7 (3)
C8—C9—C10—C1171.2 (3)C31—C29—C30—C25176.6 (3)
C11—C9—C10—C5175.8 (3)C28—C29—C30—C2555.3 (3)
C8—C9—C10—C555.7 (3)C28—C29—C31—C3254.3 (4)
C10—C9—C11—C12176.6 (3)C30—C29—C31—C32176.7 (3)
C8—C9—C11—C1254.0 (4)C29—C31—C32—C3354.7 (4)
C9—C11—C12—C1354.7 (4)C31—C32—C33—C37168.4 (2)
C11—C12—C13—C17168.3 (3)C31—C32—C33—C3456.1 (3)
C11—C12—C13—C1455.9 (3)C31—C32—C33—C3869.1 (3)
C11—C12—C13—C1869.7 (3)C27—C28—C34—C3552.4 (4)
C7—C8—C14—C1553.3 (4)C29—C28—C34—C35175.4 (3)
C9—C8—C14—C15176.4 (3)C27—C28—C34—C33177.4 (3)
C7—C8—C14—C13178.1 (3)C29—C28—C34—C3359.6 (3)
C9—C8—C14—C1358.7 (3)C37—C33—C34—C28175.9 (2)
C17—C13—C14—C1542.3 (3)C32—C33—C34—C2861.0 (3)
C12—C13—C14—C15164.9 (3)C38—C33—C34—C2863.2 (4)
C18—C13—C14—C1570.9 (4)C37—C33—C34—C3541.6 (3)
C17—C13—C14—C8176.9 (2)C32—C33—C34—C35164.7 (3)
C12—C13—C14—C860.5 (3)C38—C33—C34—C3571.1 (3)
C18—C13—C14—C863.7 (4)C28—C34—C35—C36168.5 (3)
C8—C14—C15—C16169.0 (3)C33—C34—C35—C3639.7 (3)
C13—C14—C15—C1640.1 (3)C34—C35—C36—C3721.1 (4)
C14—C15—C16—C1721.1 (3)O2—N2—C37—C33179.7 (2)
O1—N1—C17—C13179.8 (3)O2—N2—C37—C362.3 (5)
O1—N1—C17—C161.9 (5)C32—C33—C37—N232.3 (4)
C12—C13—C17—N131.2 (4)C34—C33—C37—N2149.7 (3)
C14—C13—C17—N1148.7 (3)C38—C33—C37—N292.6 (3)
C18—C13—C17—N193.0 (3)C32—C33—C37—C36146.1 (3)
C12—C13—C17—C16147.0 (3)C34—C33—C37—C3628.7 (3)
C14—C13—C17—C1629.6 (3)C38—C33—C37—C3689.0 (3)
C18—C13—C17—C1688.7 (3)C35—C36—C37—N2173.1 (3)
C15—C16—C17—N1172.4 (3)C35—C36—C37—C335.1 (4)
C15—C16—C17—C135.7 (3)C18—C13—C10—C192.1 (3)
C30—C21—C22—C2340.6 (6)C38—C33—C30—C392.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.822.112.805 (4)142
O2—H2···N10.822.132.815 (3)142
C16—H16A···O2i0.972.553.458 (4)155
C16—H16B···O2ii0.972.603.449 (5)147
C36—H36A···O1iii0.972.553.465 (5)158
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H29NO
Mr287.43
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.3510 (12), 42.306 (6), 7.1764 (6)
β (°) 115.651 (13)
V3)1738.2 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.51
Crystal size (mm)0.48 × 0.24 × 0.24
Data collection
DiffractometerEnraf–Nonius MACH-3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3820, 3472, 2868
Rint0.016
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.133, 1.08
No. of reflections3472
No. of parameters386
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), PLATON/HELENA (Spek, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
C1—C21.522 (6)C3—C41.312 (6)
C2—C31.481 (7)C4—C51.493 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.822.112.805 (4)142.1
O2—H2···N10.822.132.815 (3)141.6
C16—H16A···O2i0.972.553.458 (4)155.3
C16—H16B···O2ii0.972.603.449 (5)146.5
C36—H36A···O1iii0.972.553.465 (5)158.2
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds