Download citation
Download citation
link to html
In the title compound, C23H24N4O3, the pyrimidine ring adopts an almost perfect boat conformation, and the bond distances provide evidence for some polarization of the mol­ecular-electronic structure. Two independent N-H...O hydrogen bonds link the mol­ecules into chains of edge-fused R24(8) and R22(20) rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107056569/sk3178sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107056569/sk3178Isup2.hkl
Contains datablock I

CCDC reference: 672566

Comment top

As part of a programme aimed at the synthesis of new heterocyclic compounds with potential biological activity, we have attempted the functionalization of the pyrimidine ring at position 5 via the modification of 5-formylpyrimidines as a route to the preparation of intermediates for the synthesis of polycyclic heterocyclic compounds. We report here the molecular and supramolecular structures of one such intermediate, (E)-3-{2-amino-4-ethoxy-6-[N-(4-methoxyphenyl)-N– methylamino]pyrimidin-5-yl}1-phenylprop-2-en-1-one, (I) (Fig. 1), formed by a base-catalysed condensation between acetophenone and 2-amino-4-chloro-6-[N-(4-methoxyphenyl)-N– methylamino]pyrimidin3–5-carbaldehyde, where the condensation at the formyl group is accompanied by solvolysis at position 4 (see Scheme).

The pyrimidine ring in (I) adopts an almost perfect boat conformation; the ring-puckering parameters (Cremer & Pople, 1975) for the atom sequence N1, C2, N3, C4, C4, C6 are θ = 88 (2)° and ϕ = 241 (2)°, with a total puckering amplitude Q of 0.105 (2) Å. The ideal values of the puckering angles for a boat conformation are θ = 90° and ϕ = (60n)°, where n represents zero or an integer. Atoms C2 and C5, at the stem and stern of the boat, are displaced by 0.061 (2) and 0.060 (2) Å, respectively, on one side of the mean plane of the pyrimidine ring; the other four ring atoms all lie on the opposite side of the mean plane, displaced from it by distances ranging from 0.026 (2) Å for N1 to 0.034 (2) Å for C6. More striking are the displacements from this plane of the substituent atoms N2 and C51, bonded to C2 and C5, which are 0.209 (2) and 0.450 (2) Å, respectively; the substituent atoms O4 and N6, bonded to C4 and C6, are displaced from the opposite face of the mean plane by 0.071 (2) and 0.097 (2) Å, respectively, as indicated schematically at (A) (see Scheme). We have previously observed such nonplanarity in a number of extensively-substituted pyrimidine derivatives exhibiting boat (Quesada et al., 2004) or twist-boat (Melguizo et al., 2003; Quesada et al., 2002, 2003) conformations, and by comparison with less extensively-substituted analogues, the distortions from planarity were ascribed to steric factors (Melguizo et al., 2003). The occurrence here of a nonplanar pyrimidine ring in the presence of three adjacent substituents on the ring is certainly consistent with the earlier interpretation.

The propenone side chain is effectively planar as indicated by the relevant torsion angles (Table 2). Although the steric effects arising from the three adjacent substituents at atoms C4, C5 and C6 appear to be responsible for the puckering of the pyrimidine ring, the conformational arrangement of the methyl and aryl substituents at atom N6 is somewhat surprising, particularly as there appear to be no intramolecular C—H···π(arene) interactions that could lock the C61–C66 ring into position. The exocyclic angles at atoms C4 and C64 show the usual deviations from 120° observed for alkoxy groups, with the alkyl C atom effectively coplanar with the adjacent ring, but similar effects are found at none of the other substituent sites.

Despite the nonplanarity of the pyrimidine ring, the bond distances in (I) (Table 1) provide some evidence for polarization of the molecular–electronic structure. The C4—N3 bond is significantly shorter than any other C—N bond present; the N2—C2, C2—N1 and N1—C6 bonds are very similar in length; the C51—C52 and C53—O53 bonds are both long for their types (Allen et al., 1987); and the C6—N6, C5—C51 and C52—C53 bonds are somewhat short for their types. These observations taken together indicate a modest contribution from the polarized form (Ia).

The molecules of (I) are linked by two independent N—H···O hydrogen bonds (Table 2) into a chain of edge-fused rings along [100]. Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atoms O53 in the two molecules at (-1 + x, y, z) and (1 - x, 1 - y, 1 - z). Propagation of these two hydrogen bonds by translation and inversion forms a chain in which R24(8) (Bernstein et al., 1995) rings centred at (n, 1/2, 1/2), where n represents zero or an integer, alternate with R22(20) rings centred at (n + 1/2, 1/2, 1/2), where n represents zero or an integer (Fig. 2). In these two hydrogen bonds, both the donor atom N2 and the acceptor atom O53 carry partial charges arising from the polarization of the molecular–electronic structure [see (Ia) in the Scheme], and hence they can be regarded as charge-assisted or resonance-assisted hydrogen bonds (Gilli et al., 1994).

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Gilli et al. (1994); Melguizo et al. (2003); Quesada et al. (2002, 2003, 2004).

Experimental top

Sodium hydroxide (two pellets) was added to a solution containing 1 mmol each of 2-amino-4-chloro-6-[N-(4-methoxyphenyl)-N-methylamino]- pyrimidine-5-carbaldehyde and acetophenone in ethanol (10 ml). The solution was stirred for 2 h at room temperature and then heated under reflux for 20 h. The resulting precipitate of sodium chloride was removed by filtration. The filtrate was diluted with water (2 ml), briefly heated and then allowed to cool to ambient temperature. The solid product (I) was collected by filtration, washed with ethanol and dried. Crystallization from ethanol gave yellow block crystals suitable for single-crystal X-ray diffraction (yield 20%, m.p. 427–428 K). HRMS: m/z found: 404.1848; C23H24N4O3 requires: 404.1832.

Refinement top

Crystals of compound (I) are triclinic; the space group P1 was selected and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 Å (aromatic and alkene), 0.98 Å (CH3) or 0.99 Å (CH2), and N—H of 0.86 Å, and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups and k = 1.2 for all other H atoms.

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: Sir2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded chain of edge-fused R24(8) and R22(20) rings along [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted.
(E)-3-{2-Amino-4-ethoxy-6-[N-(4-methoxyphenyl)-N– methylamino]pyrimidin-5-yl}-1-phenylprop-2-en-1-one top
Crystal data top
C23H24N4O3Z = 2
Mr = 404.46F(000) = 428
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1975 (14) ÅCell parameters from 4750 reflections
b = 10.959 (2) Åθ = 3.2–27.5°
c = 11.046 (2) ŵ = 0.09 mm1
α = 94.079 (16)°T = 120 K
β = 109.845 (11)°Block, yellow
γ = 113.339 (10)°0.49 × 0.29 × 0.24 mm
V = 1035.5 (3) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4750 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.963, Tmax = 0.979l = 1414
28433 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.5503P]
where P = (Fo2 + 2Fc2)/3
4750 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C23H24N4O3γ = 113.339 (10)°
Mr = 404.46V = 1035.5 (3) Å3
Triclinic, P1Z = 2
a = 10.1975 (14) ÅMo Kα radiation
b = 10.959 (2) ŵ = 0.09 mm1
c = 11.046 (2) ÅT = 120 K
α = 94.079 (16)°0.49 × 0.29 × 0.24 mm
β = 109.845 (11)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4750 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3263 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.979Rint = 0.052
28433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
4750 reflectionsΔρmin = 0.30 e Å3
274 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.39883 (14)0.61904 (12)0.15800 (12)0.0219 (3)
O530.92580 (13)0.62061 (13)0.36906 (12)0.0222 (3)
O640.73235 (15)0.06065 (14)0.17267 (12)0.0268 (3)
N10.25866 (15)0.35949 (14)0.38173 (13)0.0180 (3)
N20.08042 (16)0.43894 (16)0.37328 (14)0.0231 (3)
N30.22967 (16)0.52434 (15)0.25593 (14)0.0190 (3)
N60.44717 (16)0.28859 (14)0.40677 (13)0.0177 (3)
C20.19416 (18)0.44197 (17)0.33706 (16)0.0174 (3)
C40.35242 (19)0.53545 (17)0.23372 (15)0.0174 (3)
C50.44646 (18)0.47014 (17)0.28849 (15)0.0162 (3)
C60.38285 (18)0.37268 (17)0.35725 (15)0.0163 (3)
C410.3157 (2)0.69814 (19)0.10697 (17)0.0236 (4)
C420.1966 (2)0.6271 (2)0.03242 (19)0.0302 (4)
C510.60208 (18)0.51407 (16)0.29572 (16)0.0165 (3)
C520.67729 (19)0.59807 (17)0.23191 (16)0.0188 (3)
C530.84342 (19)0.64473 (17)0.27128 (16)0.0173 (3)
C5310.92078 (19)0.72991 (17)0.19313 (16)0.0166 (3)
C5320.84398 (19)0.71857 (17)0.05883 (16)0.0195 (4)
C5330.9241 (2)0.79514 (18)0.00961 (17)0.0225 (4)
C5341.0808 (2)0.88642 (18)0.05627 (18)0.0229 (4)
C5351.1576 (2)0.90017 (18)0.19058 (18)0.0222 (4)
C5361.07862 (19)0.82127 (18)0.25831 (17)0.0199 (4)
C610.52692 (19)0.23891 (16)0.34633 (16)0.0172 (3)
C620.46871 (19)0.19130 (17)0.20922 (16)0.0182 (3)
C630.5409 (2)0.13391 (17)0.15439 (16)0.0198 (4)
C640.6712 (2)0.12235 (17)0.23539 (17)0.0197 (4)
C650.7315 (2)0.17189 (18)0.37160 (17)0.0219 (4)
C660.6590 (2)0.22980 (18)0.42594 (17)0.0206 (4)
C670.8618 (2)0.0416 (2)0.25462 (19)0.0317 (5)
C680.3825 (2)0.20324 (18)0.48873 (17)0.0225 (4)
H2A0.04520.49770.35400.028*
H2B0.07080.40140.43750.028*
H41A0.39070.79010.10830.028*
H41B0.26300.70980.16440.028*
H42A0.24760.60860.08740.045*
H42B0.14910.68590.06840.045*
H42C0.11570.54070.03220.045*
H510.66190.47850.35470.020*
H520.62130.62640.16140.023*
H5320.73600.65790.01400.023*
H5330.87180.78530.10180.027*
H5341.13570.93950.00930.027*
H5351.26440.96390.23600.027*
H5361.13210.82920.34980.024*
H620.37910.19830.15320.022*
H630.50100.10230.06100.024*
H650.82210.16620.42750.026*
H660.70070.26370.51920.025*
H67A0.95020.13090.30420.048*
H67B0.89120.00740.19910.048*
H67C0.83270.01190.31680.048*
H68A0.36810.25840.55230.034*
H68B0.45470.16800.53680.034*
H68C0.28180.12640.43170.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0234 (6)0.0268 (7)0.0251 (7)0.0157 (5)0.0135 (5)0.0146 (5)
O530.0206 (6)0.0282 (7)0.0211 (6)0.0123 (5)0.0095 (5)0.0115 (5)
O640.0326 (7)0.0356 (8)0.0222 (7)0.0237 (6)0.0124 (6)0.0062 (6)
N10.0158 (7)0.0200 (7)0.0170 (7)0.0072 (6)0.0062 (6)0.0040 (6)
N20.0226 (8)0.0312 (9)0.0249 (8)0.0166 (7)0.0136 (6)0.0133 (7)
N30.0177 (7)0.0236 (8)0.0176 (7)0.0107 (6)0.0073 (6)0.0058 (6)
N60.0203 (7)0.0197 (7)0.0185 (7)0.0107 (6)0.0112 (6)0.0072 (6)
C20.0144 (8)0.0193 (8)0.0152 (8)0.0065 (7)0.0040 (6)0.0016 (7)
C40.0188 (8)0.0181 (8)0.0133 (8)0.0069 (7)0.0059 (7)0.0029 (6)
C50.0156 (8)0.0182 (8)0.0143 (8)0.0079 (7)0.0052 (6)0.0025 (6)
C60.0152 (8)0.0171 (8)0.0134 (8)0.0064 (7)0.0037 (6)0.0009 (6)
C410.0282 (9)0.0249 (9)0.0264 (10)0.0172 (8)0.0135 (8)0.0116 (8)
C420.0315 (10)0.0313 (11)0.0308 (11)0.0190 (9)0.0094 (8)0.0110 (8)
C510.0159 (8)0.0168 (8)0.0162 (8)0.0079 (7)0.0056 (7)0.0016 (6)
C520.0177 (8)0.0212 (9)0.0186 (8)0.0088 (7)0.0083 (7)0.0067 (7)
C530.0196 (8)0.0170 (8)0.0173 (8)0.0095 (7)0.0081 (7)0.0037 (7)
C5310.0190 (8)0.0165 (8)0.0191 (8)0.0106 (7)0.0098 (7)0.0055 (6)
C5320.0181 (8)0.0196 (9)0.0195 (9)0.0079 (7)0.0070 (7)0.0030 (7)
C5330.0264 (9)0.0243 (9)0.0183 (9)0.0124 (8)0.0092 (7)0.0068 (7)
C5340.0276 (9)0.0208 (9)0.0257 (9)0.0112 (8)0.0154 (8)0.0101 (7)
C5350.0178 (8)0.0189 (9)0.0267 (9)0.0055 (7)0.0087 (7)0.0045 (7)
C5360.0191 (8)0.0236 (9)0.0177 (8)0.0103 (7)0.0073 (7)0.0059 (7)
C610.0184 (8)0.0146 (8)0.0197 (8)0.0068 (7)0.0094 (7)0.0055 (7)
C620.0157 (8)0.0171 (8)0.0183 (8)0.0059 (7)0.0045 (7)0.0046 (7)
C630.0227 (9)0.0191 (9)0.0160 (8)0.0082 (7)0.0074 (7)0.0029 (7)
C640.0227 (9)0.0186 (9)0.0217 (9)0.0103 (7)0.0120 (7)0.0050 (7)
C650.0210 (9)0.0264 (9)0.0199 (9)0.0140 (8)0.0059 (7)0.0066 (7)
C660.0235 (9)0.0227 (9)0.0149 (8)0.0113 (7)0.0060 (7)0.0028 (7)
C670.0375 (11)0.0420 (12)0.0306 (10)0.0297 (10)0.0161 (9)0.0109 (9)
C680.0279 (9)0.0240 (9)0.0224 (9)0.0140 (8)0.0141 (8)0.0101 (7)
Geometric parameters (Å, º) top
O4—C41.341 (2)C53—C5311.494 (2)
O4—C411.4545 (19)C531—C5321.392 (2)
O64—C641.373 (2)C531—C5361.395 (2)
O64—C671.428 (2)C532—C5331.382 (2)
N1—C21.344 (2)C532—H5320.95
C2—N31.351 (2)C533—C5341.388 (3)
N3—C41.317 (2)C533—H5330.95
C4—C51.418 (2)C534—C5351.387 (2)
C5—C61.428 (2)C534—H5340.95
C6—N11.338 (2)C535—C5361.380 (2)
C2—N21.339 (2)C535—H5350.95
C5—C511.435 (2)C536—H5360.95
C51—C521.354 (2)C61—C661.383 (2)
C52—C531.450 (2)C61—C621.397 (2)
C53—O531.242 (2)C62—C631.385 (2)
N6—C61.373 (2)C62—H620.95
N2—H2A0.8602C63—C641.388 (2)
N2—H2B0.8596C63—H630.95
N6—C611.439 (2)C64—C651.389 (2)
N6—C681.472 (2)C65—C661.389 (2)
C41—C421.504 (3)C65—H650.95
C41—H41A0.99C66—H660.95
C41—H41B0.99C67—H67A0.98
C42—H42A0.98C67—H67B0.98
C42—H42B0.98C67—H67C0.98
C42—H42C0.98C68—H68A0.98
C51—H510.95C68—H68B0.98
C52—H520.95C68—H68C0.98
C4—O4—C41119.07 (13)C533—C532—C531120.30 (16)
C64—O64—C67117.13 (14)C533—C532—H532119.8
C6—N1—C2116.78 (14)C531—C532—H532119.8
C2—N2—H2A118.4C532—C533—C534120.00 (16)
C2—N2—H2B117.2C532—C533—H533120.0
H2A—N2—H2B120.4C534—C533—H533120.0
C4—N3—C2115.02 (14)C535—C534—C533120.06 (16)
C6—N6—C61123.24 (13)C535—C534—H534120.0
C6—N6—C68117.83 (13)C533—C534—H534120.0
C61—N6—C68114.58 (13)C536—C535—C534119.96 (16)
N2—C2—N1116.76 (15)C536—C535—H535120.0
N2—C2—N3116.91 (15)C534—C535—H535120.0
N1—C2—N3126.30 (15)C535—C536—C531120.37 (16)
N3—C4—O4118.79 (14)C535—C536—H536119.8
N3—C4—C5125.30 (15)C531—C536—H536119.8
C5—C4—O4115.85 (14)C66—C61—C62118.89 (15)
C4—C5—C6113.10 (14)C66—C61—N6119.39 (15)
C4—C5—C51123.54 (15)C62—C61—N6121.59 (14)
C6—C5—C51122.44 (14)C63—C62—C61120.40 (15)
N1—C6—N6114.98 (14)C63—C62—H62119.8
N1—C6—C5122.35 (15)C61—C62—H62119.8
N6—C6—C5122.64 (14)C62—C63—C64120.25 (15)
O4—C41—C42110.51 (14)C62—C63—H63119.9
O4—C41—H41A109.5C64—C63—H63119.9
C42—C41—H41A109.5C63—C64—O64116.22 (15)
O4—C41—H41B109.5C65—C64—O64124.14 (15)
C42—C41—H41B109.5C63—C64—C65119.65 (15)
H41A—C41—H41B108.1C64—C65—C66119.81 (16)
C41—C42—H42A109.5C64—C65—H65120.1
C41—C42—H42B109.5C66—C65—H65120.1
H42A—C42—H42B109.5C61—C66—C65120.97 (16)
C41—C42—H42C109.5C61—C66—H66119.5
H42A—C42—H42C109.5C65—C66—H66119.5
H42B—C42—H42C109.5O64—C67—H67A109.5
C52—C51—C5130.31 (15)O64—C67—H67B109.5
C52—C51—H51114.8H67A—C67—H67B109.5
C5—C51—H51114.8O64—C67—H67C109.5
C51—C52—C53119.94 (15)H67A—C67—H67C109.5
C51—C52—H52120.0H67B—C67—H67C109.5
C53—C52—H52120.0N6—C68—H68A109.5
O53—C53—C52123.30 (15)N6—C68—H68B109.5
O53—C53—C531118.15 (14)H68A—C68—H68B109.5
C52—C53—C531118.52 (14)N6—C68—H68C109.5
C532—C531—C536119.27 (15)H68A—C68—H68C109.5
C532—C531—C53123.04 (15)H68B—C68—H68C109.5
C536—C531—C53117.66 (14)
C6—N1—C2—N2173.26 (14)C51—C5—C6—N617.0 (2)
C6—N1—C2—N38.9 (2)C4—C5—C51—C5216.1 (3)
C4—N3—C2—N2173.24 (15)O53—C53—C531—C532152.30 (16)
C4—N3—C2—N19.0 (2)O53—C53—C531—C53625.5 (2)
C2—N3—C4—O4177.69 (14)C52—C53—C531—C536152.55 (15)
C2—N3—C4—C50.6 (2)C536—C531—C532—C5331.2 (2)
C41—O4—C4—C5175.14 (14)C53—C531—C532—C533176.58 (15)
N3—C4—C5—C68.6 (2)C531—C532—C533—C5341.6 (3)
O4—C4—C5—C6174.28 (14)C532—C533—C534—C5350.5 (3)
N3—C4—C5—C51160.63 (16)C533—C534—C535—C5361.1 (3)
O4—C4—C5—C5116.5 (2)C534—C535—C536—C5311.6 (3)
C2—N1—C6—N6178.75 (14)C532—C531—C536—C5350.4 (2)
C2—N1—C6—C50.7 (2)C53—C531—C536—C535178.30 (15)
N1—C6—N6—C61150.48 (15)C6—N6—C61—C66141.23 (17)
N1—C6—N6—C684.8 (2)C68—N6—C61—C6662.8 (2)
N3—C4—O4—C412.2 (2)C6—N6—C61—C6242.9 (2)
C4—O4—C41—C4296.99 (18)C68—N6—C61—C62113.07 (18)
C63—C64—O64—C67176.96 (16)C66—C61—C62—C631.1 (2)
C6—C5—C51—C52175.61 (17)N6—C61—C62—C63174.80 (15)
C5—C51—C52—C53170.18 (16)C61—C62—C63—C640.4 (3)
C51—C52—C53—O535.9 (3)C67—O64—C64—C652.9 (3)
C51—C52—C53—C531176.08 (15)C62—C63—C64—O64178.21 (15)
C52—C53—C531—C53229.6 (2)C62—C63—C64—C651.7 (3)
C61—N6—C6—C531.5 (2)O64—C64—C65—C66178.45 (16)
C68—N6—C6—C5173.25 (15)C63—C64—C65—C661.4 (3)
C4—C5—C6—N18.5 (2)C62—C61—C66—C651.3 (3)
C51—C5—C6—N1160.89 (15)N6—C61—C66—C65174.64 (15)
C4—C5—C6—N6173.61 (14)C64—C65—C66—C610.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O53i0.862.172.9836 (19)157
N2—H2B···O53ii0.862.162.9806 (19)160
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H24N4O3
Mr404.46
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.1975 (14), 10.959 (2), 11.046 (2)
α, β, γ (°)94.079 (16), 109.845 (11), 113.339 (10)
V3)1035.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.29 × 0.24
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.963, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
28433, 4750, 3263
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.05
No. of reflections4750
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.30

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), Sir2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N1—C21.344 (2)C2—N21.339 (2)
C2—N31.351 (2)C5—C511.435 (2)
N3—C41.317 (2)C51—C521.354 (2)
C4—C51.418 (2)C52—C531.450 (2)
C5—C61.428 (2)C53—O531.242 (2)
C6—N11.338 (2)N6—C61.373 (2)
N3—C4—O4118.79 (14)C63—C64—O64116.22 (15)
C5—C4—O4115.85 (14)C65—C64—O64124.14 (15)
N1—C6—N6—C61150.48 (15)C6—C5—C51—C52175.61 (17)
N1—C6—N6—C684.8 (2)C5—C51—C52—C53170.18 (16)
N3—C4—O4—C412.2 (2)C51—C52—C53—O535.9 (3)
C4—O4—C41—C4296.99 (18)C51—C52—C53—C531176.08 (15)
C63—C64—O64—C67176.96 (16)C52—C53—C531—C53229.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O53i0.862.172.9836 (19)157
N2—H2B···O53ii0.862.162.9806 (19)160
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds