Download citation
Download citation
link to html
In the title compound, [Mn(C7H3NO4)(C3H4N2)(C12H8N2)(H2O)], the MnII centre is surrounded by one bidentate phenanthroline ligand [Mn-N = 2.383 (3) and 2.421 (3) Å], one tridentate dipicolinate ligand [Mn-N = 2.300 (3) Å, and Mn-O = 2.300 (2) and 2.357 (2) Å], one monodentate imidazole ligand [Mn-N = 2.238 (3) Å] and one water mol­ecule [Mn-O = 2.157 (3) Å]. It displays a distorted penta­gonal-bipyramidal geometry, with neighbouring angles within the equatorial plane ranging from 68.05 (9) to 77.48 (10)°. Inter­molecular O-H...O hydrogen bonds link the mol­ecules into infinite chains. The chains are crosslinked by hydrogen bonds involving the carboxyl O atoms of the dipicolinate ligand and the protonated imidazole N atom, leading to an infinite two-dimensional network sheet packing mode. The complete solid-state structure can be described as a three-dimensional supra­molecular framework, stabilized by these inter­molecular hydrogen-bonding inter­actions and [pi]-[pi] stacking inter­actions involving the phenanthroline rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107044976/sk3161sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107044976/sk3161Isup2.hkl
Contains datablock I

CCDC reference: 665495

Comment top

Manganese-containing small molecular compounds play an important role in the active sites of various redox-based enzymes (Weighardt, 1989). In addition to the best known oxygen-evolving complex, which is believed to contain a tetranuclear manganese cluster catalyzing the oxidation of water to yield O2 during photosynthesis (Debus, 1992), there are three enzymes containing a mononuclear Mn site, viz. superoxide dismutase, peroxidase and dioxygenase, which participate in the redox changes of biological systems (Law et al., 1999). Based on the knowledge that the coordination sphere of the Mn centres in these enzymes is dominated by N,O-donors from available amino acid residues (Pecoraro & Butler, 1986), N,O-containing ligands are often employed to prepare model compounds for the better understanding of their exact nature and mechanism of action. In the course of our study on manganese biochemistry, we have selected dipicolinic acid as the primary ligand, in combination with some N-donor ancillary ligands, such as imidazole and α,α'-diimine to react with Mn2+ salts. Dipicolinates often ligate to transition metals via carboxylate bridges between metal centers, to form extended polymeric complexes. We have utilized some α,α'-diimines, such as 2,2'-bipyridine, which strongly favours bidentate chelation coordination, to cleave the carboxylate bridges of manganese dipicolinate polymeric complexes, and successfully isolated a trinuclear and a mononuclear oligomers as model compounds (Ma et al., 2003). In the present work, reaction of disodium dipicolinate and 1,10-phenanthroline with manganese acetate in the presence of imidazole led to the isolation of yellow crystals of the title compound (I), which represents a new interesting example of a mononuclear manganese complex with the number of peripheral ligands as high as four.

Compound (I) (Fig. 1) consists of neutral [Mn(dpc)(phen)(Him)(H2O)] monomers (dpc is dipicolinate, phen is 1,10-phenanthroline and Him is imidazole), lying in a crystallographic general position. The coordination sphere around the MnII ion is a distorted pentagonal bipyramid, where two O atoms (O1 and O3) and one N atom (N1) from the tridentate dipicolinate ligand and two N atoms (N2 and N3) from one bidentate chelating phenthanroline ligand define the pentagonal equatorial plane, with Mn1 lying 0.019 (3) Å out of the plane. The phen ligand is reasonably planar, with a mean deviation of 0.030 (9) Å, and bond distances and angles are consistent with those in the free base (Nishigaki et al., 1978). All atoms in the dpc ligand are also nearly coplanar, with a maximum deviation of 0.160 (1) Å for atom O4. A very small dihedral angle of 3.00 (1)° was observed between the phen and pdc ligand planes, indicating that the pdc plane can be extended to involve atoms N2 and N3 (the phen and pdc ligands are nearly coplanar). The water O atom (O5) and one imidazole N atom (N4) complete the pentagonal bipyramid through coordination in the axial positions, with an O5—Mn1—N4 angle of 170.22 (12)°.

The high spin d5 Mn2+ ion usually favours the formation of the octahedral d2sp3 hybrid orbital instead of the pentagonal bipyramidal coordination involving the d3sp3 hybrid orbital. Several seven-coordinate MnII complexes are observed with a quinquedentate ligand, such as 15-crown-5 (Reid et al., 1999; Lin et al., 2006), which serves to define a pentagonal plane on the equator and leaves two axial positions open for further coordination to give a regular pentagonal bipyramid. The combination of nearly coplanar phen and pdc ligands [the mean deviation is just 0.095 (1)°] in (I) perfectly functions as a pseudo-quinquedentate ligand, thus giving a new rare example of a pentagonal bipyramid. However, the pentagonal–bipyramidal geometry is very distorted (Table 1). This is mainly caused by the double chelation by the two rigid planar ligands, i.e. phen and dpc.

The Mn—N(phen), Mn—O(pdc), Mn—N(pdc) and Mn—O(water) bond lengths in (I) are all somewhat longer than those found in the six-coordinate [Mn(pdc)(phen)(H2O)] complexreported previously (Ma et al., 2002). This may be because of the larger steric strain of (I) with the presence of more ligands. The Mn—N(Him) distance of 2.238 (3) Å is well in agreement with those reported in another seven-coordinate complex, [Mn(pdc)(bipy)(Him)2]·H2O [2.248 (5) and 2.240 (5) Å; Ma et al., 2003].

As listed in Table 2, three intermolecular hydrogen bonds are observed in the crystal structure. The coordinated water molecule (O5) donates its H atoms to two uncoordinated carboxyl O atoms (O2 and O4) of symmetry-related molecules to generate infinite one-dimensional chains with the Him ligands located on both sides of the chain (Fig. 2). Neighbouring chains are further crosslinked by N5—H5A···O4(−x + 3/2, y + 1/2, −z + 3/2) hydrogen bonds, formed by the protonated imidazole N atom and the carboxy O atom of a symmetry-related chain, thus resulting in the formation of an infinite two-dimensional hydrogen-bonded network sheet with the phen ligands located above and below the sheet, as shown in Fig. 3. These two-dimensional hydrogen-bonded sheets are further packed into an overall three-dimensional supramolecular framework via partial ππ stacking interactions between the phen ligands (Figs. 4 and 5), with perpendicular ring separations of 3.447 (1) Å between the closest benzene rings (C11–C14/C19/C18), which are comparable to the sum of the van der Waals contact radii for two C atoms (3.4 Å; Bondi, 1964). These intermolecular interactions together with other van der Waals interactions stabilize the whole solid-state structure of the title compound.

Related literature top

For related literature, see: Bondi (1964); Debus (1992); Law et al. (1999); Lin et al. (2006); Ma et al. (2002, 2003); Nishigaki et al. (1978); Reid et al. (1999); Weighardt (1989).

Experimental top

Dipicolinic acid (1 mmol), dissolved in water (15 ml), was neutralized with sodium hydroxide (2 mmol) and added in portions to a hot methanol (15 ml) solution containing manganese acetate tetrahydrate (1 mmol), 1,10-phenanthroline (1 mmol) and imidazole (1 mmol) with continuous stirring. The mixture was refluxed for 1 h and then filtered. The yellow filtrate was allowed to stand undisturbed for one week or so at room temperature, during which time yellow crystals of (I) suitable for X-ray diffraction analysis were deposited. Analysis calculated for C22H17MnN5O5: C 54.33, H 3.52, N 14.40%; found C 54.42, H 3.55, N 14.44%. FT–IR (KBr, cm−1): 3262 (s), 2923 (m), 2844(m), 1611 (vs), 1587 (s), 1512 (w), 1496 (m), 1465 (w), 1440 (s), 1380(vs), 1346 (m), 1282 (s), 1205 (w), 1178 (w), 1143 (w),1101 (m), 1075(m), 1046 (w), 1016 (w), 944 (m), 920 (w), 884 (w), 850 (s), 775 (s), 698 (w), 666 (s), 628 (w), 525 (w), 474 (m), 435 (m), 417 (w).

Refinement top

Water H atoms were located from difference maps and refined with a DFIX restraint of 0.85 (2) Å applied to the O—H distances. Aromatic H atoms were placed in calculated positions, with C—H distances of 0.93 Å and an N—H distance of 0.86 Å, and treated as riding atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: XPREP (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atomic labelling scheme and 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (I), showing part of the one-dimensional hydrogen-bonded network. Atoms labelled with a dollar sign ($) or an ampersand (&) are at the symmetry positions (−x + 2, −y, −z + 1) and (−x + 2, −y + 1, −z + 1), respectively.
[Figure 3] Fig. 3. A packing diagram for (I), showing part of the two-dimensional hydrogen-bonded network derived from the crosslinkage of the one-dimensional chains via N5—H5A···O4# hydrogen-bonds. Atoms labelled with a dollar sign ($), an ampersand (&) or a hash (#) are at the symmetry positions (−x + 2, −y, −z + 1), (−x + 2, −y + 1, −z + 1) and (–x + 3/2, y + 1/2, –z + 3/2), respectively.
[Figure 4] Fig. 4. A view of the ππ stacking interactions in (I), showing a significant overlap between the benzene ring (C11–C14/C19/C18) of phen ligands with the parallel ring at the symmetry position (−x + 1, −y + 1, −z + 1).
[Figure 5] Fig. 5. A partial packing diagram of (I), showing the formation of the three-dimensional supramolecular framework. Hydrogen bonds are depicted as dashed lines.
Aqua(dipicolinato-κ3O,N,O')(1H-imidazole- κN3)(1,10-phenanthroline-N,N')manganese(II) top
Crystal data top
[Mn(C7H3NO4)(C3H4N2)(C12H8N2)(H2O)]F(000) = 996
Mr = 486.35Dx = 1.570 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 3135 reflections
a = 12.9514 (3) Åθ = 2.0–25.1°
b = 10.4900 (2) ŵ = 0.69 mm1
c = 15.2681 (5) ÅT = 295 K
β = 97.151 (1)°Prism, yellow
V = 2058.19 (9) Å30.49 × 0.42 × 0.40 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3631 independent reflections
Radiation source: fine-focus sealed tube2703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1511
Tmin = 0.720, Tmax = 0.765k = 127
7067 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0552P)2 + 2.743P]
where P = (Fo2 + 2Fc2)/3
3631 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Mn(C7H3NO4)(C3H4N2)(C12H8N2)(H2O)]V = 2058.19 (9) Å3
Mr = 486.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.9514 (3) ŵ = 0.69 mm1
b = 10.4900 (2) ÅT = 295 K
c = 15.2681 (5) Å0.49 × 0.42 × 0.40 mm
β = 97.151 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3631 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2703 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.765Rint = 0.037
7067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.35 e Å3
3631 reflectionsΔρmin = 0.39 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.84475 (4)0.28201 (5)0.54691 (4)0.03417 (19)
N10.9956 (2)0.2028 (3)0.62294 (18)0.0334 (7)
N20.7539 (2)0.4703 (3)0.49511 (19)0.0380 (7)
N30.6831 (2)0.2293 (3)0.45687 (19)0.0390 (7)
N40.7504 (2)0.2523 (3)0.6585 (2)0.0389 (7)
N50.6728 (2)0.2776 (3)0.7773 (2)0.0470 (8)
H5A0.65390.31250.82370.056*
O10.93997 (19)0.4405 (2)0.62338 (19)0.0484 (7)
O21.0972 (2)0.5052 (2)0.68251 (18)0.0510 (7)
O30.8503 (2)0.0575 (2)0.54252 (18)0.0478 (7)
O40.9297 (2)0.1206 (2)0.59220 (18)0.0463 (7)
O50.9164 (2)0.2897 (3)0.4268 (2)0.0523 (7)
H5B0.966 (3)0.239 (3)0.420 (3)0.067 (15)*
H5C0.915 (4)0.348 (3)0.389 (3)0.082 (17)*
C11.0663 (3)0.2837 (3)0.6623 (2)0.0339 (8)
C21.1603 (3)0.2413 (4)0.7059 (3)0.0459 (10)
H2A1.20890.29890.73280.055*
C31.1805 (3)0.1117 (4)0.7088 (3)0.0509 (10)
H3A1.24320.08090.73730.061*
C41.1065 (3)0.0287 (4)0.6690 (3)0.0452 (9)
H4A1.11820.05880.67100.054*
C51.0147 (3)0.0774 (3)0.6261 (2)0.0350 (8)
C61.0328 (3)0.4212 (3)0.6558 (2)0.0371 (8)
C70.9246 (3)0.0022 (3)0.5829 (2)0.0357 (8)
C80.7888 (3)0.5887 (4)0.5093 (3)0.0460 (10)
H8A0.85500.59980.53950.055*
C90.7313 (4)0.6977 (4)0.4813 (3)0.0550 (11)
H9A0.75920.77860.49280.066*
C100.6351 (3)0.6836 (4)0.4376 (3)0.0560 (11)
H10A0.59580.75480.41870.067*
C110.5944 (3)0.5602 (4)0.4205 (3)0.0479 (10)
C120.4929 (3)0.5391 (5)0.3746 (3)0.0618 (12)
H12A0.45140.60860.35560.074*
C130.4564 (3)0.4205 (5)0.3585 (3)0.0627 (12)
H13A0.38980.40910.32910.075*
C140.5183 (3)0.3113 (4)0.3857 (3)0.0476 (10)
C150.4858 (3)0.1863 (5)0.3691 (3)0.0627 (12)
H15A0.41910.17050.34100.075*
C160.5503 (3)0.0870 (5)0.3936 (3)0.0624 (12)
H16A0.52930.00350.38110.075*
C170.6486 (3)0.1130 (4)0.4378 (3)0.0507 (10)
H17A0.69230.04470.45490.061*
C180.6574 (3)0.4564 (4)0.4494 (2)0.0367 (8)
C190.6191 (3)0.3283 (4)0.4309 (2)0.0376 (8)
C200.7362 (3)0.3289 (4)0.7238 (2)0.0408 (9)
H20A0.76640.40910.73200.049*
C210.6442 (3)0.1615 (4)0.7451 (3)0.0549 (11)
H21A0.60050.10380.76840.066*
C220.6920 (3)0.1462 (4)0.6722 (3)0.0510 (10)
H22A0.68620.07430.63630.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0281 (3)0.0316 (3)0.0418 (3)0.0023 (2)0.0001 (2)0.0009 (2)
N10.0301 (15)0.0344 (16)0.0361 (16)0.0031 (13)0.0061 (12)0.0031 (13)
N20.0349 (16)0.0373 (17)0.0403 (17)0.0037 (14)0.0011 (13)0.0012 (14)
N30.0354 (16)0.0393 (17)0.0409 (17)0.0018 (14)0.0004 (13)0.0036 (14)
N40.0341 (16)0.0411 (17)0.0414 (18)0.0023 (13)0.0040 (13)0.0014 (14)
N50.053 (2)0.050 (2)0.0405 (18)0.0096 (17)0.0121 (15)0.0006 (16)
O10.0343 (14)0.0337 (14)0.0728 (19)0.0040 (11)0.0107 (13)0.0050 (13)
O20.0467 (16)0.0384 (15)0.0626 (18)0.0083 (13)0.0138 (13)0.0044 (13)
O30.0423 (15)0.0345 (14)0.0637 (18)0.0035 (12)0.0051 (13)0.0034 (13)
O40.0473 (15)0.0287 (13)0.0651 (18)0.0035 (12)0.0161 (13)0.0022 (13)
O50.0599 (19)0.0411 (16)0.0602 (19)0.0183 (15)0.0240 (15)0.0136 (15)
C10.0294 (18)0.0364 (19)0.0353 (19)0.0009 (16)0.0021 (14)0.0043 (16)
C20.032 (2)0.050 (2)0.054 (2)0.0014 (17)0.0032 (17)0.0015 (19)
C30.038 (2)0.056 (3)0.055 (3)0.0130 (19)0.0090 (18)0.004 (2)
C40.041 (2)0.037 (2)0.057 (2)0.0128 (17)0.0032 (18)0.0076 (19)
C50.0369 (19)0.0307 (18)0.039 (2)0.0025 (15)0.0097 (15)0.0047 (16)
C60.037 (2)0.0346 (19)0.039 (2)0.0047 (17)0.0015 (16)0.0007 (16)
C70.0349 (19)0.035 (2)0.040 (2)0.0036 (16)0.0133 (16)0.0003 (16)
C80.048 (2)0.042 (2)0.047 (2)0.0040 (18)0.0002 (18)0.0016 (18)
C90.067 (3)0.036 (2)0.060 (3)0.001 (2)0.002 (2)0.0024 (19)
C100.061 (3)0.046 (2)0.059 (3)0.022 (2)0.000 (2)0.011 (2)
C110.042 (2)0.057 (3)0.042 (2)0.0137 (19)0.0009 (18)0.0055 (19)
C120.050 (3)0.067 (3)0.064 (3)0.020 (2)0.009 (2)0.010 (2)
C130.038 (2)0.088 (4)0.058 (3)0.013 (2)0.013 (2)0.003 (3)
C140.036 (2)0.064 (3)0.041 (2)0.0019 (19)0.0020 (16)0.002 (2)
C150.039 (2)0.083 (3)0.061 (3)0.010 (2)0.011 (2)0.003 (3)
C160.057 (3)0.057 (3)0.068 (3)0.012 (2)0.015 (2)0.008 (2)
C170.048 (2)0.046 (2)0.055 (3)0.0004 (19)0.0018 (19)0.007 (2)
C180.0332 (19)0.046 (2)0.0307 (18)0.0075 (16)0.0019 (14)0.0016 (16)
C190.0321 (18)0.049 (2)0.0311 (19)0.0033 (17)0.0016 (15)0.0008 (16)
C200.037 (2)0.039 (2)0.044 (2)0.0017 (17)0.0022 (17)0.0002 (18)
C210.062 (3)0.042 (2)0.063 (3)0.007 (2)0.018 (2)0.007 (2)
C220.065 (3)0.035 (2)0.055 (3)0.0111 (19)0.014 (2)0.0058 (19)
Geometric parameters (Å, º) top
Mn1—O52.157 (3)C2—H2A0.9300
Mn1—N42.238 (3)C3—C41.378 (5)
Mn1—O12.300 (2)C3—H3A0.9300
Mn1—N12.300 (3)C4—C51.382 (5)
Mn1—O32.357 (2)C4—H4A0.9300
Mn1—N22.383 (3)C5—C71.518 (5)
Mn1—N32.421 (3)C8—C91.402 (5)
N1—C11.336 (4)C8—H8A0.9300
N1—C51.338 (4)C9—C101.346 (6)
N2—C81.329 (5)C9—H9A0.9300
N2—C181.362 (4)C10—C111.410 (6)
N3—C171.319 (5)C10—H10A0.9300
N3—C191.357 (5)C11—C181.399 (5)
N4—C201.311 (5)C11—C121.428 (6)
N4—C221.377 (5)C12—C131.343 (6)
N5—C201.340 (5)C12—H12A0.9300
N5—C211.348 (5)C13—C141.429 (6)
N5—O4i2.745 (4)C13—H13A0.9300
N5—H5A0.8600C14—C151.391 (6)
O1—C61.259 (4)C14—C191.409 (5)
O2—C61.246 (4)C15—C161.358 (6)
O3—C71.244 (4)C15—H15A0.9300
O4—C71.251 (4)C16—C171.391 (5)
O5—O4ii2.711 (4)C16—H16A0.9300
O5—O2iii2.716 (4)C17—H17A0.9300
O5—H5B0.843 (19)C18—C191.448 (5)
O5—H5C0.842 (19)C20—H20A0.9300
C1—C21.387 (5)C21—C221.349 (6)
C1—C61.505 (5)C21—H21A0.9300
C2—C31.385 (5)C22—H22A0.9300
O5—Mn1—N4170.22 (12)C3—C4—H4A120.5
O5—Mn1—O198.30 (11)C5—C4—H4A120.5
N4—Mn1—O191.32 (11)N1—C5—C4121.7 (3)
O5—Mn1—N190.82 (11)N1—C5—C7113.3 (3)
N4—Mn1—N194.31 (10)C4—C5—C7124.9 (3)
O1—Mn1—N168.70 (9)O2—C6—O1125.6 (3)
O5—Mn1—O389.72 (10)O2—C6—C1118.7 (3)
N4—Mn1—O384.51 (10)O1—C6—C1115.7 (3)
O1—Mn1—O3136.06 (9)O3—C7—O4125.6 (3)
N1—Mn1—O368.05 (9)O3—C7—C5116.3 (3)
O5—Mn1—N286.21 (10)O4—C7—C5118.0 (3)
N4—Mn1—N294.26 (10)N2—C8—C9123.8 (4)
O1—Mn1—N277.33 (9)N2—C8—H8A118.1
N1—Mn1—N2145.10 (10)C9—C8—H8A118.1
O3—Mn1—N2146.54 (10)C10—C9—C8119.0 (4)
O5—Mn1—N387.65 (11)C10—C9—H9A120.5
N4—Mn1—N383.40 (10)C8—C9—H9A120.5
O1—Mn1—N3145.54 (10)C9—C10—C11119.7 (4)
N1—Mn1—N3145.50 (10)C9—C10—H10A120.2
O3—Mn1—N377.48 (10)C11—C10—H10A120.2
N2—Mn1—N369.19 (10)C18—C11—C10117.8 (3)
C1—N1—C5119.7 (3)C18—C11—C12120.0 (4)
C1—N1—Mn1119.3 (2)C10—C11—C12122.2 (4)
C5—N1—Mn1121.0 (2)C13—C12—C11121.0 (4)
C8—N2—C18117.1 (3)C13—C12—H12A119.5
C8—N2—Mn1125.2 (2)C11—C12—H12A119.5
C18—N2—Mn1117.7 (2)C12—C13—C14121.2 (4)
C17—N3—C19117.8 (3)C12—C13—H13A119.4
C17—N3—Mn1125.5 (3)C14—C13—H13A119.4
C19—N3—Mn1116.4 (2)C15—C14—C19116.7 (4)
C20—N4—C22104.3 (3)C15—C14—C13123.8 (4)
C20—N4—Mn1129.5 (3)C19—C14—C13119.5 (4)
C22—N4—Mn1126.2 (3)C16—C15—C14120.7 (4)
C20—N5—C21107.6 (3)C16—C15—H15A119.7
C20—N5—O4i132.4 (3)C14—C15—H15A119.7
C21—N5—O4i118.7 (3)C15—C16—C17118.6 (4)
C20—N5—H5A126.2C15—C16—H16A120.7
C21—N5—H5A126.2C17—C16—H16A120.7
C6—O1—Mn1120.6 (2)N3—C17—C16123.5 (4)
C7—O3—Mn1120.9 (2)N3—C17—H17A118.3
Mn1—O5—O4ii117.82 (13)C16—C17—H17A118.3
Mn1—O5—O2iii123.40 (13)N2—C18—C11122.7 (3)
O4ii—O5—O2iii116.39 (13)N2—C18—C19118.0 (3)
Mn1—O5—H5B119 (3)C11—C18—C19119.2 (3)
Mn1—O5—H5C129 (3)N3—C19—C14122.7 (4)
H5B—O5—H5C109 (4)N3—C19—C18118.1 (3)
N1—C1—C2121.6 (3)C14—C19—C18119.2 (3)
N1—C1—C6113.8 (3)N4—C20—N5111.9 (3)
C2—C1—C6124.6 (3)N4—C20—H20A124.1
C3—C2—C1118.8 (4)N5—C20—H20A124.1
C3—C2—H2A120.6N5—C21—C22106.0 (4)
C1—C2—H2A120.6N5—C21—H21A127.0
C4—C3—C2119.2 (3)C22—C21—H21A127.0
C4—C3—H3A120.4C21—C22—N4110.3 (3)
C2—C3—H3A120.4C21—C22—H22A124.9
C3—C4—C5119.0 (3)N4—C22—H22A124.9
O5—Mn1—N1—C190.5 (3)C5—N1—C1—C6178.1 (3)
N4—Mn1—N1—C197.8 (3)Mn1—N1—C1—C63.8 (4)
O1—Mn1—N1—C18.0 (2)N1—C1—C2—C30.4 (6)
O3—Mn1—N1—C1179.9 (3)C6—C1—C2—C3178.4 (4)
N2—Mn1—N1—C16.0 (3)C1—C2—C3—C40.5 (6)
N3—Mn1—N1—C1177.6 (2)C2—C3—C4—C51.0 (6)
O5—Mn1—N1—C587.5 (3)C1—N1—C5—C40.2 (5)
N4—Mn1—N1—C584.2 (3)Mn1—N1—C5—C4177.8 (3)
O1—Mn1—N1—C5173.9 (3)C1—N1—C5—C7176.7 (3)
O3—Mn1—N1—C51.9 (2)Mn1—N1—C5—C75.2 (4)
N2—Mn1—N1—C5172.0 (2)C3—C4—C5—N10.6 (6)
N3—Mn1—N1—C50.5 (4)C3—C4—C5—C7177.2 (3)
O5—Mn1—N2—C887.8 (3)Mn1—O1—C6—O2164.8 (3)
N4—Mn1—N2—C8102.0 (3)Mn1—O1—C6—C115.4 (4)
O1—Mn1—N2—C811.6 (3)N1—C1—C6—O2172.8 (3)
N1—Mn1—N2—C81.8 (4)C2—C1—C6—O28.4 (6)
O3—Mn1—N2—C8171.5 (3)N1—C1—C6—O17.4 (5)
N3—Mn1—N2—C8176.7 (3)C2—C1—C6—O1171.4 (3)
O5—Mn1—N2—C1894.1 (3)Mn1—O3—C7—O4172.2 (3)
N4—Mn1—N2—C1876.1 (3)Mn1—O3—C7—C56.2 (4)
O1—Mn1—N2—C18166.5 (3)N1—C5—C7—O37.3 (5)
N1—Mn1—N2—C18179.9 (2)C4—C5—C7—O3175.8 (3)
O3—Mn1—N2—C1810.4 (4)N1—C5—C7—O4171.1 (3)
N3—Mn1—N2—C185.2 (2)C4—C5—C7—O45.7 (5)
O5—Mn1—N3—C1792.9 (3)C18—N2—C8—C91.1 (6)
N4—Mn1—N3—C1783.2 (3)Mn1—N2—C8—C9177.0 (3)
O1—Mn1—N3—C17165.8 (3)N2—C8—C9—C100.1 (7)
N1—Mn1—N3—C174.8 (4)C8—C9—C10—C110.3 (7)
O3—Mn1—N3—C172.6 (3)C9—C10—C11—C180.8 (6)
N2—Mn1—N3—C17179.7 (3)C9—C10—C11—C12179.9 (4)
O5—Mn1—N3—C1993.4 (3)C18—C11—C12—C130.0 (7)
N4—Mn1—N3—C1990.6 (3)C10—C11—C12—C13179.4 (4)
O1—Mn1—N3—C197.9 (4)C11—C12—C13—C140.8 (7)
N1—Mn1—N3—C19178.6 (2)C12—C13—C14—C15178.5 (5)
O3—Mn1—N3—C19176.4 (3)C12—C13—C14—C190.5 (7)
N2—Mn1—N3—C196.5 (2)C19—C14—C15—C161.8 (6)
O1—Mn1—N4—C2019.8 (3)C13—C14—C15—C16177.2 (4)
N1—Mn1—N4—C2088.6 (3)C14—C15—C16—C171.8 (7)
O3—Mn1—N4—C20156.0 (3)C19—N3—C17—C160.7 (6)
N2—Mn1—N4—C2057.6 (3)Mn1—N3—C17—C16173.0 (3)
N3—Mn1—N4—C20126.0 (3)C15—C16—C17—N30.6 (7)
O1—Mn1—N4—C22161.3 (3)C8—N2—C18—C112.2 (5)
N1—Mn1—N4—C2292.5 (3)Mn1—N2—C18—C11176.0 (3)
O3—Mn1—N4—C2225.1 (3)C8—N2—C18—C19178.2 (3)
N2—Mn1—N4—C22121.3 (3)Mn1—N2—C18—C193.6 (4)
N3—Mn1—N4—C2252.9 (3)C10—C11—C18—N22.1 (6)
O5—Mn1—O1—C674.8 (3)C12—C11—C18—N2178.5 (4)
N4—Mn1—O1—C6107.0 (3)C10—C11—C18—C19178.4 (4)
N1—Mn1—O1—C612.9 (3)C12—C11—C18—C191.0 (6)
O3—Mn1—O1—C623.5 (3)C17—N3—C19—C140.6 (5)
N2—Mn1—O1—C6158.9 (3)Mn1—N3—C19—C14173.6 (3)
N3—Mn1—O1—C6172.8 (2)C17—N3—C19—C18178.4 (3)
O5—Mn1—O3—C793.7 (3)Mn1—N3—C19—C187.4 (4)
N4—Mn1—O3—C794.2 (3)C15—C14—C19—N30.6 (6)
O1—Mn1—O3—C78.0 (3)C13—C14—C19—N3178.4 (4)
N1—Mn1—O3—C72.7 (3)C15—C14—C19—C18179.6 (4)
N2—Mn1—O3—C7176.3 (2)C13—C14—C19—C180.5 (5)
N3—Mn1—O3—C7178.7 (3)N2—C18—C19—N32.7 (5)
O1—Mn1—O5—O4ii96.89 (15)C11—C18—C19—N3177.7 (3)
N1—Mn1—O5—O4ii28.29 (15)N2—C18—C19—C14178.3 (3)
O3—Mn1—O5—O4ii39.75 (15)C11—C18—C19—C141.3 (5)
N2—Mn1—O5—O4ii173.49 (16)C22—N4—C20—N50.0 (4)
N3—Mn1—O5—O4ii117.23 (15)Mn1—N4—C20—N5179.1 (2)
O1—Mn1—O5—O2iii64.90 (17)C21—N5—C20—N40.0 (4)
N1—Mn1—O5—O2iii133.49 (17)O4i—N5—C20—N4166.4 (2)
O3—Mn1—O5—O2iii158.46 (17)C20—N5—C21—C220.0 (4)
N2—Mn1—O5—O2iii11.70 (16)O4i—N5—C21—C22168.6 (3)
N3—Mn1—O5—O2iii80.98 (17)N5—C21—C22—N40.0 (5)
C5—N1—C1—C20.7 (5)C20—N4—C22—C210.0 (4)
Mn1—N1—C1—C2177.3 (3)Mn1—N4—C22—C21179.1 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O4i0.861.912.745 (4)162
O5—H5B···O4ii0.84 (2)1.87 (2)2.711 (4)177 (4)
O5—H5C···O2iii0.84 (2)1.88 (2)2.716 (4)171 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C7H3NO4)(C3H4N2)(C12H8N2)(H2O)]
Mr486.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)12.9514 (3), 10.4900 (2), 15.2681 (5)
β (°) 97.151 (1)
V3)2058.19 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.49 × 0.42 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.720, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
7067, 3631, 2703
Rint0.037
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.00
No. of reflections3631
No. of parameters306
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.39

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), XPREP (Siemens, 1994), SHELXTL (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
Mn1—O52.157 (3)Mn1—O32.357 (2)
Mn1—N42.238 (3)Mn1—N22.383 (3)
Mn1—O12.300 (2)Mn1—N32.421 (3)
Mn1—N12.300 (3)
O5—Mn1—N4170.22 (12)N4—Mn1—N294.26 (10)
O5—Mn1—O198.30 (11)O1—Mn1—N277.33 (9)
N4—Mn1—O191.32 (11)N1—Mn1—N2145.10 (10)
O5—Mn1—N190.82 (11)O3—Mn1—N2146.54 (10)
N4—Mn1—N194.31 (10)O5—Mn1—N387.65 (11)
O1—Mn1—N168.70 (9)N4—Mn1—N383.40 (10)
O5—Mn1—O389.72 (10)O1—Mn1—N3145.54 (10)
N4—Mn1—O384.51 (10)N1—Mn1—N3145.50 (10)
O1—Mn1—O3136.06 (9)O3—Mn1—N377.48 (10)
N1—Mn1—O368.05 (9)N2—Mn1—N369.19 (10)
O5—Mn1—N286.21 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O4i0.861.912.745 (4)162
O5—H5B···O4ii0.843 (19)1.87 (2)2.711 (4)177 (4)
O5—H5C···O2iii0.842 (19)1.88 (2)2.716 (4)171 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds