Download citation
Download citation
link to html
In methyl 4-(5-amino-3-phenyl-1H-pyrazol-1-yl)-3-nitro­benzo­ate, C17H14N4O4, the molecules are linked into complex sheets by a combination of N-H...N, N-H...O and C-H...O hydrogen bonds. In the isomeric methyl 3-nitro-4-[(5-phenyl-1H-pyrazol-3-yl)amino]­benzo­ate, mol­ecules exhibit a polarized mol­ecular-electronic structure and are linked into chains of edge-fused rings by a combination of N-H...O and C-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010703346X/sk3149sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010703346X/sk3149Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010703346X/sk3149IIsup3.hkl
Contains datablock II

CCDC references: 661800; 661801

Comment top

We report here the molecular and supramolecular structures of the title compounds, (I) and (II) (Figs. 1 and 2), which are the products from the two alternative pathways for the reaction of methyl 4-fluoro-3-nitrobenzoate with 5-amino-3-phenylpyrazole. The reaction in which the atom N1 of the pyrazole ring acts as the nucleophile generates compound (I), while compound (II) is formed in the reaction in which the amino N atom of the pyrazole ring acts as the nucleophile (see first scheme below). The product mixture appears to be very sensitive to the polarity of the solvent employed; in a 1:7 v/v mixture of dimethylsulfoxide and methanol as the solvent, compounds (I) and (II) are formed in equimolar quantities, but compound (II) was the sole product isolated from the corresponding reaction in neat dimethylsulfoxide. An analogous reaction in neat dimethylsulfoxide using 5-amino-3-methylpyrazole in place of 5-amino-3-phenylpyrazole generates only compound (III), the direct analogue of compound (II) (Portilla et al., 2007). Compound (I) and its analogues should prove to be useful for the synthesis of pyrazolobenzotriazepines, which have applications as drug, agrochemical and dye intermediates (Tachibana & Kaneko, 1989).

In (I), the C—C bond distances within the aryl ring fall in the range 1.381 (3)–1.400 (3) Å, consistent with essentially unperturbed aromatic delocalization, while the remaining bond distances are all typical of their types (Allen et al., 1987). By contrast, in (II), the C53—C54 and C51—C56 bond distances are both significantly shorter than the remaining bonds in this ring (Table 2), while the C52—N52 bond is short for its type. In addition, the N52—O521 bond, which participates in an intramolecular hydrogen bond (Table 3), is long for its type. These observations, taken all together, provide evidence for the polarized forms (IIa) and (IIb) (see scheme below) as important contributors of the overall molecular–electronic structure of compound (II). A similar conclusion was drawn from the intramolecular geometry of compound (III) (Portilla et al., 2007).

The molecules of (I) are linked into sheets by a combination of N—H···N, N—H···O and C—H···O hydrogen bonds (Table 1), and the formation of the sheet is readily analysed in terms of two simple one-dimensional substructures. The atoms N5 and C16 in the molecule at (x, y, z) act as hydrogen-bond donors to pyrazole atom N2 and nitro atom O121, respectively, both in the molecule at (3/2 - x, 1/2 + y, 1/2 - z), so forming a C(5)C(6)[R22(13) chain of rings (Bernstein et al., 1995) running parallel to the [010] direction and generated by the 21 screw axis along (3/4, y, 1/4) (Fig. 3). In the second substructure, atom N5 at (x, y, z) acts as a hydrogen-bond donor to ketonic atom O141 in the molecule at (-1/2 + x, 3/2 - y, -1/2 + z), so forming a simple C(10) chain running parallel to the [101] direction and generated by the n-glide plane at y = 3/4 (Fig. 4). The combination of the chains parallel to [010] and [101] generates a sheet parallel to (101), but there are no significant direction-specific interactions between adjacent sheets.

In addition, to the intramolecular N—H···O hydrogen bond, the structure of (II) contains three significant intermolecular hydrogen bonds (Table 3), which combine to generate a one-dimensional hydrogen-bonded structure of considerable elegance. Atoms N2 and C36 in the molecule at (x, y, z) both act as hydrogen-bond donors to carbonyl atom O541 in the molecule at (1 - x, 2 - y, 1 - z), thereby generating by inversion a cyclic dimer containing concentric R22(22) and R22(26) rings, embedding two symmetry-related R12(7) rings (Fig. 5). In addition atom C53 in the molecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O522 in the molecule at (1 - x, y, 1/2 - z), so forming a further cyclic motif, this time an R22(10) ring generated by the twofold rotation axis along (1/2, y, 1/4). Propagation of these two motifs by successive inversion and rotation then generates a complex chain of edge-fused rings running parallel to the [001] direction (Fig. 6). Two chains of this type, related to one another by the C-centring operation, pass through each unit cell, but there are no significant direction-specific interactions between adjacent chains.

By contrast with the complexity of the chain of rings formed by (II), the methyl analogue (III) forms a simpler chain of edge-fused rings containing alternating R22(16) and R22(22) rings, both generated by inversion using C—H···O and N—H···O hydrogen bonds, respectively (Portilla et al., 2007).

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Portilla et al. (2007); Tachibana & Kaneko (1989).

Experimental top

A solution of 5-amino-3-phenyl-1H-pyrazole (2 mmol) and methyl 4-fluoro-3-nitrobenzoate (2 mmol) in dimethylsulfoxide–methanol (8 ml of a 1:7 v/v mixture) was heated under reflux with magnetic stirring for 10 min. The mixture was cooled to ambient temperature, and the resulting solid was collected by filtration and washed with methanol (3 x 6 ml). Recrystallization of the crude reaction product from dimethylsulfoxide gave compound (II). The resulting filtrate was evaporated under reduced pressure, and the resulting solid was crystallized successively from methanol and dimethylsulfoxide to give compound (I). Compound (I): yield 46% according to the above procedure, giving yellow crystals suitable for single-crystal X-ray diffraction, m.p. 476–477 K. Analysis found: C 59.2, H 4.3, N 16.2%; C17H14N4O4 requires: C 60.3, H 4.2, N 16.6%. Compuond (II): yield 48% according to the above procedure, giving orange crystals suitable for single-crystal X-ray diffraction, m.p. 530–531 K; obtained as sole product when a similar reaction was carried out in neat dimethylsulfoxide (2 ml) at 298 K for 2 h (yield 90%). Analysis found: C 60.2, H 4.7, N 16.4%; C17H14N4O4 requires: C 60.3, H 4.2, N 16.6%.

Refinement top

For compound (I), the space group P21/n was uniquely assigned from the systematic absences. For compound (II), the systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected and confirmed by the subsequent structure analysis. All H atoms were located in difference maps and then treated as riding atoms. H atoms bonded to C atoms were allowed to ride in geometrically idealized positions, with C—H distances of 0.95 Å (aromatic and pyrazole) or 0.98 Å (methyl), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and 1.2 for all other H atoms bonded to C atoms. H atoms bonded to N atoms were permitted to ride at the positions deduced from difference maps, all giving N—H distances of 0.87 Å, with Uiso(H) = 1.2Ueq(N).

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005) and WinGX (Farrugia, 1999); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded chain of rings along [010]. For the sake of clarity, H atoms bonded to C atoms that are not involved in the motif shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded C(10) chain along [101]. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, H atoms that are not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, 2 - y, 1 - z).
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded chain of edge-fused rings along [001]. For the sake of clarity, H atoms that are not involved in the motifs shown have been omitted.
(I) methyl 4-(5-amino-3-phenyl-1H-pyrazol-1-yl)-3-nitrobenzoate top
Crystal data top
C17H14N4O4F(000) = 704
Mr = 338.32Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3597 reflections
a = 12.3516 (8) Åθ = 3.2–27.5°
b = 7.5202 (4) ŵ = 0.11 mm1
c = 17.1564 (13) ÅT = 120 K
β = 100.699 (5)°Block, yellow
V = 1565.90 (18) Å30.55 × 0.35 × 0.19 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3597 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.951, Tmax = 0.980l = 2222
37526 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0883P)2 + 0.9526P]
where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C17H14N4O4V = 1565.90 (18) Å3
Mr = 338.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3516 (8) ŵ = 0.11 mm1
b = 7.5202 (4) ÅT = 120 K
c = 17.1564 (13) Å0.55 × 0.35 × 0.19 mm
β = 100.699 (5)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3597 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2266 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.980Rint = 0.057
37526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
3597 reflectionsΔρmin = 0.39 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.70074 (15)0.6050 (3)0.23515 (10)0.0254 (4)
C110.72777 (18)0.5683 (3)0.31736 (13)0.0238 (5)
C120.65260 (17)0.4875 (3)0.35802 (13)0.0242 (5)
N120.54487 (16)0.4217 (3)0.31786 (12)0.0298 (5)
O1210.53573 (13)0.3643 (2)0.24990 (10)0.0343 (4)
O1220.46921 (14)0.4242 (3)0.35533 (11)0.0457 (5)
C130.67791 (19)0.4603 (3)0.43961 (13)0.0265 (5)
C1410.81336 (19)0.4758 (3)0.56763 (13)0.0268 (5)
O1410.90419 (14)0.5090 (2)0.60530 (9)0.0362 (4)
O1420.73193 (14)0.4072 (2)0.59859 (9)0.0337 (4)
C1420.7569 (2)0.3743 (4)0.68303 (14)0.0403 (6)
C140.78084 (18)0.5075 (3)0.48066 (13)0.0240 (5)
C150.85666 (18)0.5852 (3)0.44046 (13)0.0262 (5)
C160.83036 (18)0.6158 (3)0.35967 (13)0.0263 (5)
N20.75934 (15)0.5266 (2)0.18323 (11)0.0260 (4)
C30.70062 (18)0.5674 (3)0.11141 (13)0.0256 (5)
C310.73660 (19)0.5066 (3)0.03907 (13)0.0262 (5)
C320.8428 (2)0.4419 (3)0.04009 (14)0.0312 (6)
C330.8727 (2)0.3790 (4)0.02855 (14)0.0355 (6)
C340.7980 (2)0.3806 (3)0.09988 (14)0.0355 (6)
C350.6933 (2)0.4464 (3)0.10232 (14)0.0334 (6)
C360.6626 (2)0.5094 (3)0.03337 (13)0.0304 (5)
C40.60744 (18)0.6703 (3)0.11715 (13)0.0264 (5)
C50.61022 (18)0.6951 (3)0.19633 (13)0.0256 (5)
N50.54292 (16)0.7858 (3)0.23935 (11)0.0306 (5)
H130.62490.40980.46680.032*
H14A0.82290.29960.69560.060*
H1450.69470.31320.69930.060*
H1C0.77020.48760.71140.060*
H150.92740.61770.46890.031*
H160.88290.66960.33310.032*
H320.89490.44100.08840.037*
H330.94500.33430.02700.043*
H340.81900.33650.14680.043*
H350.64220.44880.15110.040*
H360.59030.55490.03550.036*
H40.55350.71380.07460.032*
H5A0.58340.85800.27210.037*
H5B0.49260.84380.20690.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0251 (10)0.0320 (10)0.0189 (9)0.0044 (8)0.0034 (7)0.0002 (8)
C110.0278 (11)0.0245 (11)0.0183 (10)0.0019 (9)0.0019 (9)0.0004 (8)
C120.0212 (11)0.0271 (12)0.0232 (11)0.0019 (9)0.0009 (9)0.0014 (9)
N120.0281 (10)0.0339 (11)0.0267 (11)0.0029 (8)0.0031 (8)0.0021 (8)
O1210.0330 (9)0.0399 (10)0.0276 (9)0.0025 (8)0.0010 (7)0.0057 (7)
O1220.0264 (9)0.0765 (15)0.0358 (10)0.0069 (9)0.0097 (8)0.0020 (9)
C130.0274 (12)0.0305 (12)0.0222 (11)0.0012 (9)0.0059 (9)0.0002 (9)
C1410.0294 (12)0.0286 (12)0.0218 (11)0.0037 (10)0.0025 (9)0.0013 (9)
O1410.0370 (10)0.0459 (11)0.0228 (9)0.0012 (8)0.0021 (7)0.0004 (7)
O1420.0358 (9)0.0445 (10)0.0212 (8)0.0021 (8)0.0063 (7)0.0036 (7)
C1420.0486 (16)0.0518 (16)0.0207 (12)0.0066 (13)0.0069 (11)0.0065 (11)
C140.0273 (12)0.0236 (11)0.0204 (11)0.0043 (9)0.0027 (9)0.0025 (8)
C150.0261 (11)0.0267 (12)0.0242 (12)0.0005 (9)0.0008 (9)0.0022 (9)
C160.0263 (12)0.0271 (11)0.0256 (12)0.0003 (9)0.0051 (9)0.0003 (9)
N20.0277 (10)0.0298 (10)0.0208 (9)0.0002 (8)0.0053 (8)0.0003 (8)
C30.0284 (11)0.0254 (11)0.0223 (11)0.0040 (9)0.0028 (9)0.0013 (9)
C310.0312 (12)0.0255 (11)0.0220 (11)0.0048 (10)0.0050 (9)0.0013 (9)
C320.0333 (13)0.0367 (13)0.0234 (12)0.0022 (10)0.0046 (10)0.0003 (10)
C330.0362 (14)0.0426 (14)0.0295 (13)0.0026 (11)0.0110 (11)0.0013 (11)
C340.0452 (15)0.0389 (14)0.0247 (12)0.0024 (12)0.0124 (11)0.0012 (10)
C350.0387 (14)0.0379 (14)0.0222 (12)0.0047 (11)0.0019 (10)0.0003 (10)
C360.0327 (13)0.0326 (13)0.0255 (12)0.0003 (10)0.0047 (10)0.0016 (10)
C40.0257 (11)0.0304 (12)0.0209 (11)0.0012 (9)0.0015 (9)0.0020 (9)
C50.0255 (11)0.0263 (11)0.0240 (11)0.0012 (9)0.0019 (9)0.0019 (9)
N50.0285 (10)0.0353 (11)0.0262 (10)0.0052 (9)0.0001 (8)0.0006 (8)
Geometric parameters (Å, º) top
N1—C51.370 (3)C16—H160.95
N1—N21.380 (3)N2—C31.344 (3)
N1—C111.415 (3)C3—C41.406 (3)
C11—C161.385 (3)C3—C311.467 (3)
C11—C121.400 (3)C31—C321.396 (3)
C12—C131.392 (3)C31—C361.400 (3)
C12—N121.466 (3)C32—C331.381 (3)
N12—O1211.228 (2)C32—H320.95
N12—O1221.229 (3)C33—C341.389 (4)
C13—C141.381 (3)C33—H330.95
C13—H130.95C34—C351.378 (4)
C141—O1411.212 (3)C34—H340.95
C141—O1421.326 (3)C35—C361.391 (3)
C141—C141.490 (3)C35—H350.95
O142—C1421.445 (3)C36—H360.95
C142—H14A0.98C4—C51.365 (3)
C142—H1450.98C4—H40.95
C142—H1C0.98C5—N51.389 (3)
C14—C151.391 (3)N5—H5A0.87
C15—C161.383 (3)N5—H5B0.87
C15—H150.95
C5—N1—N2112.09 (17)C11—C16—H16119.9
C5—N1—C11126.98 (18)C3—N2—N1103.63 (17)
N2—N1—C11120.33 (17)N2—C3—C4111.8 (2)
C16—C11—C12118.5 (2)N2—C3—C31120.5 (2)
C16—C11—N1119.7 (2)C4—C3—C31127.7 (2)
C12—C11—N1121.72 (19)C32—C31—C36118.3 (2)
C13—C12—C11121.3 (2)C32—C31—C3122.0 (2)
C13—C12—N12116.0 (2)C36—C31—C3119.7 (2)
C11—C12—N12122.72 (19)C33—C32—C31120.5 (2)
O121—N12—O122123.9 (2)C33—C32—H32119.7
O121—N12—C12118.68 (19)C31—C32—H32119.7
O122—N12—C12117.45 (19)C32—C33—C34120.6 (2)
C14—C13—C12119.3 (2)C32—C33—H33119.7
C14—C13—H13120.4C34—C33—H33119.7
C12—C13—H13120.4C35—C34—C33119.7 (2)
O141—C141—O142124.2 (2)C35—C34—H34120.1
O141—C141—C14123.5 (2)C33—C34—H34120.1
O142—C141—C14112.31 (19)C34—C35—C36120.0 (2)
C141—O142—C142115.54 (19)C34—C35—H35120.0
O142—C142—H14A109.5C36—C35—H35120.0
O142—C142—H145109.5C35—C36—C31120.9 (2)
H14A—C142—H145109.5C35—C36—H36119.6
O142—C142—H1C109.5C31—C36—H36119.6
H14A—C142—H1C109.5C5—C4—C3105.98 (19)
H145—C142—H1C109.5C5—C4—H4127.0
C13—C14—C15119.7 (2)C3—C4—H4127.0
C13—C14—C141121.4 (2)C4—C5—N1106.48 (19)
C15—C14—C141118.8 (2)C4—C5—N5133.5 (2)
C16—C15—C14120.8 (2)N1—C5—N5119.97 (19)
C16—C15—H15119.6C5—N5—H5A108.7
C14—C15—H15119.6C5—N5—H5B109.4
C15—C16—C11120.3 (2)H5A—N5—H5B110.9
C15—C16—H16119.9
C5—N1—C11—C16126.6 (2)N1—C11—C16—C15178.16 (19)
N2—N1—C11—C1663.0 (3)C5—N1—N2—C31.5 (2)
C5—N1—C11—C1252.2 (3)C11—N1—N2—C3170.23 (19)
N2—N1—C11—C12118.2 (2)N1—N2—C3—C40.5 (2)
C16—C11—C12—C132.2 (3)N1—N2—C3—C31179.92 (19)
N1—C11—C12—C13176.6 (2)N2—C3—C31—C3215.0 (3)
C16—C11—C12—N12175.9 (2)C4—C3—C31—C32164.5 (2)
N1—C11—C12—N125.3 (3)N2—C3—C31—C36163.7 (2)
C13—C12—N12—O121146.4 (2)C4—C3—C31—C3616.8 (4)
C11—C12—N12—O12131.8 (3)C36—C31—C32—C331.3 (4)
C13—C12—N12—O12232.2 (3)C3—C31—C32—C33177.4 (2)
C11—C12—N12—O122149.7 (2)C31—C32—C33—C340.6 (4)
C11—C12—C13—C142.7 (3)C32—C33—C34—C350.4 (4)
N12—C12—C13—C14175.54 (19)C33—C34—C35—C360.6 (4)
O141—C141—O142—C1420.7 (3)C34—C35—C36—C310.2 (4)
C14—C141—O142—C142179.44 (19)C32—C31—C36—C351.1 (3)
C12—C13—C14—C151.6 (3)C3—C31—C36—C35177.6 (2)
C12—C13—C14—C141178.0 (2)N2—C3—C4—C50.7 (3)
O141—C141—C14—C13177.1 (2)C31—C3—C4—C5178.9 (2)
O142—C141—C14—C132.7 (3)C3—C4—C5—N11.6 (2)
O141—C141—C14—C152.5 (3)C3—C4—C5—N5179.1 (2)
O142—C141—C14—C15177.68 (19)N2—N1—C5—C42.0 (2)
C13—C14—C15—C160.1 (3)C11—N1—C5—C4169.1 (2)
C141—C14—C15—C16179.5 (2)N2—N1—C5—N5178.54 (19)
C14—C15—C16—C110.3 (3)C11—N1—C5—N510.4 (3)
C12—C11—C16—C150.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N2i0.872.333.131 (3)154
N5—H5B···O141ii0.872.183.024 (3)163
C16—H16···O121i0.952.393.304 (3)161
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2.
(II) methyl 3-nitro-4-[(5-phenyl-1H-pyrazol-3-yl)amino]benzoate top
Crystal data top
C17H14N4O4F(000) = 1408
Mr = 338.32Dx = 1.504 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3420 reflections
a = 31.0506 (4) Åθ = 3.1–27.5°
b = 5.4210 (11) ŵ = 0.11 mm1
c = 20.7251 (12) ÅT = 120 K
β = 121.071 (6)°Lath, orange
V = 2988.1 (7) Å30.50 × 0.29 × 0.28 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3420 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ & ω scansh = 4040
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 67
Tmin = 0.947, Tmax = 0.967l = 2626
33526 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0578P)2 + 4.6327P]
where P = (Fo2 + 2Fc2)/3
3420 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C17H14N4O4V = 2988.1 (7) Å3
Mr = 338.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.0506 (4) ŵ = 0.11 mm1
b = 5.4210 (11) ÅT = 120 K
c = 20.7251 (12) Å0.50 × 0.29 × 0.28 mm
β = 121.071 (6)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3420 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2488 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.967Rint = 0.044
33526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.11Δρmax = 0.28 e Å3
3420 reflectionsΔρmin = 0.36 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59810 (6)0.7513 (3)0.60667 (8)0.0228 (4)
N20.63253 (6)0.7928 (3)0.68076 (8)0.0214 (3)
C30.66832 (6)0.6152 (3)0.71231 (9)0.0184 (4)
C310.70897 (6)0.6193 (3)0.79170 (9)0.0182 (4)
C320.74389 (7)0.4276 (4)0.82041 (10)0.0219 (4)
C330.78193 (7)0.4238 (4)0.89564 (10)0.0238 (4)
C340.78548 (7)0.6121 (4)0.94348 (10)0.0238 (4)
C350.75135 (7)0.8050 (4)0.91523 (10)0.0238 (4)
C360.71360 (7)0.8107 (4)0.84023 (10)0.0216 (4)
C40.65743 (7)0.4485 (3)0.65562 (10)0.0202 (4)
C50.61378 (6)0.5413 (3)0.59205 (9)0.0195 (4)
C510.54722 (6)0.4771 (3)0.45658 (9)0.0183 (4)
C520.52986 (6)0.3312 (3)0.39047 (9)0.0178 (4)
N50.59048 (6)0.4223 (3)0.52237 (8)0.0212 (3)
N520.55736 (5)0.1186 (3)0.38848 (8)0.0200 (3)
O5210.59647 (5)0.0523 (3)0.44756 (7)0.0265 (3)
O5220.54173 (5)0.0068 (2)0.32903 (7)0.0259 (3)
C530.48594 (6)0.3880 (3)0.32318 (10)0.0185 (4)
C540.45787 (6)0.5917 (3)0.31831 (9)0.0188 (4)
C5410.41265 (7)0.6645 (3)0.24683 (10)0.0194 (4)
O5410.38721 (5)0.8454 (3)0.23954 (7)0.0258 (3)
O5420.40194 (5)0.5128 (2)0.18978 (7)0.0227 (3)
C5420.35970 (7)0.5849 (4)0.11720 (10)0.0251 (4)
C550.47383 (7)0.7361 (3)0.38303 (10)0.0205 (4)
C560.51666 (7)0.6817 (3)0.44995 (10)0.0203 (4)
H20.62770.91600.70340.026*
H320.74160.29770.78800.026*
H330.80550.29230.91440.029*
H340.81110.60880.99520.029*
H350.75390.93490.94780.029*
H360.69070.94510.82150.026*
H40.67540.30280.65880.024*
H50.60410.28330.52130.025*
H530.47520.28560.28030.022*
H54A0.32960.60180.12090.038*
H54B0.35380.45860.07970.038*
H54C0.36710.74290.10200.038*
H550.45440.87540.38030.025*
H560.52610.78270.49270.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0213 (8)0.0255 (9)0.0162 (8)0.0016 (7)0.0058 (6)0.0031 (6)
N20.0215 (8)0.0225 (8)0.0152 (7)0.0019 (6)0.0059 (6)0.0038 (6)
C30.0164 (8)0.0219 (9)0.0178 (8)0.0002 (7)0.0094 (7)0.0000 (7)
C310.0175 (8)0.0208 (9)0.0165 (8)0.0024 (7)0.0088 (7)0.0010 (7)
C320.0222 (9)0.0220 (9)0.0218 (9)0.0014 (7)0.0115 (8)0.0002 (7)
C330.0211 (9)0.0247 (10)0.0236 (9)0.0034 (8)0.0101 (8)0.0043 (8)
C340.0196 (9)0.0300 (10)0.0179 (9)0.0019 (8)0.0069 (7)0.0000 (8)
C350.0230 (9)0.0263 (10)0.0199 (9)0.0021 (8)0.0096 (8)0.0051 (7)
C360.0204 (9)0.0231 (9)0.0194 (9)0.0017 (7)0.0088 (7)0.0006 (7)
C40.0204 (9)0.0209 (9)0.0185 (8)0.0000 (7)0.0094 (7)0.0007 (7)
C50.0187 (8)0.0234 (9)0.0151 (8)0.0018 (7)0.0079 (7)0.0008 (7)
C510.0178 (8)0.0210 (9)0.0166 (8)0.0024 (7)0.0092 (7)0.0004 (7)
C520.0182 (8)0.0174 (9)0.0189 (9)0.0003 (7)0.0103 (7)0.0002 (7)
N50.0200 (7)0.0223 (8)0.0176 (7)0.0018 (6)0.0070 (6)0.0034 (6)
N520.0194 (7)0.0218 (8)0.0176 (7)0.0011 (6)0.0087 (6)0.0010 (6)
O5210.0199 (6)0.0297 (8)0.0203 (7)0.0060 (6)0.0036 (5)0.0034 (5)
O5220.0295 (7)0.0262 (7)0.0184 (6)0.0033 (6)0.0098 (6)0.0048 (5)
C530.0194 (8)0.0196 (9)0.0164 (8)0.0032 (7)0.0091 (7)0.0017 (7)
C540.0172 (8)0.0207 (9)0.0178 (8)0.0011 (7)0.0086 (7)0.0010 (7)
C5410.0198 (8)0.0208 (9)0.0185 (9)0.0017 (7)0.0105 (7)0.0015 (7)
O5410.0238 (7)0.0282 (7)0.0206 (7)0.0062 (6)0.0080 (6)0.0011 (5)
O5420.0217 (6)0.0240 (7)0.0165 (6)0.0009 (5)0.0056 (5)0.0031 (5)
C5420.0233 (9)0.0301 (10)0.0152 (9)0.0007 (8)0.0052 (7)0.0012 (8)
C550.0209 (9)0.0196 (9)0.0202 (9)0.0013 (7)0.0102 (7)0.0001 (7)
C560.0198 (8)0.0231 (9)0.0175 (8)0.0031 (7)0.0094 (7)0.0034 (7)
Geometric parameters (Å, º) top
N1—C51.333 (2)C51—C521.425 (2)
N1—N21.363 (2)C52—C531.391 (2)
N2—C31.356 (2)C53—C541.378 (3)
N2—H20.87C54—C551.404 (2)
C3—C41.379 (2)C55—C561.370 (3)
C3—C311.469 (2)C56—C511.419 (3)
C31—C321.394 (3)C52—N521.448 (2)
C31—C361.400 (3)N5—H50.87
C32—C331.388 (2)N52—O5211.2522 (19)
C32—H320.95N52—O5221.2262 (19)
C33—C341.387 (3)C53—H530.95
C33—H330.95C54—C5411.475 (2)
C34—C351.385 (3)C541—O5411.219 (2)
C34—H340.95C541—O5421.334 (2)
C35—C361.382 (3)O542—C5421.449 (2)
C35—H350.95C542—H54A0.98
C36—H360.95C542—H54B0.98
C4—C51.408 (2)C542—H54C0.98
C4—H40.95C55—H550.95
C5—N51.395 (2)C56—H560.95
C51—N51.364 (2)
C5—N1—N2103.36 (14)C56—C51—C52116.00 (16)
C3—N2—N1113.40 (15)C53—C52—C51121.99 (16)
C3—N2—H2127.5C53—C52—N52115.77 (15)
N1—N2—H2118.7C51—C52—N52122.23 (15)
N2—C3—C4105.95 (15)C51—N5—C5130.60 (16)
N2—C3—C31123.09 (16)C51—N5—H5113.8
C4—C3—C31130.96 (16)C5—N5—H5115.3
C32—C31—C36118.49 (16)O522—N52—O521121.46 (15)
C32—C31—C3119.75 (16)O522—N52—C52119.26 (14)
C36—C31—C3121.76 (16)O521—N52—C52119.28 (14)
C33—C32—C31120.94 (17)C54—C53—C52120.40 (16)
C33—C32—H32119.5C54—C53—H53119.8
C31—C32—H32119.5C52—C53—H53119.8
C34—C33—C32119.98 (17)C53—C54—C55118.61 (16)
C34—C33—H33120.0C53—C54—C541121.75 (16)
C32—C33—H33120.0C55—C54—C541119.61 (16)
C35—C34—C33119.47 (17)O541—C541—O542122.48 (16)
C35—C34—H34120.3O541—C541—C54124.05 (16)
C33—C34—H34120.3O542—C541—C54113.46 (15)
C36—C35—C34120.81 (18)C541—O542—C542115.60 (14)
C36—C35—H35119.6O542—C542—H54A109.5
C34—C35—H35119.6O542—C542—H54B109.5
C35—C36—C31120.29 (17)H54A—C542—H54B109.5
C35—C36—H36119.9O542—C542—H54C109.5
C31—C36—H36119.9H54A—C542—H54C109.5
C3—C4—C5104.91 (16)H54B—C542—H54C109.5
C3—C4—H4127.5C56—C55—C54121.78 (17)
C5—C4—H4127.5C56—C55—H55119.1
N1—C5—N5125.10 (16)C54—C55—H55119.1
N1—C5—C4112.37 (16)C55—C56—C51121.18 (17)
N5—C5—C4122.53 (17)C55—C56—H56119.4
N5—C51—C56122.09 (16)C51—C56—H56119.4
N5—C51—C52121.92 (16)
C5—N1—N2—C30.7 (2)C56—C51—C52—N52179.27 (15)
N1—N2—C3—C40.9 (2)C56—C51—N5—C51.0 (3)
N1—N2—C3—C31179.26 (15)C52—C51—N5—C5179.37 (17)
N2—C3—C31—C32178.86 (17)N1—C5—N5—C513.7 (3)
C4—C3—C31—C321.4 (3)C4—C5—N5—C51176.24 (18)
N2—C3—C31—C360.6 (3)C53—C52—N52—O5221.8 (2)
C4—C3—C31—C36179.14 (18)C51—C52—N52—O522176.73 (16)
C36—C31—C32—C331.1 (3)C53—C52—N52—O521177.92 (15)
C3—C31—C32—C33178.41 (16)C51—C52—N52—O5213.6 (2)
C31—C32—C33—C340.2 (3)C51—C52—C53—C540.7 (3)
C32—C33—C34—C351.1 (3)N52—C52—C53—C54177.77 (15)
C33—C34—C35—C360.6 (3)C52—C53—C54—C551.7 (3)
C34—C35—C36—C310.7 (3)C52—C53—C54—C541176.70 (16)
C32—C31—C36—C351.5 (3)C53—C54—C541—O541178.65 (17)
C3—C31—C36—C35177.94 (17)C55—C54—C541—O5410.3 (3)
N2—C3—C4—C50.71 (19)C53—C54—C541—O5421.1 (2)
C31—C3—C4—C5179.51 (18)C55—C54—C541—O542179.46 (15)
N2—N1—C5—N5179.79 (16)O541—C541—O542—C5423.5 (2)
N2—N1—C5—C40.2 (2)C54—C541—O542—C542176.23 (15)
C3—C4—C5—N10.3 (2)C53—C54—C55—C561.0 (3)
C3—C4—C5—N5179.67 (16)C541—C54—C55—C56177.40 (17)
N5—C51—C52—C53179.51 (16)C54—C55—C56—C510.6 (3)
C56—C51—C52—C530.8 (3)N5—C51—C56—C55178.84 (17)
N5—C51—C52—N521.1 (3)C52—C51—C56—C551.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O5210.871.892.600 (2)137
N2—H2···O541i0.871.962.828 (2)171
C36—H36···O541i0.952.363.266 (3)159
C53—H53···O522ii0.952.543.487 (2)173
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H14N4O4C17H14N4O4
Mr338.32338.32
Crystal system, space groupMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)120120
a, b, c (Å)12.3516 (8), 7.5202 (4), 17.1564 (13)31.0506 (4), 5.4210 (11), 20.7251 (12)
β (°) 100.699 (5) 121.071 (6)
V3)1565.90 (18)2988.1 (7)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.110.11
Crystal size (mm)0.55 × 0.35 × 0.190.50 × 0.29 × 0.28
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.951, 0.9800.947, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
37526, 3597, 2266 33526, 3420, 2488
Rint0.0570.044
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.178, 1.08 0.048, 0.134, 1.11
No. of reflections35973420
No. of parameters227227
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.390.28, 0.36

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005) and WinGX (Farrugia, 1999), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N2i0.872.333.131 (3)154
N5—H5B···O141ii0.872.183.024 (3)163
C16—H16···O121i0.952.393.304 (3)161
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2.
Selected bond lengths (Å) for (II) top
C51—N51.364 (2)C55—C561.370 (3)
C51—C521.425 (2)C56—C511.419 (3)
C52—C531.391 (2)C52—N521.448 (2)
C53—C541.378 (3)N52—O5211.2522 (19)
C54—C551.404 (2)N52—O5221.2262 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O5210.871.892.600 (2)137
N2—H2···O541i0.871.962.828 (2)171
C36—H36···O541i0.952.363.266 (3)159
C53—H53···O522ii0.952.543.487 (2)173
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds