Download citation
Download citation
link to html
The title compound, C25H22O3P2·C6H6O, has a zwitterionic betaine-like structure and crystallizes as a phenol solvate. The two mol­ecular components are held together by an almost linear inter­molecular O-H...O hydrogen bond. The structure also contains three weak C-H...O and two C-H...[pi](arene) inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107032453/sk3145sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107032453/sk3145Isup2.hkl
Contains datablock I

CCDC reference: 661794

Comment top

Betaine (N,N,N-trimethylglycine) acts as an important biochemical donor of the methyl group for tetrahydrofolic acid (N5,N10-methylenetetrahydrofoliate synthesis) as well as homocysteinic acid (methionine synthesis) (Stryer, 1995). The phosphonic analogue of betaine – trimethylammoniummethanophosphonic acid – was first synthesized over five decades ago (Medved & Kabachnik, 1951; Kabachnik & Medved, 1953; Myers & Jibril, 1957); more than a decade ago, its biological activity became recognized (Abdel-Ghany et al., 1993).

However, to our best knowledge no example of a betaine analogue containing two P atoms (phosphoniummethylenephosphonic acid or its ester) has been described in the literature. We present here the synthesis and crystal and molecular structures of the first phosphoniophosphonic analogue of betaine, O-phenyl triphenylphosphoniummethylenephosphonate as a phenol solvate, (I).

The first example of phosphoniummethylenephosphonic acid was synthesized in the form of the O-phenyl ester by controlled hydrolysis of [(diphenoxyphosphinyl)methylidene]triphenylphosphorane, (II), and obtained in the crystalline form as the phenol solvate, (I). Its structure was tentatively assigned by MS, NMR and elemental analysis; however, an unequivocal confirmation was obtained from crystallographic analysis.

The molecular structure of (I), with the atom-numbering scheme, is shown in Fig. 1. The C25H22O3P2 molecule exists as a zwitterion. The positive charge is located on atom P1, while the negative charge is attributed formally to atom O2. Taking into account the P2—O2 and P2—O3 bond lengths, partial delocalization of the charge between both O atoms within the O2 P2O3 fragment can be proposed. The P2—O3 bond is slightly shorter than the P2—O2 bond; however, both distances are longer than the PO linkage within (C,N)(O)2—PO systems [1.457 (9) Å; Allen et al., 1987] and close to mean value of 1.483 (8) Å for (C—O)2P( O)2- systems, indicating delocalization of bonds (Allen et al., 1987).

In the molecule of (I), two P atoms are joined through a Csp3 atom. The P1—C1 and P2—C1 distances differ from each other significantly, showing having lengths of 1.7855 (14) and 1.8202 (15) Å, respectively (Table 1).

The coordination around P1 is nearly tetrahedral, with angles varying from 106.98 (7) to 114.31 (7)°, whereas within the phosphonate group the geometry around atom P2 indicates a considerable distortion of the tetrahedron, especially in the O2—P2—O3 and O1—P2—C1 bond angles (Table 1).

The P+C(phenyl) bond lengths are very close to the mean distance of 1.793 (10) Å found for 118 Ph3P+—CH2(sp3) fragments (3 × 118 = 354 values) in the Cambridge Structural Database (Version 5.27; Allen, 2002); the minimum and maximum distances are 1.752 (3) and 1.854 (3) Å, respectively.

All benzene rings, including the phenol ring, are planar. The C—C bond lengths and bond angles within these rings are typical for aromatic systems [1.384 (13) Å; Allen et al., 1987], hence no detailed discussion is needed. The labelling scheme AE, applied for phenyl rings, is introduced in Fig. 1. A maximum deviation of -0.010 (2)° is observed, for C12 from the least-squares plane of ring A. The dihedral angles between the mean planes of rings are summarized in Table 3. This spatial arrangement enables the formation of C—H···O and C—H···π(arene) interactions; however, aromatic ππ stacking interactions are absent in the structure.

The title compound crystallizes as a phenol solvate. Two molecular components are linked within the selected asymmetric unit by an almost linear O4—H4···O2 intermolecular hydrogen bond (Fig. 1 and Table 2).

In (I), there are also three short intermolecular C—H···O contacts, which on the basis of observed H···O and C···O distances can be regarded as weak hydrogen-bonding interactions (Table 2; Taylor & Kennard, 1982). Atoms C1 and C12 act as hydrogen-bond donors to atom O3i [symmetry code: (i) -x + 1, -y + 1, -z + 2], to form a centrosymmetric dimer. The former of these hydrogen bonds generates a graph-set motif of R22(8), while the second generates a R22(14) ring (Bernstein et al., 1995) (Fig. 2). Such a dimer is additionally stabilized by C1—H1A···π (ring D) hydrogen bonds.

Fig. 3 presents another hydrogen-bonded motif that plays an important role in the supramolecular structure of (I). Atom C35, via atom H35, acts as a hydrogen-bond donor towards atom O3ii [symmetry code: (ii) x + 1, y, z], thereby producing an infinite C(8) chain running parallel to the [100] direction.

In summary, the combination of all three weak C—H···O interactions produces infinite chains of centrosymmetric dimers along the a axis. Aforementioned chains are linked into (010) sheets by C25—H25···πiii (ring E) [symmetry code: (iii) -x + 1, -y + 1, -z + 1] (Fig. 4). Every sheet passes through the unit cell in the domain -0.07 < y < 1.07. There are no direction-specific interactions between adjacent sheets.

Related literature top

For related literature, see: Abdel-Ghany, Ihnat, Miller, Kunin & Tong (1993); Allen (2002); Allen et al. (1987); Bernstein et al. (1995); Chęcińska et al. (2003); Kabachnik & Medved (1953); Medved & Kabachnik (1951); Myers & Jibril (1957); Stryer (1995); Taylor & Kennard (1982).

Experimental top

The title compound, (I), was synthesized from [(diphenoxyphosphinyl)methylidene]triphenylphosphorane, (II), which was prepared exactly as described in our previous paper (Chęcińska et al., 2003). For (II): 31P NMR (CD3CN, p.p.m.): δ 20.98 (d, Ph3P), 28.03 [d, (PhO)2P(O)–], 2JPP = 46.4 Hz]. The ylide (II) (1.08 g, 1 mmol) was dissolved in 20 ml of acetonitrile containing 2% of water. The solution was kept for 48 h at 323 K in a closed flask and evaporated. The residue was crystallized from ethyl acetate, yielding 0.61 g (58%) of phenol-solvated betaine (I) in the form of colorless crystals. M.p. 476–479 K (Boethius apparatus, uncorrected). 31P NMR (CDCl3, p.p.m.): δ -1.64 [d, (PhO)P(O)O-], 212.36 (d, Ph3P+), 2JPP = 10.1 Hz (Bruker AC 200 spectrometer, 81.026 MHz, 85% H3PO4 as external standard). 1H NMR (CDCl3, p.p.m.): δ 3.565 (dd, 2H, P—CH2—P, 2JHP = 15.7 and 17.1 Hz), 6.7–7.2 (m, 10H, PhO H atoms), 7.45–7.8 (m, 15H, Ph3P H atoms), 9.44 (br s, 1H, OH) (Bruker AC 200 s pectrometer, 200.160 MHz, tetramethylsilane as internal standard). MS FAB (Cs+, negative ions): m/z 431 (16%), 355 (100%), 278 (8%), 261 (28%) (Finnigan MAT 95 spectrometer, MW 432.37 Da for protonated betaine without phenol). Elemental analysis found: C 70.49, H 5.25, P 11.58%; calculated for C31H28O4P2: 70.72, H 5.36, P 11.77%.

Refinement top

Atom H4, involved in the O4—H4 ···O2 hydrogen bond, was located in a difference map and refined isotropically. All C-bound H atoms of methylene and phenyl groups were positioned geometrically (C—H = 0.97 and 0.93 Å, respectively) and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a centrosymmetric dimer. [Symmetry code: (i) -x + 1, -y + 1, -z + 2.] For the sake of clarity, C-bound H atoms that are not involved in the motif shown have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of an infinite C—H···O chain running parallel to the [100] direction. [Symmetry code:s (ii) x + 1, y, z; (iv) x - 1, y, z]. For the sake of clarity, C-bound H atoms that are not involved in the motif shown have been omitted.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing (010) sheets generated by C—H···π interactions between chains of dimers. [Symmetry code: (iii) -x + 1, -y + 1, -z + 1.] For the sake of clarity, C-bound H atoms that are not involved in the motif shown have been omitted.
O-phenyl triphenylphosphoniummethylenephosphonate phenol solvate top
Crystal data top
C25H22O3P2·C6H6OZ = 2
Mr = 526.47F(000) = 552
Triclinic, P1Dx = 1.272 Mg m3
Dm = 1.271 Mg m3
Dm measured by flotation in xylene, bromobenzene, heptane & toluene
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.793 (2) ÅCell parameters from 25 reflections
b = 10.170 (2) Åθ = 12.6–17.1°
c = 14.374 (2) ŵ = 0.19 mm1
α = 82.78 (2)°T = 293 K
β = 80.07 (2)°Plate, colourless
γ = 78.35 (2)°0.5 × 0.2 × 0.1 mm
V = 1374.9 (5) Å3
Data collection top
Rigaku AFC-5S
diffractometer
Rint = 0.013
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 4.1°
Graphite monochromatorh = 1212
ω scank = 130
6644 measured reflectionsl = 1818
6293 independent reflections3 standard reflections every 150 reflections
4137 reflections with I > 2σ(I) intensity decay: 1.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.02 [1.00000exp(2.00(sinθ/λ)2)]/[σ2(Fo2) + (0.041P)2]
where P = 0.33333Fo2 + 0.66667Fc2]
6293 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C25H22O3P2·C6H6Oγ = 78.35 (2)°
Mr = 526.47V = 1374.9 (5) Å3
Triclinic, P1Z = 2
a = 9.793 (2) ÅMo Kα radiation
b = 10.170 (2) ŵ = 0.19 mm1
c = 14.374 (2) ÅT = 293 K
α = 82.78 (2)°0.5 × 0.2 × 0.1 mm
β = 80.07 (2)°
Data collection top
Rigaku AFC-5S
diffractometer
Rint = 0.013
6644 measured reflections3 standard reflections every 150 reflections
6293 independent reflections intensity decay: 1.6%
4137 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.27 e Å3
6293 reflectionsΔρmin = 0.24 e Å3
338 parameters
Special details top

Experimental. M.p. 476–479 K (Boethius apparatus, uncorrected). 31P NMR (CDCl3, p.p.m.): δ -1.64 [d, (PhO)P(O)O-], 212.36 (d, Ph3P+), 2JPP = 10.1 Hz (Bruker AC 200 spectrometer, 81.026 MHz, 85% H3PO4 as external standard). 1H NMR (CDCl3, p.p.m.): δ 3.565 (dd, 2H, P—CH2—P, 2JHP = 15.7 and 17.1 Hz), 6.7–7.2 (m, 10H, PhO H atoms), 7.45–7.8 (m, 15H, Ph3P H atoms), 9.44 (br s, 1H, OH) (Bruker AC 200 s pectrometer, 200.160 MHz, tetramethylsilane as internal standard). MS FAB (Cs+, negative ions): m/z 431 (16%), 355 (100%), 278 (8%), 261 (28%) (Finnigan MAT 95 spectrometer, MW 432.37 Da for protonated betaine without phenol).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.76848 (4)0.57432 (4)0.78751 (3)0.03663 (9)
P20.56993 (4)0.36856 (4)0.86801 (3)0.04178 (10)
O10.68777 (11)0.26485 (11)0.92045 (8)0.0562 (3)
O20.59888 (13)0.33504 (12)0.76829 (7)0.0633 (3)
O30.42911 (10)0.37500 (11)0.92469 (7)0.0485 (3)
O40.54942 (14)0.14811 (14)0.67752 (9)0.0688 (4)
H40.561 (2)0.215 (2)0.7079 (14)0.089 (7)*
C10.62373 (14)0.52908 (14)0.87057 (10)0.0408 (3)
H1A0.54230.59960.86300.049*
H1B0.64560.53130.93360.049*
C110.80021 (14)0.72975 (14)0.81947 (10)0.0415 (3)
C120.80602 (18)0.74206 (17)0.91369 (12)0.0559 (4)
H120.79030.67170.95980.067*
C130.83519 (19)0.85926 (19)0.93909 (13)0.0659 (5)
H130.84120.86681.00200.079*
C140.85535 (19)0.96491 (17)0.87084 (15)0.0658 (5)
H140.87521.04350.88790.079*
C150.84628 (18)0.95413 (17)0.77879 (14)0.0641 (5)
H150.85821.02630.73350.077*
C160.81952 (16)0.83689 (15)0.75176 (12)0.0526 (4)
H160.81450.83010.68860.063*
C210.72522 (15)0.59906 (14)0.66961 (10)0.0417 (3)
C220.83189 (18)0.59330 (18)0.59240 (11)0.0618 (5)
H220.92570.57430.60180.074*
C230.7990 (2)0.6159 (2)0.50129 (13)0.0806 (6)
H230.87070.61290.44950.097*
C240.6607 (3)0.6426 (2)0.48731 (14)0.0823 (6)
H240.63860.65610.42600.099*
C250.5564 (2)0.6495 (2)0.56262 (14)0.0785 (6)
H250.46280.66920.55270.094*
C260.58702 (18)0.62774 (18)0.65371 (12)0.0600 (4)
H260.51420.63240.70480.072*
C310.92996 (14)0.45258 (14)0.78761 (10)0.0402 (3)
C320.94056 (16)0.32544 (15)0.75868 (11)0.0521 (4)
H320.86260.30080.74140.062*
C331.06683 (18)0.23563 (18)0.75555 (13)0.0650 (5)
H331.07340.15040.73620.078*
C341.1817 (2)0.2701 (2)0.78034 (14)0.0728 (5)
H341.26660.20890.77740.087*
C351.1724 (2)0.3947 (2)0.80964 (17)0.0858 (7)
H351.25080.41780.82740.103*
C361.04739 (18)0.48623 (19)0.81299 (14)0.0685 (5)
H361.04200.57120.83250.082*
C410.67097 (15)0.21957 (14)1.01567 (11)0.0472 (4)
C420.57475 (17)0.13770 (15)1.05286 (12)0.0554 (4)
H420.51540.11701.01500.066*
C430.5675 (2)0.08684 (18)1.14674 (15)0.0733 (6)
H430.50260.03181.17250.088*
C440.6552 (3)0.1169 (2)1.20224 (16)0.0902 (7)
H440.65040.08201.26550.108*
C450.7496 (3)0.1981 (3)1.16471 (18)0.0965 (7)
H450.80880.21861.20280.116*
C460.7588 (2)0.2502 (2)1.07136 (16)0.0748 (5)
H460.82360.30551.04620.090*
C510.64748 (17)0.13224 (16)0.59910 (11)0.0512 (4)
C520.73821 (19)0.22069 (19)0.56740 (12)0.0622 (4)
H520.73490.29460.60040.075*
C530.8339 (2)0.1987 (3)0.48637 (16)0.0932 (7)
H530.89640.25770.46530.112*
C540.8391 (3)0.0913 (3)0.43588 (17)0.1073 (9)
H540.90290.07850.38040.129*
C550.7496 (3)0.0041 (3)0.46832 (16)0.0949 (7)
H550.75370.06980.43510.114*
C560.6536 (2)0.02276 (19)0.54879 (13)0.0708 (5)
H560.59250.03760.56980.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.03495 (18)0.03575 (19)0.03911 (19)0.00787 (14)0.00430 (14)0.00280 (14)
P20.0438 (2)0.0442 (2)0.0392 (2)0.01595 (17)0.00013 (16)0.00707 (16)
O10.0465 (6)0.0518 (6)0.0595 (7)0.0032 (5)0.0077 (5)0.0045 (5)
O20.0847 (8)0.0660 (7)0.0458 (6)0.0343 (7)0.0056 (6)0.0190 (5)
O30.0407 (5)0.0613 (7)0.0464 (6)0.0187 (5)0.0049 (4)0.0036 (5)
O40.0823 (9)0.0780 (9)0.0546 (7)0.0400 (7)0.0029 (6)0.0162 (7)
C10.0408 (7)0.0422 (8)0.0394 (7)0.0104 (6)0.0002 (6)0.0076 (6)
C110.0373 (7)0.0367 (7)0.0503 (8)0.0081 (6)0.0024 (6)0.0066 (6)
C120.0652 (10)0.0518 (9)0.0538 (9)0.0234 (8)0.0008 (8)0.0093 (7)
C130.0712 (12)0.0689 (12)0.0633 (11)0.0264 (10)0.0051 (9)0.0271 (9)
C140.0622 (11)0.0443 (9)0.0914 (14)0.0156 (8)0.0059 (10)0.0235 (9)
C150.0641 (11)0.0401 (9)0.0876 (14)0.0147 (8)0.0097 (10)0.0022 (9)
C160.0549 (9)0.0425 (8)0.0607 (10)0.0124 (7)0.0096 (8)0.0011 (7)
C210.0442 (8)0.0397 (7)0.0404 (7)0.0067 (6)0.0068 (6)0.0014 (6)
C220.0559 (10)0.0713 (12)0.0482 (9)0.0006 (9)0.0003 (7)0.0025 (8)
C230.0965 (16)0.0850 (14)0.0432 (10)0.0078 (12)0.0026 (10)0.0010 (9)
C240.1152 (18)0.0804 (14)0.0503 (11)0.0035 (13)0.0323 (12)0.0016 (10)
C250.0725 (12)0.0955 (15)0.0694 (13)0.0126 (11)0.0351 (11)0.0136 (11)
C260.0504 (9)0.0721 (11)0.0542 (10)0.0066 (8)0.0127 (8)0.0047 (8)
C310.0370 (7)0.0416 (8)0.0407 (7)0.0057 (6)0.0063 (6)0.0007 (6)
C320.0423 (8)0.0483 (9)0.0637 (10)0.0085 (7)0.0014 (7)0.0110 (7)
C330.0561 (10)0.0465 (9)0.0824 (13)0.0009 (8)0.0081 (9)0.0075 (9)
C340.0518 (11)0.0674 (13)0.0863 (14)0.0125 (9)0.0107 (9)0.0043 (10)
C350.0493 (11)0.0929 (16)0.1212 (18)0.0007 (10)0.0388 (11)0.0194 (14)
C360.0512 (10)0.0637 (11)0.0979 (14)0.0027 (8)0.0307 (10)0.0211 (10)
C410.0416 (8)0.0366 (8)0.0563 (9)0.0003 (6)0.0012 (7)0.0017 (7)
C420.0518 (9)0.0414 (8)0.0675 (11)0.0068 (7)0.0012 (8)0.0012 (8)
C430.0682 (12)0.0512 (10)0.0802 (13)0.0029 (9)0.0117 (10)0.0168 (9)
C440.0957 (17)0.0879 (16)0.0645 (13)0.0211 (14)0.0085 (12)0.0113 (12)
C450.0986 (18)0.1066 (19)0.0891 (17)0.0080 (15)0.0434 (14)0.0047 (14)
C460.0647 (12)0.0701 (12)0.0935 (15)0.0186 (10)0.0241 (11)0.0049 (11)
C510.0600 (10)0.0544 (9)0.0419 (8)0.0132 (8)0.0146 (7)0.0015 (7)
C520.0678 (11)0.0744 (12)0.0505 (9)0.0271 (10)0.0092 (8)0.0065 (9)
C530.0773 (14)0.134 (2)0.0744 (14)0.0451 (15)0.0047 (11)0.0118 (14)
C540.0984 (18)0.141 (2)0.0732 (15)0.0121 (18)0.0161 (13)0.0311 (17)
C550.132 (2)0.0780 (15)0.0689 (14)0.0016 (15)0.0065 (14)0.0264 (12)
C560.1030 (15)0.0568 (11)0.0573 (11)0.0210 (10)0.0178 (10)0.0056 (9)
Geometric parameters (Å, º) top
P1—C11.7855 (14)C26—H260.9300
P1—C211.7923 (14)C31—C361.381 (2)
P1—C111.7991 (15)C31—C321.386 (2)
P1—C311.8009 (15)C32—C331.378 (2)
P2—O31.4695 (10)C32—H320.9300
P2—O21.4815 (11)C33—C341.358 (3)
P2—O11.6189 (12)C33—H330.9300
P2—C11.8202 (15)C34—C351.366 (3)
O1—C411.3809 (18)C34—H340.9300
O4—C511.3523 (19)C35—C361.378 (2)
O4—H40.88 (2)C35—H350.9300
C1—H1A0.9700C36—H360.9300
C1—H1B0.9700C41—C461.373 (2)
C11—C161.387 (2)C41—C421.378 (2)
C11—C121.387 (2)C42—C431.378 (2)
C12—C131.385 (2)C42—H420.9300
C12—H120.9300C43—C441.369 (3)
C13—C141.382 (3)C43—H430.9300
C13—H130.9300C44—C451.361 (3)
C14—C151.361 (3)C44—H440.9300
C14—H140.9300C45—C461.374 (3)
C15—C161.385 (2)C45—H450.9300
C15—H150.9300C46—H460.9300
C16—H160.9300C51—C521.373 (2)
C21—C261.378 (2)C51—C561.388 (2)
C21—C221.385 (2)C52—C531.375 (3)
C22—C231.383 (2)C52—H520.9300
C22—H220.9300C53—C541.373 (3)
C23—C241.372 (3)C53—H530.9300
C23—H230.9300C54—C551.357 (3)
C24—C251.352 (3)C54—H540.9300
C24—H240.9300C55—C561.366 (3)
C25—C261.374 (2)C55—H550.9300
C25—H250.9300C56—H560.9300
C1—P1—C21110.26 (7)C21—C26—H26119.9
C1—P1—C11106.98 (7)C36—C31—C32118.75 (14)
C21—P1—C11109.54 (7)C36—C31—P1120.44 (12)
C1—P1—C31114.31 (7)C32—C31—P1120.76 (11)
C21—P1—C31107.97 (7)C33—C32—C31119.87 (16)
C11—P1—C31107.68 (7)C33—C32—H32120.1
O3—P2—O2121.84 (7)C31—C32—H32120.1
O3—P2—O1111.10 (6)C34—C33—C32120.84 (17)
O2—P2—O1105.09 (7)C34—C33—H33119.6
O3—P2—C1107.50 (7)C32—C33—H33119.6
O2—P2—C1107.85 (7)C33—C34—C35119.87 (17)
O1—P2—C1101.60 (7)C33—C34—H34120.1
C41—O1—P2124.97 (9)C35—C34—H34120.1
C51—O4—H4110.7 (13)C34—C35—C36120.26 (18)
P1—C1—P2120.06 (8)C34—C35—H35119.9
P1—C1—H1A107.3C36—C35—H35119.9
P2—C1—H1A107.3C35—C36—C31120.40 (18)
P1—C1—H1B107.3C35—C36—H36119.8
P2—C1—H1B107.3C31—C36—H36119.8
H1A—C1—H1B106.9C46—C41—C42120.47 (17)
C16—C11—C12119.55 (14)C46—C41—O1118.61 (15)
C16—C11—P1121.27 (12)C42—C41—O1120.78 (15)
C12—C11—P1119.18 (11)C41—C42—C43119.24 (18)
C13—C12—C11119.95 (15)C41—C42—H42120.4
C13—C12—H12120.0C43—C42—H42120.4
C11—C12—H12120.0C44—C43—C42120.35 (19)
C14—C13—C12119.93 (17)C44—C43—H43119.8
C14—C13—H13120.0C42—C43—H43119.8
C12—C13—H13120.0C45—C44—C43119.8 (2)
C15—C14—C13120.13 (16)C45—C44—H44120.1
C15—C14—H14119.9C43—C44—H44120.1
C13—C14—H14119.9C44—C45—C46120.9 (2)
C14—C15—C16120.78 (16)C44—C45—H45119.6
C14—C15—H15119.6C46—C45—H45119.6
C16—C15—H15119.6C41—C46—C45119.21 (19)
C15—C16—C11119.63 (16)C41—C46—H46120.4
C15—C16—H16120.2C45—C46—H46120.4
C11—C16—H16120.2O4—C51—C52122.60 (15)
C26—C21—C22118.84 (14)O4—C51—C56117.80 (16)
C26—C21—P1121.30 (12)C52—C51—C56119.59 (17)
C22—C21—P1119.83 (12)C51—C52—C53119.20 (19)
C23—C22—C21120.06 (17)C51—C52—H52120.4
C23—C22—H22120.0C53—C52—H52120.4
C21—C22—H22120.0C54—C53—C52121.3 (2)
C24—C23—C22120.00 (18)C54—C53—H53119.3
C24—C23—H23120.0C52—C53—H53119.3
C22—C23—H23120.0C55—C54—C53118.9 (2)
C25—C24—C23120.01 (17)C55—C54—H54120.5
C25—C24—H24120.0C53—C54—H54120.5
C23—C24—H24120.0C54—C55—C56121.2 (2)
C24—C25—C26120.82 (18)C54—C55—H55119.4
C24—C25—H25119.6C56—C55—H55119.4
C26—C25—H25119.6C55—C56—C51119.7 (2)
C25—C26—C21120.27 (17)C55—C56—H56120.1
C25—C26—H26119.9C51—C56—H56120.1
O3—P2—O1—C4118.41 (14)C22—C21—C26—C250.3 (3)
O2—P2—O1—C41152.01 (12)P1—C21—C26—C25178.45 (15)
C1—P2—O1—C4195.68 (12)C1—P1—C31—C36116.51 (14)
C21—P1—C1—P266.49 (11)C21—P1—C31—C36120.40 (14)
C11—P1—C1—P2174.46 (8)C11—P1—C31—C362.20 (15)
C31—P1—C1—P255.36 (11)C1—P1—C31—C3266.08 (14)
O3—P2—C1—P1164.92 (8)C21—P1—C31—C3257.02 (13)
O2—P2—C1—P131.87 (11)C11—P1—C31—C32175.21 (12)
O1—P2—C1—P178.33 (10)C36—C31—C32—C330.1 (2)
C1—P1—C11—C16133.32 (13)P1—C31—C32—C33177.33 (12)
C21—P1—C11—C1613.80 (14)C31—C32—C33—C340.1 (3)
C31—P1—C11—C16103.38 (13)C32—C33—C34—C350.6 (3)
C1—P1—C11—C1246.98 (14)C33—C34—C35—C360.8 (3)
C21—P1—C11—C12166.49 (12)C34—C35—C36—C310.6 (3)
C31—P1—C11—C1276.33 (13)C32—C31—C36—C350.1 (3)
C16—C11—C12—C131.9 (2)P1—C31—C36—C35177.57 (16)
P1—C11—C12—C13177.77 (13)P2—O1—C41—C46117.61 (15)
C11—C12—C13—C141.4 (3)P2—O1—C41—C4266.76 (17)
C12—C13—C14—C150.2 (3)C46—C41—C42—C430.0 (2)
C13—C14—C15—C161.2 (3)O1—C41—C42—C43175.60 (14)
C14—C15—C16—C110.7 (3)C41—C42—C43—C440.3 (3)
C12—C11—C16—C150.9 (2)C42—C43—C44—C450.4 (3)
P1—C11—C16—C15178.82 (12)C43—C44—C45—C460.3 (4)
C1—P1—C21—C2621.86 (15)C42—C41—C46—C450.0 (3)
C11—P1—C21—C2695.62 (14)O1—C41—C46—C45175.60 (18)
C31—P1—C21—C26147.39 (13)C44—C45—C46—C410.1 (3)
C1—P1—C21—C22160.02 (13)O4—C51—C52—C53179.18 (18)
C11—P1—C21—C2282.50 (14)C56—C51—C52—C530.2 (3)
C31—P1—C21—C2234.49 (15)C51—C52—C53—C541.0 (3)
C26—C21—C22—C230.1 (3)C52—C53—C54—C551.4 (4)
P1—C21—C22—C23178.29 (15)C53—C54—C55—C561.2 (4)
C21—C22—C23—C240.6 (3)C54—C55—C56—C510.5 (4)
C22—C23—C24—C251.2 (3)O4—C51—C56—C55178.99 (19)
C23—C24—C25—C261.1 (3)C52—C51—C56—C550.0 (3)
C24—C25—C26—C210.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.89 (2)1.72 (2)2.601 (2)175 (2)
C1—H1B···O3i0.972.303.142 (2)145
C12—H12···O3i0.932.573.269 (2)133
C35—H35···O3ii0.932.363.200 (3)150
C1—H1A···CgDi0.932.793.727 (2)161
C25—H25···CgEiii0.932.903.667 (2)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H22O3P2·C6H6O
Mr526.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.793 (2), 10.170 (2), 14.374 (2)
α, β, γ (°)82.78 (2), 80.07 (2), 78.35 (2)
V3)1374.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.5 × 0.2 × 0.1
Data collection
DiffractometerRigaku AFC-5S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6644, 6293, 4137
Rint0.013
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.02
No. of reflections6293
No. of parameters338
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
P1—C11.7855 (14)P2—O21.4815 (11)
P1—C211.7923 (14)P2—O11.6189 (12)
P1—C111.7991 (15)P2—C11.8202 (15)
P1—C311.8009 (15)O1—C411.3809 (18)
P2—O31.4695 (10)O4—C511.3523 (19)
C1—P1—C21110.26 (7)O3—P2—O1111.10 (6)
C1—P1—C11106.98 (7)O2—P2—O1105.09 (7)
C21—P1—C11109.54 (7)O3—P2—C1107.50 (7)
C1—P1—C31114.31 (7)O2—P2—C1107.85 (7)
C21—P1—C31107.97 (7)O1—P2—C1101.60 (7)
C11—P1—C31107.68 (7)C41—O1—P2124.97 (9)
O3—P2—O2121.84 (7)P1—C1—P2120.06 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.89 (2)1.72 (2)2.601 (2)175 (2)
C1—H1B···O3i0.972.303.142 (2)145
C12—H12···O3i0.932.573.269 (2)133
C35—H35···O3ii0.932.363.200 (3)150
C1—H1A···CgDi0.932.793.727 (2)161
C25—H25···CgEiii0.932.903.667 (2)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
The dihedral angles between the mean planes for the phenyl rings (°). Symbols A–E refer to the phenyl rings in agreement to those in Fig. 1. top
ring/ringdihedral angle
A/B78.1 (1)
A/C77.4 (1)
A/D36.1 (1)
A/E44.1 (1)
B/C72.8 (1)
B/D43.8 (1)
B/E68.5 (1)
C/D83.1 (1)
C/E58.6 (1)
D/E52.8 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds