Download citation
Download citation
link to html
The mol­ecules of methyl 3-(2-nitro­phenyl­hydrazono)­butan­oate, C11H13N3O4, (I), and methyl 3-(2,4-dinitro­phenyl­hydrazono)butanoate, C11H12N4O6, (II), both prepared from methyl 3-oxobutanoate and the corresponding nitro­phenyl­hydrazine, exhibit polarized mol­ecular electronic structures; in each of (I) and (II), the mol­ecules are linked into chains by a single C-H...O hydrogen bond. The mol­ecules of 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole, C10H10N2O, (III), prepared by the reaction of methyl 3-oxobutanoate and phenyl­hydrazine, are linked into chains by a single O-H...N hydrogen bond. The reaction between methyl 3-oxobutanoate and 3-nitro­phenyl­hydrazine yields 5-hydr­oxy-3-methyl-1-(3-nitro­phen­yl)-1H-pyrazole, (IV), which when crystallized from acetone yields 4-isopropyl­idene-3-methyl-1-(3-nitro­phen­yl)-1H-pyrazol-5(4H)-one, C13H13N3O3, (V).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107029447/sk3141sup1.cif
Contains datablocks global, I, II, III, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107029447/sk3141Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107029447/sk3141IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107029447/sk3141IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107029447/sk3141Vsup5.hkl
Contains datablock V

CCDC references: 659129; 659130; 659131; 659132

Comment top

We have for a number of years been interested in the structures of hydrazones (for examples, see Glidewell et al., 2003, 2004, 2006; Peralta et al., 2007; Wardell et al., 2005). As a part of this wider study, we have now investigated the reactions of methyl 3-oxobutanoate (methyl acetoacetate) with a range of simple arylhydrazines. The reaction products include the acyclic 3-arylhydrazinobutanoate esters (I) and (II); the cyclized 1-aryl-5-hydroxypyrazoles (III) and (IV); and the condensation products (V) + ?, initially obtained during attempts to crystallize the pyrazole derivatives from ketonic solvents (Scheme 1). Here we report the structures of compounds (I)–(III) and (V), and we integrate the various structural types into a single mechanistic scheme. The structure of compound (III) reported here represents a second polymorph of this compound; a monoclinic polymorph crystallizes with Z' = 2 in space group P21/c (Bechtel et al., 1973a; Chmutova et al., 2001).

Compounds (I)–(III) (Figs. 1–3) were readily obtained from the reactions between methyl 3-oxobutanoate and the appropriate arylhydrazines, viz. 2-nitrophenylhydrazine for (I), 2,4-dinitrophenlhydrazine for (II) and phenylhydrazine for (III). The analogous reaction using 3-nitrophenylhydrazine gave the product (IV), but the crystal initially obtained from methanol solution were of very poor quality and they were twinned. The diffraction data obtained from these crystals were correspondingly poor, and we have been unable to reduce R significantly below 0.11; thus we do not report the structure of (IV) in detail here. Nonetheless, the atom connectivity revealed by these very poor data unambiguously corresponds to that of compound (IV), directly analogous to compound (III). Attempted recrystallization of compound (IV) from acetone solution yielded instead the condensation product (V) (Fig. 4), evidently a product of the reaction between (IV) itself and the acetone solvent.

The bond lengths in the aryl rings of compounds (I) and (II) show significant variation (Table 1). In particular, the C3—C4 and C5—C6 bonds are substantially shorter than the other ring bonds; in addition, the C2—N12 and C4—N14 bonds are long for their type, while the nitro N—O bonds are all long (Allen et al., 1987). The observations indicate that the polarized quinonoid forms (Ia), and (IIa) and (IIb), respectively (Scheme 2), are significant contributors to the overall electronic structures of compounds (I) and (II). This behaviour is typical of that observed in 2-nitroanilines and 4-nitroanilines, but not in 3-nitroanilines (Cannon et al., 2001; Garden et al., 2001, 2002; Glidewell et al., 2001; Zakaria et al., 2001), and it indicates a reduction in the basicity and nucleophilicity of atom N1 in such 2- and 4-substituted species as compared with both the 3-nitro derivatives and the un-nitrated analogues. The aryl rings in (I) and (II) are almost coplanar with the chain-extended fragment between atoms C1 and C13 (Figs. 1 and 2), and the nitro groups are nearly coplanar with the rings as shown by the relevant torsion angles (Table 1). These nearly planar conformations may be influenced by the intramolecular N—H···O interactions (Table 2). The ester fragments between atoms C12 and C15 are also nearly planar but in each compound there is a substantial bend in the side chain at the C12—C13 bond.

The heterocyclic rings in compounds (III) and (V) exhibit very different bond lengths (Table 2), consistent with significant π-delocalization in (III) and complete bond fixation in (V). The exocyclic C—O bond lengths, in particular, are consistent with the location of the hydroxyl H atom in (III) as deduced from difference maps. The inter-ring dihedral angle is 22.0 (2)° in (III) and 6.2 (2)° in (V), where the nitro group makes a dihedral angle of only 4.9 (2)° with the aryl ring.

The formation of the various products arising from the reactions of methyl acetoacetate with aryl hydrazines can readily be envisaged in terms of an initial condensation to form the acyclic (E)-hydrazone of type (A) (Scheme 3), exemplified here by compounds (I) and (II). Provided that the hydrazine atom N1 is sufficiently nucleophilic then the intermediate (B) can readily cyclize, with loss of methanol, to form (C), whose tautomer (D) is exemplified by (III). Intermediate (B) is simply the Z isomer of (A) and its formation most plausibly involves the tautomer (A'), in which effectively free rotation about the N2—C13 bond is possible. Condensation of (C) with carbonyl compounds yields the exo-methylene derivatives (E), exemplified here by compound (V). We have noted above the evidence for the significance of polarized electronic forms in compounds (I) and (II), and an important consequence of such charge separation is the reduction in nucleophilicity of atom N1 when the aryl group contains 2-nitro and/or 4-nitro substituents. The structural evidence from compounds (I) and (II) is thus consistent with the failure of these two compounds to undergo cyclization under the reaction conditions that produce compounds (III) and (IV). When atom N1 is more nucleophilic, as in the presence of either an unsubstituted phenyl ring or a 3-nitrophenyl ring, cyclization to form (C) and (D) is thus feasible.

While there are no direction-specific interactions of any kind in the structure of (V), the molecules in (I), (II) and (III) are all linked into chains; in each of (I) and (II), the chain is built from a single C—H···O hydrogen bond, and that in (III) by a single O—H···N hydrogen bond. In (I), methylene atom C12 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the carbonyl atom O12 in the molecule at (x, -1 + y, z), so generating by translation a C(4) (Bernstein et al., 1995) chain running parallel to the [010] direction (Fig. 5). In (II), the hydrogen-bond donor and acceptor are both different from those utilized in (I). In (II), aryl atom C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the nitro atom O42 in the molecule at (-1/2 + x, 3/2 - y, 1 - z), so forming a C(6) chain running parallel to [100] and generated by the 21 screw axis along (x, 3/4, 1/2) (Fig. 6). In (III), hydroxy atom O11 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the pyrazole atom N2 in the molecule at (3/2 - x, y, -1/2 + z), so forming a C(5) chain running parallel to the [001] direction and generated by the c-glide plane at x = 0.75 (Fig. 7). There are no direction-specific interactions between the chains in compounds (I) and (III), but those in (II) are weakly linked by a dipolar carbonyl–nitro interaction. Carbonyl atom O12 in the molecule at (x, y, z), which forms part of the hydrogen-bonded chain along (x, 3/4, 1/2), makes a nearly linear contact with the nitro atom N12 in the molecule at (-1/2 + x, y, 1.5 - z), which lies in the hydrogen-bonded chain along (x, 3/4, 1) [O···Ni = 2.885 (2) Å and C—O···Ni 173.7 (2)°; symmetry code: (i) -1/2 + x, y, 3/2 - z)], and the effect of this contact is to link the [100] chains weakly into a sheet parallel to (010).

The monoclinic polymorph of (III) (Bechtel et al., 1973a; Chmutova et al., 2001) is, in fact, a 1:1 cocrystal of the two tautomeric forms 5-hydroxy-3-methyl-1-phenylpyrazole and 3-methyl-1-phenyl-2H-pyrazolin-5-one [(IIIa), Scheme 1), and the molecules are linked by alternating O—H···O and N—H···N hydrogen bonds into C22(10) chains. By contrast, the sulfur analogue of (II) exists in the crystalline state solely as the thione tautomer (Chmutova et al., 2001). Isomeric with compound (III) is 3-hydroxy-5-methyl-1-phenylpyrazole, (VI), which exists in the crystalline state as a single tautomer; the compound crystallizes with Z' = 2 in space group Pbca and the molecules are linked by two independent O—H···N hydrogen bonds into R22(8) dimers, which do not exhibit even approximate symmetry (Bechtel et al., 1973b).

Related literature top

For related literature, see: Allen et al. (1987); Bechtel et al. (1973a, 1973b); Bernstein et al. (1995); Cannon et al. (2001); Chmutova et al. (2001); Garden et al. (2001, 2002); Glidewell et al. (2001, 2003, 2004, 2006); Peralta et al. (2007); Singh (2005); Wardell et al. (2005); Zakaria et al. (2001).

Experimental top

For the synthesis of compound (I), a solution of methyl acetoacetate (1 mmol) and 2-nitrophenylhydrazine (1 mmol) in methanol (10 ml) was heated under reflux for 30 min; the solution was cooled to ambient temperature and then evaporated to dryness. The product, (I), was recrystallized from ethanol. IR (KBr, cm-1): 3330, 1731, 1613, 1575. Heating a solution of (I) in ethanol for 1 h at reflux temperature led to no cyclization or other change. Compound (II) was similarly prepared from methyl acetoacetate and 2,4-dinitrophenylhydrazine, but the heating time was 90 min; compound (II) was recrystallized from ethanol. IR (KBr, cm-1): 3327, 1740, 1620, 1594. Compound (III) was prepared from the reaction of methyl acetoacetate and phenylhydrazine, exactly as for (I). The product was recrystallized from ethanol [m.p. 398–400 K; literature m.p. 400 K (Singh, 2005)]. IR (KBr, cm-1): 3130–2700, 1569, 1534. For the synthesis of (IV), a solution of methyl acetoacetate (1 mmol) and 3-nitrophenylhydrazine hydrochloride (1 mmol) in methanol (20 ml) was heated under reflux for 30 min; the solution was cooled to ambient temperature and then evaporated to dryness. The residue was recrystallized from ethanol, but this material was not suitable for single-crystal X-ray diffraction. IR (KBr, cm-1): 3120, 3100–2300, 1591, 1556, 1530. Further recrystallization of (IV) from acetone gave (V). IR (KBr, cm-1): 1688, 1614, 1529.

Refinement top

For compounds (I), (II) and (V), respectively, the space groups P21/n, Pbca and P21/c were uniquely assigned from the systematic absences. For compound (III), the systematic absences permitted Pca21 and Pbcm (= Pcam) as possible space groups; Pca21 was selected, and confirmed by the successful structure analysis. All H atoms were located in difference maps and then treated as riding atoms. H atoms bonded to C atoms were placed in geometrically idealized positions and allowed to ride with C—H distances of 0.95 Å (aromatic and pyrazole), 0.98 Å (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and k = 1.2 otherwise. H atoms bonded to N or O atoms were allowed to ride at the distances deduced from the difference maps [N—H = 0.88 Å in (I) or 0.93 Å in (II), and O—H = 0.84 Å, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O)]. In the absence of significant resonant scattering it was not possible to establish the correct orientation of the structure of (III) with respect to the polar axis direction; accordingly, the Friedel-equivalent reflections were merged prior to the final refinements. Compound (IV) has unit-cell dimensions a = 25.648 (4) Å, b = 3.8259 (6) Å, c = 24.790 (5) Å, β = 118.739 (14)° in space group P2/c; the compound was crystallized from ethanol as a hemihydrochloride salt, [(C10H9.5N3O3)+0.5]2·Cl- and the crystals were twinned, as well as exhibiting very poor overall quality.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A molecule of (I), showing the atom-labelling scheme and the intramolecular N—H···O hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A molecule of (II), showing the atom-labelling scheme and the intramolecular N—H···O hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A molecule of (V), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. Part of the crystal structure of (I), showing the formation of a hydrogen-bonded chain along [010]. For the sake of clarity, H atoms bonded to the C or N atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, -1 + y, z) and (x, 1 + y, z), respectively.
[Figure 6] Fig. 6. Part of the crystal structure of (II), showing the formation of a hydrogen-bonded chain along [100]. For the sake of clarity, H atoms bonded to the C or N atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-1/2 + x, 3/2 - y, 1 - z) and (1/2 + x, 3/2 - y, 1 - z), respectively.
[Figure 7] Fig. 7. Part of the crystal structure of (III), showing the formation of a hydrogen-bonded chain along [001]. For the sake of clarity, H atoms bonded to the C or N atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (3/2 - x, y, -1/2 + z) and (3/2 - x, y, 1/2 + z), respectively.
(I) Methyl 3-(2-nitrophenylhydrazono)butanoate top
Crystal data top
C11H13N3O4F(000) = 528
Mr = 251.24Dx = 1.463 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2617 reflections
a = 12.1494 (4) Åθ = 3.4–27.6°
b = 5.1355 (2) ŵ = 0.11 mm1
c = 18.6969 (6) ÅT = 120 K
β = 102.079 (2)°Plate, colourless
V = 1140.73 (7) Å30.28 × 0.22 × 0.04 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2617 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.4°
ϕ & ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.975, Tmax = 0.995l = 2424
13943 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.6763P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2617 reflectionsΔρmax = 0.26 e Å3
166 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C11H13N3O4V = 1140.73 (7) Å3
Mr = 251.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1494 (4) ŵ = 0.11 mm1
b = 5.1355 (2) ÅT = 120 K
c = 18.6969 (6) Å0.28 × 0.22 × 0.04 mm
β = 102.079 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2617 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1931 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.995Rint = 0.053
13943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2617 reflectionsΔρmin = 0.29 e Å3
166 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45922 (13)0.3031 (3)0.33540 (8)0.0184 (4)
C20.57012 (13)0.3105 (3)0.32352 (9)0.0194 (4)
N120.65264 (11)0.4910 (3)0.36133 (8)0.0225 (3)
O220.75021 (10)0.4772 (3)0.35191 (8)0.0349 (4)
O210.62525 (10)0.6564 (2)0.40332 (7)0.0257 (3)
C30.60631 (14)0.1370 (4)0.27520 (9)0.0228 (4)
C40.53425 (15)0.0463 (4)0.23858 (9)0.0252 (4)
C50.42442 (14)0.0596 (3)0.25068 (9)0.0233 (4)
C60.38764 (14)0.1084 (3)0.29745 (9)0.0222 (4)
N10.42133 (11)0.4699 (3)0.38180 (8)0.0204 (3)
N20.31239 (11)0.4447 (3)0.39129 (8)0.0198 (3)
C130.27959 (13)0.6086 (3)0.43426 (9)0.0189 (4)
C140.34938 (14)0.8266 (3)0.47396 (10)0.0236 (4)
C120.16198 (13)0.5701 (3)0.44509 (9)0.0209 (4)
C110.08386 (13)0.7894 (3)0.41402 (9)0.0197 (4)
O120.10607 (10)0.9629 (2)0.37597 (7)0.0251 (3)
O110.01560 (9)0.7650 (2)0.43366 (6)0.0232 (3)
C150.09780 (14)0.9636 (4)0.40543 (10)0.0256 (4)
H30.68130.14690.26790.027*
H40.55830.16270.20540.030*
H50.37440.18810.22590.028*
H60.31270.09410.30460.027*
H10.46580.59140.40530.024*
H14A0.35980.96130.43880.035*
H14B0.42300.75900.49870.035*
H14C0.31090.90160.51030.035*
H12A0.13200.40490.42150.025*
H12B0.16370.55460.49810.025*
H15A0.11740.95250.35190.038*
H15B0.06611.13580.42000.038*
H15C0.16550.93700.42520.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0215 (8)0.0177 (9)0.0163 (8)0.0026 (6)0.0049 (6)0.0025 (6)
C20.0209 (8)0.0187 (9)0.0182 (8)0.0004 (6)0.0032 (6)0.0021 (7)
N120.0216 (7)0.0236 (8)0.0232 (8)0.0001 (6)0.0069 (6)0.0025 (6)
O220.0199 (6)0.0397 (8)0.0484 (9)0.0047 (6)0.0148 (6)0.0075 (7)
O210.0252 (6)0.0259 (7)0.0270 (7)0.0027 (5)0.0080 (5)0.0055 (5)
C30.0218 (8)0.0268 (9)0.0208 (9)0.0041 (7)0.0067 (7)0.0032 (7)
C40.0310 (9)0.0251 (9)0.0203 (9)0.0062 (8)0.0069 (7)0.0007 (7)
C50.0266 (9)0.0216 (9)0.0203 (9)0.0003 (7)0.0019 (7)0.0013 (7)
C60.0217 (8)0.0232 (9)0.0217 (9)0.0015 (7)0.0044 (7)0.0007 (7)
N10.0180 (7)0.0201 (7)0.0239 (8)0.0023 (6)0.0064 (6)0.0034 (6)
N20.0172 (7)0.0190 (7)0.0241 (8)0.0005 (6)0.0065 (6)0.0010 (6)
C130.0215 (8)0.0175 (8)0.0180 (8)0.0019 (7)0.0051 (6)0.0028 (7)
C140.0250 (9)0.0213 (9)0.0253 (9)0.0008 (7)0.0070 (7)0.0025 (7)
C120.0232 (8)0.0190 (8)0.0216 (9)0.0003 (7)0.0073 (7)0.0002 (7)
C110.0205 (8)0.0190 (9)0.0201 (8)0.0021 (7)0.0056 (6)0.0053 (7)
O120.0248 (6)0.0196 (6)0.0322 (7)0.0006 (5)0.0088 (5)0.0036 (5)
O110.0197 (6)0.0241 (6)0.0274 (7)0.0018 (5)0.0086 (5)0.0032 (5)
C150.0212 (8)0.0243 (9)0.0318 (10)0.0040 (7)0.0064 (7)0.0010 (8)
Geometric parameters (Å, º) top
C1—N11.366 (2)N2—C131.283 (2)
C1—C21.411 (2)C13—C121.498 (2)
C1—C61.414 (2)C13—C141.503 (2)
C2—C31.403 (2)C14—H14A0.98
C2—N121.438 (2)C14—H14B0.98
N12—O221.2363 (17)C14—H14C0.98
N12—O211.2482 (18)C12—C111.508 (2)
C3—C41.368 (3)C12—H12A0.99
C3—H30.95C12—H12B0.99
C4—C51.401 (2)C11—O121.206 (2)
C4—H40.95C11—O111.3402 (19)
C5—C61.368 (2)O11—C151.448 (2)
C5—H50.95C15—H15A0.98
C6—H60.95C15—H15B0.98
N1—N21.3778 (18)C15—H15C0.98
N1—H10.88
N1—C1—C2122.88 (15)N2—C13—C12115.36 (15)
N1—C1—C6120.55 (15)N2—C13—C14125.49 (15)
C2—C1—C6116.56 (15)C12—C13—C14119.14 (14)
C3—C2—C1121.49 (15)C13—C14—H14A109.5
C3—C2—N12116.46 (14)C13—C14—H14B109.5
C1—C2—N12122.04 (14)H14A—C14—H14B109.5
O22—N12—O21121.22 (14)C13—C14—H14C109.5
O22—N12—C2118.92 (14)H14A—C14—H14C109.5
O21—N12—C2119.85 (13)H14B—C14—H14C109.5
C4—C3—C2120.35 (16)C13—C12—C11113.01 (14)
C4—C3—H3119.8C13—C12—H12B109.0
C2—C3—H3119.8C11—C12—H12B109.0
C3—C4—C5118.97 (16)C13—C12—H12A109.0
C3—C4—H4120.5C11—C12—H12A109.0
C5—C4—H4120.5H12B—C12—H12A107.8
C6—C5—C4121.45 (16)O12—C11—O11123.83 (15)
C6—C5—H5119.3O12—C11—C12125.35 (15)
C4—C5—H5119.3O11—C11—C12110.82 (14)
C5—C6—C1121.16 (16)C11—O11—C15115.27 (13)
C5—C6—H6119.4O11—C15—H15A109.5
C1—C6—H6119.4O11—C15—H15B109.5
C1—N1—N2118.91 (13)H15A—C15—H15B109.5
C1—N1—H1120.5O11—C15—H15C109.5
N2—N1—H1120.5H15A—C15—H15C109.5
C13—N2—N1116.85 (14)H15B—C15—H15C109.5
N1—C1—C2—C3179.71 (16)N1—C1—C6—C5179.85 (16)
C6—C1—C2—C31.4 (2)C2—C1—C6—C51.2 (2)
N1—C1—C2—N121.8 (2)C2—C1—N1—N2178.57 (14)
C6—C1—C2—N12177.08 (14)C6—C1—N1—N20.3 (2)
C3—C2—N12—O223.0 (2)C1—N1—N2—C13178.70 (15)
C1—C2—N12—O22175.59 (15)N1—N2—C13—C12178.15 (13)
C3—C2—N12—O21177.67 (15)N1—N2—C13—C140.9 (2)
C1—C2—N12—O213.8 (2)N2—C13—C12—C11113.65 (17)
C1—C2—C3—C40.5 (3)C14—C13—C12—C1167.19 (19)
N12—C2—C3—C4178.09 (15)C13—C12—C11—O129.2 (2)
C2—C3—C4—C50.7 (3)C13—C12—C11—O11171.48 (13)
C3—C4—C5—C60.8 (3)O12—C11—O11—C150.4 (2)
C4—C5—C6—C10.1 (3)C12—C11—O11—C15178.88 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O210.881.972.6077 (17)128
C12—H12A···O12i0.992.423.3894 (19)166
Symmetry code: (i) x, y1, z.
(II) Methyl 3-(2,4-dinitrophenylhydrazono)butanoate top
Crystal data top
C11H12N4O6F(000) = 1232
Mr = 296.25Dx = 1.483 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3033 reflections
a = 10.6100 (3) Åθ = 3.2–27.5°
b = 12.1878 (4) ŵ = 0.12 mm1
c = 20.522 (2) ÅT = 120 K
V = 2653.7 (3) Å3Block, yellow
Z = 80.43 × 0.35 × 0.14 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3033 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.961, Tmax = 0.983l = 2426
20035 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.817P]
where P = (Fo2 + 2Fc2)/3
3033 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H12N4O6V = 2653.7 (3) Å3
Mr = 296.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.6100 (3) ŵ = 0.12 mm1
b = 12.1878 (4) ÅT = 120 K
c = 20.522 (2) Å0.43 × 0.35 × 0.14 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3033 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2289 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.983Rint = 0.061
20035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
3033 reflectionsΔρmin = 0.25 e Å3
192 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.01578 (11)0.55193 (10)0.69090 (6)0.0297 (3)
O120.13782 (15)0.43776 (15)0.74791 (7)0.0606 (5)
O210.66390 (10)0.26911 (9)0.64925 (6)0.0230 (3)
O220.85592 (10)0.32760 (10)0.65229 (7)0.0311 (3)
O410.98648 (10)0.63378 (10)0.52622 (6)0.0301 (3)
O420.84785 (11)0.75212 (10)0.49240 (6)0.0302 (3)
N10.48258 (11)0.40416 (11)0.61533 (7)0.0177 (3)
N20.36163 (11)0.44540 (11)0.61213 (6)0.0180 (3)
N120.74485 (12)0.33937 (10)0.63681 (7)0.0192 (3)
N140.87653 (13)0.66549 (11)0.52018 (7)0.0222 (3)
C10.57946 (13)0.46822 (12)0.59429 (7)0.0162 (3)
C20.70780 (14)0.43794 (12)0.60203 (8)0.0161 (3)
C30.80473 (14)0.50226 (13)0.57740 (8)0.0179 (3)
C40.77522 (14)0.59849 (12)0.54603 (8)0.0179 (3)
C50.65006 (15)0.63349 (12)0.53913 (8)0.0191 (3)
C60.55446 (15)0.56928 (12)0.56314 (8)0.0184 (3)
C110.10115 (16)0.47250 (15)0.69668 (9)0.0270 (4)
C120.14400 (14)0.43223 (14)0.63058 (8)0.0233 (4)
C130.27347 (14)0.38216 (14)0.63305 (8)0.0206 (4)
C140.29115 (17)0.26882 (15)0.65951 (11)0.0339 (5)
C150.0374 (2)0.59322 (18)0.75140 (10)0.0469 (6)
H10.50010.33800.63640.021*
H30.89010.48010.58220.022*
H50.63160.70100.51810.023*
H60.46970.59330.55870.022*
H12A0.08340.37690.61430.028*
H12B0.14440.49450.59960.028*
H14A0.34440.22640.62970.051*
H14B0.20890.23290.66380.051*
H14C0.33170.27290.70230.051*
H15A0.08490.53460.77300.070*
H15B0.09390.65480.74190.070*
H15C0.03070.61800.78010.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0326 (7)0.0331 (7)0.0234 (7)0.0096 (5)0.0052 (5)0.0064 (5)
O120.0645 (10)0.0938 (13)0.0236 (8)0.0502 (10)0.0066 (7)0.0142 (8)
O210.0207 (6)0.0194 (5)0.0288 (7)0.0020 (5)0.0041 (5)0.0045 (5)
O220.0152 (6)0.0305 (7)0.0478 (8)0.0045 (5)0.0027 (5)0.0118 (6)
O410.0168 (6)0.0334 (7)0.0401 (8)0.0032 (5)0.0059 (5)0.0052 (6)
O420.0328 (7)0.0231 (6)0.0347 (7)0.0047 (5)0.0030 (6)0.0092 (5)
N10.0112 (6)0.0198 (7)0.0222 (7)0.0012 (5)0.0012 (5)0.0031 (5)
N20.0109 (6)0.0257 (7)0.0175 (7)0.0010 (5)0.0002 (5)0.0015 (5)
N120.0151 (7)0.0189 (6)0.0236 (7)0.0013 (5)0.0029 (6)0.0002 (5)
N140.0223 (8)0.0226 (7)0.0216 (8)0.0048 (6)0.0038 (6)0.0000 (6)
C10.0146 (7)0.0193 (7)0.0148 (8)0.0010 (6)0.0014 (6)0.0031 (6)
C20.0160 (8)0.0154 (7)0.0170 (8)0.0014 (6)0.0002 (6)0.0002 (6)
C30.0146 (7)0.0200 (7)0.0192 (8)0.0004 (6)0.0012 (6)0.0023 (6)
C40.0178 (8)0.0196 (7)0.0164 (8)0.0046 (6)0.0016 (6)0.0011 (6)
C50.0217 (8)0.0185 (7)0.0169 (8)0.0000 (6)0.0015 (6)0.0006 (6)
C60.0157 (8)0.0218 (8)0.0177 (8)0.0016 (6)0.0023 (6)0.0004 (6)
C110.0197 (8)0.0369 (10)0.0245 (10)0.0049 (7)0.0035 (7)0.0072 (8)
C120.0137 (8)0.0338 (9)0.0223 (9)0.0002 (7)0.0004 (7)0.0031 (7)
C130.0155 (8)0.0284 (8)0.0178 (8)0.0004 (6)0.0005 (6)0.0011 (6)
C140.0203 (9)0.0323 (9)0.0492 (13)0.0007 (7)0.0059 (8)0.0145 (9)
C150.0582 (14)0.0531 (12)0.0292 (11)0.0294 (11)0.0164 (10)0.0099 (10)
Geometric parameters (Å, º) top
C1—N11.3612 (19)C15—H15A0.98
C1—C61.413 (2)C15—H15B0.98
C1—C21.420 (2)C15—H15C0.98
N1—N21.3797 (17)C2—C31.388 (2)
N1—H10.9337C2—N121.4517 (19)
N2—C131.286 (2)N12—O221.2290 (16)
C13—C141.496 (2)N12—O211.2394 (16)
C13—C121.504 (2)C3—C41.374 (2)
C14—H14A0.98C3—H30.95
C14—H14B0.98C4—C51.402 (2)
C14—H14C0.98C4—N141.4503 (19)
C12—C111.512 (2)N14—O411.2352 (17)
C12—H12A0.99N14—O421.2378 (18)
C12—H12B0.99C5—C61.373 (2)
C11—O121.198 (2)C5—H50.95
C11—O111.331 (2)C6—H60.95
O11—C151.454 (2)
N1—C1—C6120.12 (13)O11—C15—H15B109.5
N1—C1—C2122.67 (14)H15A—C15—H15B109.5
C6—C1—C2117.21 (13)O11—C15—H15C109.5
C1—N1—N2118.57 (12)H15A—C15—H15C109.5
C1—N1—H1119.5H15B—C15—H15C109.5
N2—N1—H1121.5C3—C2—C1121.54 (14)
C13—N2—N1116.25 (13)C3—C2—N12116.47 (13)
N2—C13—C14125.69 (15)C1—C2—N12121.99 (13)
N2—C13—C12114.21 (14)O22—N12—O21122.04 (13)
C14—C13—C12120.09 (14)O22—N12—C2118.91 (12)
C13—C14—H14A109.5O21—N12—C2119.04 (12)
C13—C14—H14B109.5C4—C3—C2118.93 (14)
H14A—C14—H14B109.5C4—C3—H3120.5
C13—C14—H14C109.5C2—C3—H3120.5
H14A—C14—H14C109.5C3—C4—C5121.52 (14)
H14B—C14—H14C109.5C3—C4—N14118.89 (14)
C13—C12—C11112.09 (14)C5—C4—N14119.58 (14)
C13—C12—H12A109.2O41—N14—O42123.04 (13)
C11—C12—H12A109.2O41—N14—C4119.15 (13)
C13—C12—H12B109.2O42—N14—C4117.81 (13)
C11—C12—H12B109.2C6—C5—C4119.36 (14)
H12A—C12—H12B107.9C6—C5—H5120.3
O12—C11—O11123.78 (17)C4—C5—H5120.3
O12—C11—C12125.07 (16)C5—C6—C1121.38 (14)
O11—C11—C12111.14 (14)C5—C6—H6119.3
C11—O11—C15116.10 (14)C1—C6—H6119.3
O11—C15—H15A109.5
C6—C1—N1—N27.1 (2)C1—C2—N12—O22166.82 (14)
C2—C1—N1—N2173.08 (13)C3—C2—N12—O21166.83 (14)
C1—N1—N2—C13179.46 (14)C1—C2—N12—O2114.1 (2)
N1—N2—C13—C140.7 (2)C1—C2—C3—C41.4 (2)
N1—N2—C13—C12178.09 (13)N12—C2—C3—C4177.75 (14)
N2—C13—C12—C11101.57 (17)C2—C3—C4—C50.8 (2)
C14—C13—C12—C1177.3 (2)C2—C3—C4—N14179.85 (14)
C13—C12—C11—O1225.3 (3)C3—C4—N14—O410.9 (2)
C13—C12—C11—O11155.12 (14)C5—C4—N14—O41179.68 (14)
O12—C11—O11—C152.7 (3)C3—C4—N14—O42179.63 (15)
C12—C11—O11—C15176.87 (16)C5—C4—N14—O420.3 (2)
N1—C1—C2—C3176.91 (15)C3—C4—C5—C61.3 (2)
C6—C1—C2—C32.9 (2)N14—C4—C5—C6179.38 (14)
N1—C1—C2—N124.0 (2)C4—C5—C6—C10.4 (2)
C6—C1—C2—N12176.14 (13)N1—C1—C6—C5177.40 (15)
C3—C2—N12—O2212.3 (2)C2—C1—C6—C52.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O210.931.952.6258 (17)128
C6—H6···O42i0.952.513.293 (2)139
Symmetry code: (i) x1/2, y+3/2, z+1.
(III) 5-Hydroxy-3-methyl-1-phenyl-1H-pyrazole top
Crystal data top
C10H10N2OF(000) = 368
Mr = 174.20Dx = 1.330 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1051 reflections
a = 15.0138 (9) Åθ = 3.3–27.5°
b = 5.2952 (3) ŵ = 0.09 mm1
c = 10.9469 (6) ÅT = 120 K
V = 870.29 (9) Å3Needle, colourless
Z = 40.22 × 0.09 × 0.02 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1051 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ & ω scansh = 1915
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.974, Tmax = 0.998l = 1214
8739 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1089P]
where P = (Fo2 + 2Fc2)/3
1051 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C10H10N2OV = 870.29 (9) Å3
Mr = 174.20Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 15.0138 (9) ŵ = 0.09 mm1
b = 5.2952 (3) ÅT = 120 K
c = 10.9469 (6) Å0.22 × 0.09 × 0.02 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1051 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
913 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.998Rint = 0.057
8739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 1.12Δρmax = 0.17 e Å3
1051 reflectionsΔρmin = 0.21 e Å3
120 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64367 (15)0.3886 (4)0.6963 (2)0.0195 (5)
C20.61493 (16)0.3673 (5)0.8171 (2)0.0232 (5)
C30.55513 (17)0.5448 (5)0.8625 (2)0.0274 (6)
C40.52322 (19)0.7370 (5)0.7897 (3)0.0292 (6)
C50.55078 (18)0.7531 (5)0.6698 (3)0.0274 (6)
C60.61146 (16)0.5798 (4)0.6215 (2)0.0239 (6)
N10.70654 (13)0.2088 (4)0.65099 (17)0.0198 (4)
N20.75777 (13)0.0691 (3)0.73189 (18)0.0206 (5)
C110.72202 (15)0.1281 (4)0.5345 (2)0.0205 (5)
O110.67794 (12)0.2304 (3)0.44157 (17)0.0273 (4)
C120.78441 (15)0.0624 (4)0.5395 (2)0.0218 (5)
C130.80393 (16)0.0922 (4)0.6631 (2)0.0208 (5)
C140.86558 (17)0.2775 (5)0.7216 (3)0.0274 (6)
H20.63590.23390.86750.028*
H30.53600.53330.94500.033*
H40.48260.85740.82190.035*
H50.52810.88410.61920.033*
H60.63040.59250.53890.029*
H110.69930.17730.37550.041*
H120.80890.15390.47280.026*
H14A0.86370.25650.81050.041*
H14B0.92640.24820.69230.041*
H14C0.84710.44950.70030.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0176 (12)0.0198 (12)0.0210 (12)0.0020 (9)0.0002 (9)0.0052 (9)
C20.0244 (13)0.0271 (13)0.0181 (11)0.0035 (10)0.0005 (10)0.0026 (10)
C30.0258 (13)0.0331 (14)0.0231 (13)0.0054 (11)0.0045 (10)0.0089 (11)
C40.0254 (12)0.0267 (14)0.0355 (15)0.0023 (11)0.0048 (11)0.0111 (11)
C50.0266 (14)0.0216 (13)0.0341 (14)0.0003 (9)0.0013 (11)0.0015 (11)
C60.0259 (13)0.0232 (13)0.0226 (13)0.0029 (10)0.0017 (9)0.0027 (10)
N10.0208 (10)0.0234 (10)0.0150 (10)0.0010 (8)0.0016 (8)0.0007 (8)
N20.0240 (10)0.0245 (11)0.0134 (9)0.0006 (9)0.0027 (8)0.0004 (8)
C110.0218 (12)0.0257 (12)0.0139 (11)0.0026 (10)0.0004 (9)0.0004 (10)
O110.0309 (10)0.0393 (11)0.0117 (7)0.0100 (8)0.0012 (7)0.0001 (8)
C120.0216 (12)0.0246 (12)0.0193 (11)0.0010 (10)0.0021 (10)0.0008 (11)
C130.0197 (12)0.0216 (11)0.0210 (12)0.0030 (9)0.0014 (9)0.0022 (10)
C140.0291 (14)0.0261 (13)0.0269 (14)0.0018 (10)0.0019 (11)0.0040 (11)
Geometric parameters (Å, º) top
C1—C61.389 (3)N1—C111.364 (3)
C1—C21.396 (3)N1—N21.387 (3)
C1—N11.430 (3)N2—C131.333 (3)
C2—C31.391 (4)C11—O111.329 (3)
C2—H20.95C11—C121.378 (3)
C3—C41.378 (4)O11—H110.84
C3—H30.95C12—C131.394 (3)
C4—C51.379 (4)C12—H120.95
C4—H40.95C13—C141.493 (3)
C5—C61.397 (4)C14—H14A0.98
C5—H50.95C14—H14B0.98
C6—H60.95C14—H14C0.98
C6—C1—C2120.7 (2)C11—N1—C1130.2 (2)
C6—C1—N1120.7 (2)N2—N1—C1119.99 (18)
C2—C1—N1118.6 (2)C13—N2—N1105.63 (19)
C3—C2—C1118.9 (2)O11—C11—N1120.2 (2)
C3—C2—H2120.6O11—C11—C12131.8 (2)
C1—C2—H2120.6N1—C11—C12108.0 (2)
C4—C3—C2121.1 (2)C11—O11—H11109.5
C4—C3—H3119.4C11—C12—C13105.3 (2)
C2—C3—H3119.4C11—C12—H12127.3
C3—C4—C5119.4 (2)C13—C12—H12127.3
C3—C4—H4120.3N2—C13—C12111.5 (2)
C5—C4—H4120.3N2—C13—C14120.1 (2)
C4—C5—C6121.0 (3)C12—C13—C14128.4 (2)
C4—C5—H5119.5C13—C14—H14A109.5
C6—C5—H5119.5C13—C14—H14B109.5
C1—C6—C5118.9 (2)H14A—C14—H14B109.5
C1—C6—H6120.6C13—C14—H14C109.5
C5—C6—H6120.6H14A—C14—H14C109.5
C11—N1—N2109.59 (18)H14B—C14—H14C109.5
C6—C1—C2—C31.6 (3)C11—N1—N2—C130.5 (2)
N1—C1—C2—C3178.7 (2)C1—N1—N2—C13175.4 (2)
C1—C2—C3—C41.0 (4)N2—N1—C11—O11178.0 (2)
C2—C3—C4—C50.3 (4)C1—N1—C11—O113.7 (4)
C3—C4—C5—C60.9 (4)N2—N1—C11—C120.8 (3)
C2—C1—C6—C51.0 (3)C1—N1—C11—C12175.0 (2)
N1—C1—C6—C5179.4 (2)O11—C11—C12—C13177.8 (2)
C4—C5—C6—C10.3 (4)N1—C11—C12—C130.7 (3)
C6—C1—N1—C1125.5 (4)N1—N2—C13—C120.0 (3)
C2—C1—N1—C11154.2 (2)N1—N2—C13—C14178.8 (2)
C6—C1—N1—N2160.8 (2)C11—C12—C13—N20.4 (3)
C2—C1—N1—N219.6 (3)C11—C12—C13—C14178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O110.952.312.881 (3)118
O11—H11···N2i0.841.792.633 (3)178
Symmetry code: (i) x+3/2, y, z1/2.
(V) 4-isopropylidene-3-methyl-1-(3-nitrophenyl)-1H-pyrazol-5(4H)-one top
Crystal data top
C13H13N3O3F(000) = 544
Mr = 259.26Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2752 reflections
a = 8.8910 (3) Åθ = 3.5–27.5°
b = 10.1699 (6) ŵ = 0.11 mm1
c = 13.4731 (7) ÅT = 120 K
β = 100.415 (3)°Block, red
V = 1198.17 (10) Å30.36 × 0.24 × 0.14 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2752 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.5°
ϕ & ω scansh = 1111
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 1313
Tmin = 0.958, Tmax = 0.985l = 1717
15923 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.7324P]
where P = (Fo2 + 2Fc2)/3
2752 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H13N3O3V = 1198.17 (10) Å3
Mr = 259.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8910 (3) ŵ = 0.11 mm1
b = 10.1699 (6) ÅT = 120 K
c = 13.4731 (7) Å0.36 × 0.24 × 0.14 mm
β = 100.415 (3)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2752 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
1840 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.985Rint = 0.057
15923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
2752 reflectionsΔρmin = 0.27 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6412 (2)0.3896 (2)0.58841 (16)0.0251 (5)
C20.5480 (2)0.2940 (2)0.53563 (16)0.0261 (5)
C30.4712 (2)0.2100 (2)0.59011 (16)0.0266 (5)
N30.3745 (2)0.10745 (18)0.53370 (14)0.0296 (4)
O310.37429 (19)0.09546 (17)0.44281 (12)0.0372 (4)
O320.29733 (18)0.03864 (17)0.58002 (13)0.0384 (4)
C40.4805 (2)0.2175 (2)0.69288 (16)0.0308 (5)
C50.5737 (3)0.3139 (2)0.74368 (17)0.0340 (6)
C60.6550 (2)0.3989 (2)0.69307 (16)0.0285 (5)
N10.7228 (2)0.47471 (19)0.53473 (13)0.0270 (4)
N20.7157 (2)0.45083 (19)0.42918 (14)0.0310 (5)
C110.8088 (3)0.5830 (2)0.56848 (18)0.0318 (5)
O110.8279 (2)0.62522 (18)0.65341 (12)0.0415 (5)
C120.8663 (2)0.6299 (2)0.47662 (17)0.0286 (5)
C130.7981 (2)0.5402 (2)0.39738 (18)0.0313 (5)
C140.8126 (3)0.5385 (3)0.28851 (18)0.0395 (6)
C150.9605 (2)0.7355 (2)0.47696 (19)0.0348 (6)
C161.0160 (3)0.8131 (3)0.5715 (2)0.0433 (6)
C171.0143 (3)0.7835 (3)0.38357 (19)0.0389 (6)
H20.53720.28650.46440.031*
H40.42500.15880.72760.037*
H50.58220.32180.81470.041*
H60.72000.46340.72940.034*
H14A0.74490.47090.25290.059*
H14B0.91860.51880.28290.059*
H14C0.78370.62460.25840.059*
H16A0.92910.85710.59290.065*
H16B1.09020.87910.55830.065*
H16C1.06480.75360.62500.065*
H17A1.01590.71000.33680.058*
H17B1.11750.82020.40220.058*
H17C0.94450.85170.35090.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (10)0.0255 (12)0.0270 (11)0.0048 (8)0.0066 (8)0.0035 (9)
C20.0224 (10)0.0299 (12)0.0262 (11)0.0057 (9)0.0048 (8)0.0022 (9)
C30.0232 (10)0.0264 (12)0.0298 (12)0.0029 (8)0.0038 (8)0.0004 (9)
N30.0274 (10)0.0296 (11)0.0313 (11)0.0020 (8)0.0037 (8)0.0023 (8)
O310.0415 (9)0.0402 (10)0.0289 (9)0.0038 (7)0.0038 (7)0.0031 (7)
O320.0383 (9)0.0354 (10)0.0424 (11)0.0076 (7)0.0093 (8)0.0056 (8)
C40.0345 (12)0.0301 (12)0.0284 (12)0.0001 (9)0.0077 (9)0.0044 (10)
C50.0426 (13)0.0354 (14)0.0246 (12)0.0004 (11)0.0082 (9)0.0034 (10)
C60.0314 (11)0.0274 (12)0.0263 (12)0.0017 (9)0.0044 (9)0.0005 (9)
N10.0285 (9)0.0291 (10)0.0233 (10)0.0009 (8)0.0048 (7)0.0028 (8)
N20.0298 (10)0.0361 (11)0.0281 (10)0.0017 (8)0.0080 (8)0.0076 (8)
C110.0308 (12)0.0302 (12)0.0331 (13)0.0037 (10)0.0025 (9)0.0038 (10)
O110.0517 (11)0.0402 (10)0.0310 (10)0.0116 (8)0.0028 (7)0.0001 (8)
C120.0228 (10)0.0283 (12)0.0336 (12)0.0016 (9)0.0022 (8)0.0073 (10)
C130.0276 (11)0.0328 (13)0.0329 (13)0.0053 (9)0.0039 (9)0.0007 (10)
C140.0417 (14)0.0467 (16)0.0303 (13)0.0011 (11)0.0068 (10)0.0026 (11)
C150.0279 (11)0.0336 (13)0.0413 (14)0.0038 (10)0.0020 (9)0.0078 (11)
C160.0387 (13)0.0387 (15)0.0485 (16)0.0070 (11)0.0023 (11)0.0028 (12)
C170.0321 (12)0.0371 (14)0.0486 (15)0.0018 (10)0.0099 (10)0.0119 (12)
Geometric parameters (Å, º) top
C1—C21.387 (3)C11—O111.205 (3)
C1—C61.396 (3)C11—C121.500 (3)
C1—N11.410 (3)C12—C151.361 (3)
C2—C31.384 (3)C12—C131.452 (3)
C2—H20.95C13—C141.496 (3)
C3—C41.374 (3)C14—H14A0.98
C3—N31.473 (3)C14—H14B0.98
N3—O321.226 (2)C14—H14C0.98
N3—O311.230 (2)C15—C161.504 (4)
C4—C51.382 (3)C15—C171.506 (3)
C4—H40.95C16—H16A0.98
C5—C61.383 (3)C16—H16B0.98
C5—H50.95C16—H16C0.98
C6—H60.95C17—H17A0.98
N1—C111.371 (3)C17—H17B0.98
N1—N21.433 (3)C17—H17C0.98
N2—C131.288 (3)
C2—C1—C6120.0 (2)C15—C12—C13132.3 (2)
C2—C1—N1118.84 (19)C15—C12—C11123.3 (2)
C6—C1—N1121.1 (2)C13—C12—C11104.33 (19)
C3—C2—C1117.8 (2)N2—C13—C12112.7 (2)
C3—C2—H2121.1N2—C13—C14118.2 (2)
C1—C2—H2121.1C12—C13—C14129.0 (2)
C4—C3—C2123.7 (2)C13—C14—H14A109.5
C4—C3—N3118.8 (2)C13—C14—H14B109.5
C2—C3—N3117.48 (19)H14A—C14—H14B109.5
O32—N3—O31123.34 (19)C13—C14—H14C109.5
O32—N3—C3118.01 (18)H14A—C14—H14C109.5
O31—N3—C3118.65 (18)H14B—C14—H14C109.5
C3—C4—C5117.4 (2)C12—C15—C16121.6 (2)
C3—C4—H4121.3C12—C15—C17122.8 (2)
C5—C4—H4121.3C16—C15—C17115.7 (2)
C4—C5—C6121.3 (2)C15—C16—H16A109.5
C4—C5—H5119.4C15—C16—H16B109.5
C6—C5—H5119.4H16A—C16—H16B109.5
C5—C6—C1119.8 (2)C15—C16—H16C109.5
C5—C6—H6120.1H16A—C16—H16C109.5
C1—C6—H6120.1H16B—C16—H16C109.5
C11—N1—C1129.13 (19)C15—C17—H17A109.5
C11—N1—N2112.79 (17)C15—C17—H17B109.5
C1—N1—N2118.07 (17)H17A—C17—H17B109.5
C13—N2—N1106.55 (19)C15—C17—H17C109.5
O11—C11—N1125.1 (2)H17A—C17—H17C109.5
O11—C11—C12131.3 (2)H17B—C17—H17C109.5
N1—C11—C12103.58 (19)
C6—C1—C2—C30.1 (3)C1—N1—N2—C13179.97 (18)
N1—C1—C2—C3178.84 (18)C1—N1—C11—O110.7 (4)
C1—C2—C3—C41.0 (3)N2—N1—C11—O11177.7 (2)
C1—C2—C3—N3179.00 (17)C1—N1—C11—C12179.6 (2)
C4—C3—N3—O325.1 (3)N2—N1—C11—C122.0 (2)
C2—C3—N3—O32174.84 (19)O11—C11—C12—C151.8 (4)
C4—C3—N3—O31175.27 (19)N1—C11—C12—C15178.5 (2)
C2—C3—N3—O314.8 (3)O11—C11—C12—C13177.8 (2)
C2—C3—C4—C50.8 (3)N1—C11—C12—C131.9 (2)
N3—C3—C4—C5179.19 (19)N1—N2—C13—C120.0 (2)
C3—C4—C5—C60.3 (3)N1—N2—C13—C14179.47 (18)
C4—C5—C6—C11.2 (3)C15—C12—C13—N2179.3 (2)
C2—C1—C6—C51.0 (3)C11—C12—C13—N21.2 (2)
N1—C1—C6—C5179.9 (2)C15—C12—C13—C140.1 (4)
C2—C1—N1—C11173.0 (2)C11—C12—C13—C14179.4 (2)
C6—C1—N1—C118.1 (3)C13—C12—C15—C16179.9 (2)
C2—C1—N1—N25.3 (3)C11—C12—C15—C160.7 (3)
C6—C1—N1—N2173.58 (18)C13—C12—C15—C171.0 (4)
C11—N1—N2—C131.4 (2)C11—C12—C15—C17178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O110.952.242.871 (3)123

Experimental details

(I)(II)(III)(V)
Crystal data
Chemical formulaC11H13N3O4C11H12N4O6C10H10N2OC13H13N3O3
Mr251.24296.25174.20259.26
Crystal system, space groupMonoclinic, P21/nOrthorhombic, PbcaOrthorhombic, Pca21Monoclinic, P21/c
Temperature (K)120120120120
a, b, c (Å)12.1494 (4), 5.1355 (2), 18.6969 (6)10.6100 (3), 12.1878 (4), 20.522 (2)15.0138 (9), 5.2952 (3), 10.9469 (6)8.8910 (3), 10.1699 (6), 13.4731 (7)
α, β, γ (°)90, 102.079 (2), 9090, 90, 9090, 90, 9090, 100.415 (3), 90
V3)1140.73 (7)2653.7 (3)870.29 (9)1198.17 (10)
Z4844
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.110.120.090.11
Crystal size (mm)0.28 × 0.22 × 0.040.43 × 0.35 × 0.140.22 × 0.09 × 0.020.36 × 0.24 × 0.14
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker-Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Tmin, Tmax0.975, 0.9950.961, 0.9830.974, 0.9980.958, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
13943, 2617, 1931 20035, 3033, 2289 8739, 1051, 913 15923, 2752, 1840
Rint0.0530.0610.0570.057
(sin θ/λ)max1)0.6510.6490.6500.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.05 0.044, 0.116, 1.05 0.039, 0.093, 1.12 0.060, 0.165, 1.04
No. of reflections2617303310512752
No. of parameters166192120175
No. of restraints0010
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.290.27, 0.250.17, 0.210.53, 0.27

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond distances and torsion angles (Å, °) for compounds (I) and (II) top
Parameter(I)(II)
C1-C21.411 (2)1.420 (2)
C2-C31.403 (2)1.388 (2)
C3-C41.368 (3)1.374 (2)
C4-C51.401 (2)1.402 (2)
C5-C61.368 (2)1.373 (2)
C6-C11.414 (2)1.413 (2)
C1-N11.366 (2)1.3612 (19)
C2-N121.438 (2)1.4517 (19)
N12-O211.2482 (18)1.2394 (16)
N12-O221.2363 (17)1.2290 (16)
C4-N141.4503 (19)
N14-O411.2352 (17)
N14-O421.2378 (17)
C2-C1-N1-N2-178.57 (14)173.08 (13)
C1-N1-N2-C13-178.70 (15)-179.46 (14)
N1-N2-C13-C12-178.15 (13)178.09 (13)
N2-C13-C12-C11-113.65 (17)-101.57 (17)
C13-C12-C11-O11-171.48 (13)155.12 (14)
C12-C11-O11-C15-178.88 (13)176.87 (16)
C1-C2-N12-O21-3.8 (2)14.1 (2)
C3-C4-N14-O410.9 (2)
Selected bond lengths (Å) in compounds (III) and (V) top
Parameter(III)(V)
N1-N21.387 (3)1.433 (3)
N2-C131.333 (3)1.288 (3)
C13-C121.394 (3)1.452 (3)
C12-C111.378 (3)1.500 (3)
C11-N11.364 (3)1.371 (3)
C11-O111.329 (3)1.205 (3)
C12-C151.361 (3)
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(III) and (V) top
D-H···AD-HH···AD···AD-H···A
(I)
N1-H1···O210.881.972.6077 (19)128
C12-H12A···O12i0.992.423.3894 (19)166
(II)
N1-H1···O210.931.952.6258 (17)128
C6-H6···O42ii0.952.513.293 (2)139
(III)
O11-H11···N2iii0.841.792.633 (3)178
C6-H6···O10.952.312.881 (3)118
(V)
C6-H6···O10.952.242.871 (3)123
Symmetry codes: (i) x, y -1, z; (ii) x - 1/2, -y + 3/2, -z +1; (iii) -x + 3/2, y, z - 1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds