Download citation
Download citation
link to html
The pyrazine ring in two N-substituted quinoxaline derivatives, namely (E)-2-(2-methoxy­benzyl­idene)-1,4-di-p-tosyl-1,2,3,4-tetra­hydro­quin­oxaline, C30H28N2S2O5, (II), and (E)-methyl 2-[(1,4-di-p-tosyl-1,2,3,4-tetra­hydro­quinoxalin-2-yli­dene)methyl]benzoate, C31H28N2S2O6, (III), assumes a half-chair conformation and is shielded by the terminal tosyl groups. In the mol­ecular packing of the compounds, inter­molecular C-H...O hydrogen bonds between centrosymmetrically related mol­ecules generate dimeric rings, viz. R22(22) in (II) and R22(26) in (III), which are further connected through C-H...[pi](arene) hydrogen bonds and [pi]-[pi] stacking inter­actions into novel supra­molecular frameworks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107032234/sk3138sup1.cif
Contains datablocks global, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107032234/sk3138IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107032234/sk3138IIIsup3.hkl
Contains datablock III

CCDC references: 659147; 659148

Comment top

The quinoxaline heterocycle, (I), has been an integral part in many natural products (Dell et al., 1975). Several quinoxaline derivatives have been successfully used in the pharmaceutical industry as synthetic precursors of antihypertensives, analgesics and neurotransmitter antagonists (Fuente et al., 2000; Kher et al., 1995). Furthermore, the in vitro anticancer activity of quinoxaline compounds has recently emerged as a promising modality against cancer and allied diseases (Lorgia et al., 1995; Bonnett, 1995). The DNA photocleaving property of quinoxaline-based compounds with substitutions at the C-positions of the pyrazine ring has been attributed to the conjugated CN bond in these systems (Toshima et al., 2002). Although the syntheses and crystal structure analyses of different C-substituted quinoxalines have been reported (Dobrzańska & Lloyd, 2005; Zhao & Du, 2003; Sessler et al., 2002; Chowdhury et al., 2001), the corresponding study of N-substituted quinoxalines has been rather sparse (Banerjee et al., 2001). As part of an ongoing programme on the synthesis and structural characterization of novel N-substituted quinoxalines, we synthesized two 2-alkylidene-1,4-di-p-tosyl-1,2,3,4-tetrahydroquinoxalines via palladium-catalyzed heteroannulation of N-substituted phenylamines. In order to establish the regio- and stereospecificities of the reaction and to build up a hierarchy for such systems, X-ray analyses of 2-(2-methoxyphenylmethylidene)-1,4-di-p-tosyl-1,2,3,4-tetrahydroquinoxaline, (II), and 2-(2-carbomethoxyphenylmethylidene)-1,4-di-p-tosyl-1,2,3,4-tetrahydroquinoxaline, (III), were undertaken.

The title compounds (Figs. 1 and 2) consist of a quinoxaline ring system with two p-tosyl and one substituted phenylmethylidene groups at the 1-, 4- and 2-positions, respectively. The E configuration of the molecules of (II) and (III), as established from the 3JC—H coupling constant (Moreau et al., 1991; Cabiddu et al., 1986) value of 7.76 Hz for both compounds, is confirmed by the N1—C22—C23—C24 torsion angles of −172.0 (1)° for (II) and 171.7 (2)° for (III). The pyrazine ring B (N1/C8/C13/N2/C21/C22) fused to the phenyl ring A (C8–C13) in both compounds assumes a half-chair conformation. with ring-puckering parameters (Cremer & Pople, 1975) Q, θ and ϕ of 0.413 (1) Å, 49.7 (2)° and 264.5 (2)°, respectively, for (II), and 0.413 (2) Å, 132.0 (3)° and 77.8 (3)°, respectively, for (III). The deviations of atom C21 from the corresponding least-squares planes through the remaining endocyclic atoms of the C4N2 ring are 0.543 (2) and −0.557 (2) Å, respectively, for (II) and (III).

The molecular geometries of (II) and (III) (Tables 1 and 2) agree well with the corresponding values reported for similar N-substituted quinoxaline compounds (Banerjee et al., 2001). The sums of the valence angles at the two N atoms (N1 and N2) of the pyrazine ring are 349.1 (1) and 348.5 (1)°, respectively, for (II), and 348.2 (1) and 347.8 (1)°, respectively, for (III), deviating significantly from 360°, and thus these atoms display pyramidal distortion. The conformation of the molecules can be described by the torsion angles C6—S1—N1—C8 and C14—S2—N2—C21, which are −91.8 (1) and 84.8 (1)°, respectively, in (II), and 84.8 (2) and −77.3 (1)°, respectively, in (III). These values indicate that the tosyl groups in the compounds adopt folded conformations, with the phenyl rings C (C1–C6) and D (C14–C19) shielding the central quinoxaline moiety. The dihedral angles between the essentially planar phenyl rings C and D are 7.3 (1)° in (II) and 4.7 (1)° in (III). The SO bond distances in the compounds are in the range 1.427 (1)–1.434 (1) Å (Tables 1 and 2) and are consistent with those found in structures containing sulfonyl groups (Ghosh et al., 2006; Wardell et al., 2005). However, the angular disposition of the bonds about atoms S1 and S2 in the two compounds deviates considerably from that of a regular tetrahedron; the largest and the smallest angles are O1—S1—O2 = 119.5 (1)° and N1—S1—C6 = 104.1 (1)°, respectively, in (II). Similar distortion in sulfonyl geometry has been reported in the literature (Chumakov et al., 2005; Sonar et al., 2004) and can be attributed to the repulsive interaction between the short SO bonds. Although both compounds (II) and (III) contain four essentially planar phenyl rings (A, C, D and E), the lack of π-bonding in the branches between the phenyl rings precludes any possible π conjugation across the whole molecules. The aromatic nature of the rings is therefore localized within the rings and on their direct substituents.

The similarity of the lattice parameters and space groups between (II) and other N-substituted quinoxaline compounds reported earlier by Banerjee et al. (2001), namely 2-(4-methylbenzylidene)-1,4-di-p-tosyl-1,2,3,4-tetrahydroquinoxaline, 2-(4-methoxybenzylidene)-1,4-di-p-tosyl-1,2,3,4-tetrahydroquinoxaline and 2-(3-chlorobenzylidene)-1,4-di-p-tosyl-1,2,3,4-tetrahydroquinoxaline, hereinafter referred to as (IV), (V) and (VI), respectively, suggests some degree of isostructurality among the compounds. The results of the calculation (Table 5) of the unit-cell similarity descriptor π (Kálmán et al., 1993), the isostructurality index Ii (Kálmán et al., 1993) and the volumetric isostructurality index Iv (Fábián & Kálmán, 1999) reveal a high degree of isostructurality between compounds (II) and (VI). The volumetric index of isostructurality between compounds (II) and (VI) amounts to 77% for the whole unit cell, with four molecules indicating significant packing similarity of the two structures. The large values of the isostructurality index Ii(61) between (II) and (IV) and (II) and (V) (Table 5) indicate that compound (II) is not isostructural with compound (IV) or (V). This is probably a consequence of the exchange of cell-axis lengths in compound (II) compared with those in (IV) and (V), which results in different packing arrangements in these compounds.

Despite the close similarity between compounds (II) and (III) in terms of their overall constitutions and detailed molecular geometries, there are some significant differences in the nature of their supramolecular aggregation. The molecules of (II) are linked into a three-dimensional framework by a combination of C—H···O and C—H···π(arene) hydrogen bonds (Table 3), and ππ stacking interactions. It is convenient to consider the substructures generated by each type of hydrogen bond acting individually, and then the combination of substructures to build up the resulting assembly. The molecules in (II) related by inversion, with phenyl atom C2 in the molecule at (x, y, z) acting as a donor to sulfonamide atom O4 in the molecule at (1 − x, 1 − y, 1 − z), generate a centrosymmetric R22(22) (Bernstein et al., 1995) dimeric ring centred at (1/2, 1/2, 1/2). Propagation of these dimers through C—H···π(arene) hydrogen bonds (Table 3) produces two chains, the first running parallel to the [010] direction and generated by the 21 screw axis along (0, y, 1/4) and the second running parallel to the [001] direction and generated by the c-glide plane at y = 1/4. The combination of [010] and [001] chains in (II) produces a complex sheet parallel to (100). Finally, the interconnection of molecular sheets through a ππ stacking interaction (Table 3) between the C1–C6 and C14–C19 aryl rings of the molecules at (x, y, z) and (1 + x, y, z), respectively, forms a three-dimensional supramolecular assembly (Fig. 3) in (II).

In (III), a pair of intermolecular C—H···O hydrogen bonds between centrosymmetrically related molecules involving the tosyl group atom C16 at (x, y, z) and the carbomethoxy atom O5 at (1 − x, −y, −z) generates an R22(26) dimeric ring centred at (1/2, 0, 0). Propagation of these R22(26) rings along the [100] direction forms a C(11) chain via another type of intermolecular C—H···O hydrogen bond between the phenyl atom C18 and the sulfonamide atom O1 (Table 4). The molecular packing in (III) is such that the ππ stacking interactions between the aryl rings in the carbomethoxyphenyl groups of adjacent polymeric chains are optimized. The phenyl rings C24–C29 of the molecules at (x, y, z) and (1 − x, 1 − y, −z) are strictly parallel, with an interplanar spacing of 3.417 Å, and a ring centroid separation of 3.938 (1) Å, corresponding to a ring offset of 1.96 Å. The combination of C—H···O hydrogen bonds and ππ interactions results in a two-dimensional supramolecular framework in (III) (Fig. 4).

Experimental top

A mixture of aryl iodide [2-methoxy-iodobenzene (0.268 g, 1.14 mmol) for (II); 2-carbomethoxy iodobenzene (0.30 g, 1.14 mmol) for (III)], palladium(II) acetate [Pd(OAc)2] (0.009 g, 5 mmol%), anhydrous potassium carbonate (0.304 g, 2.2 mmol) and tetrabutylammonium bromide (TBAB) (0.142 g, 0.44 mmol) was stirred in dimethylformamide (DMF; 10 ml) under a nitrogen atomosphere at room temperature (300 K) for 1 h. The acetylenic compound N-(prop-2'-ynyl)-N,N'-1,2-phenylenedi-p-tosylamide (0.4 g, 0.88 mmol) was added to the mixture, followed by stirring for a further 24 h at room temperature. After the usual work-up, the crude product was purified by column chromatography through silica gel (60–120 mesh) using chloroform as eluant, affording the title compounds, (II) (yield 47%) and (III) (yield 50%). Single crystals of (II) and (III) suitable for X-ray analyses were obtained from a chloroform–light petroleum (333–353 K) mixture (1:1 v/v). Compound (II): m.p. 442 (2) K; analysis found: C 64.32, H 4.96, N 5.02%; calculated for C30H28N2S2O5: C 64.28, H 5.00, N 5.00%. Spectroscopic analysis: 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 2.33 (s, 3H, Ar—CH3), 2.42 (s, 3H, Ar—CH3), 3.84 (s, 3H, –OCH3), 4.05 (s, 2H, –CH2), 6.92 (s, 1H, CH), 6.94–7.83 (m, 16H, Ar—H); 13C NMR (75 MHz, CDCl3, δ, p.p.m.): 21.5 (Ar—CH3), 21.53 (Ar—CH3), 21.6 (Ar—OCH3), 43.5 (—CH2–), 55.25 (CH–). Compound (III): m.p. 441 (2) K; analysis found: C 62.88, H 4.80, N 4.67%; calculated for C31H28N2S2O6: C 63.26, H 4.76, N 4.76%. Spectroscopic analysis: 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 2.35 (s, 3H, Ar—CH3), 2.46 (s, 3H, Ar—CH3) 3.87 (s, 3H, –COOCH3), 4.15 (s, 2H, –CH2), 7.10 (s, 1H, CH), 7.12–8.09 (m, 16H, Ar—H); 13C NMR (75 MHz, CDCl3, δ, p.p.m.): 21.5 (Ar—CH3), 21.6 (–COOCH3), 44.5 (–CH2–), 52.1 ( CH–).

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.5–1.8Ueq(C). [Please check added text and correct as necessary]

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Version 1.06; Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: SHELXL97 and PARST 95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbritary radii.
[Figure 2] Fig. 2. A view of (III), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbritary radii.
[Figure 3] Fig. 3. The three-dimensional supramolecular framework in (II) formed by C—H···O and C—H···π(arene) hydrogen bonds and ππ stacking interactions. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, 1/2 − y, −1/2 + z; (iii) −1 + x, y, z.]
[Figure 4] Fig. 4. The two-dimensional supramolecular architecture in (III). H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) 1 − x, −y, −z; (ii) 1 + x, y, z; (iii) 1 − x, 1 − y, −z; (iv) x − 1, y, z.]
(II) (E)-2-(2-methoxybenzylidene)-1,4-di-p-tosyl-1,2,3,4-tetrahydroquinoxaline top
Crystal data top
C30H28N2O5S2F(000) = 1176
Mr = 560.66Dx = 1.451 Mg m3
Monoclinic, P21/cMelting point: 442 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.4081 (5) ÅCell parameters from 9506 reflections
b = 24.0202 (11) Åθ = 2.6–26.4°
c = 10.2842 (5) ŵ = 0.25 mm1
β = 93.314 (10)°T = 100 K
V = 2566.8 (2) Å3Block, colourless
Z = 40.50 × 0.50 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5223 independent reflections
Radiation source: fine-focus sealed tube4688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.887, Tmax = 0.908k = 1729
14680 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.8776P]
where P = (Fo2 + 2Fc2)/3
5223 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C30H28N2O5S2V = 2566.8 (2) Å3
Mr = 560.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4081 (5) ŵ = 0.25 mm1
b = 24.0202 (11) ÅT = 100 K
c = 10.2842 (5) Å0.50 × 0.50 × 0.40 mm
β = 93.314 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5223 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4688 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.908Rint = 0.030
14680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
5223 reflectionsΔρmin = 0.36 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62971 (3)0.305435 (14)0.24029 (3)0.01438 (10)
S20.17251 (3)0.377587 (14)0.48384 (3)0.01757 (10)
O10.65777 (9)0.24748 (4)0.25798 (10)0.0188 (2)
O20.65163 (9)0.33134 (4)0.11846 (9)0.0196 (2)
O30.11113 (10)0.34710 (5)0.58191 (10)0.0245 (2)
O40.18676 (10)0.43673 (4)0.49690 (10)0.0228 (2)
O50.27924 (10)0.45069 (4)0.01747 (9)0.0187 (2)
N10.47210 (11)0.31503 (5)0.26630 (11)0.0140 (2)
N20.32243 (11)0.35246 (5)0.47786 (11)0.0161 (2)
C10.75481 (13)0.39671 (6)0.33998 (14)0.0174 (3)
H10.74540.41140.25630.031*
C20.81261 (13)0.42776 (6)0.44046 (14)0.0186 (3)
H20.84220.46340.42380.034*
C30.82709 (13)0.40621 (6)0.56645 (14)0.0170 (3)
C40.78144 (13)0.35263 (6)0.58967 (14)0.0176 (3)
H40.79020.33800.67340.032*
C50.72344 (13)0.32094 (6)0.49043 (13)0.0165 (3)
H50.69330.28530.50680.030*
C60.71103 (12)0.34348 (6)0.36530 (13)0.0145 (3)
C70.89080 (15)0.44016 (6)0.67470 (14)0.0221 (3)
H7A0.94450.46800.63860.033*
H7B0.94240.41630.73140.033*
H7C0.82620.45790.72320.033*
C80.40703 (12)0.27614 (6)0.34536 (13)0.0148 (3)
C90.40765 (13)0.21966 (6)0.31317 (14)0.0181 (3)
H90.45160.20780.24200.033*
C100.34383 (14)0.18123 (6)0.38572 (15)0.0211 (3)
H100.34450.14370.36310.038*
C110.27876 (14)0.19864 (6)0.49226 (15)0.0215 (3)
H110.23810.17260.54280.039*
C120.27415 (13)0.25442 (6)0.52360 (14)0.0190 (3)
H120.23010.26580.59520.034*
C130.33505 (13)0.29413 (6)0.44883 (13)0.0156 (3)
C140.09300 (13)0.36270 (6)0.33195 (14)0.0180 (3)
C150.03889 (14)0.31029 (6)0.30990 (15)0.0216 (3)
H150.04200.28370.37580.039*
C160.01969 (14)0.29810 (6)0.18858 (16)0.0229 (3)
H160.05480.26290.17330.041*
C170.02683 (13)0.33776 (6)0.08912 (15)0.0204 (3)
C180.02633 (14)0.39022 (6)0.11502 (14)0.0206 (3)
H180.02050.41740.05040.037*
C190.08752 (14)0.40287 (6)0.23433 (14)0.0192 (3)
H190.12450.43770.24910.035*
C200.08725 (15)0.32439 (7)0.04338 (15)0.0263 (3)
H20A0.02270.32550.10630.039*
H20B0.15300.35130.06620.039*
H20C0.12470.28790.04230.039*
C210.41718 (13)0.38918 (6)0.41902 (13)0.0158 (3)
H21A0.49840.38720.47000.028*
H21B0.38700.42740.42120.028*
C220.43789 (12)0.37299 (5)0.28065 (13)0.0144 (3)
C230.42993 (12)0.40538 (6)0.17546 (13)0.0155 (3)
H230.43630.38750.09590.028*
C240.41222 (13)0.46625 (6)0.17024 (13)0.0158 (3)
C250.47475 (13)0.50299 (6)0.25836 (13)0.0179 (3)
H250.52350.48880.32950.032*
C260.46544 (14)0.56034 (6)0.24173 (14)0.0199 (3)
H260.50730.58420.30150.036*
C270.39376 (14)0.58176 (6)0.13609 (14)0.0197 (3)
H270.38840.62010.12440.036*
C280.32938 (13)0.54639 (6)0.04694 (14)0.0179 (3)
H280.28050.56100.02350.032*
C290.33861 (13)0.48906 (6)0.06398 (13)0.0162 (3)
C300.21005 (15)0.47027 (6)0.13207 (14)0.0225 (3)
H30A0.17450.43920.18050.034*
H30B0.26730.49040.18480.034*
H30C0.14170.49440.10810.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01544 (17)0.01446 (18)0.01324 (17)0.00140 (12)0.00087 (12)0.00078 (12)
S20.01635 (18)0.01824 (19)0.01835 (18)0.00308 (13)0.00308 (13)0.00037 (13)
O10.0198 (5)0.0146 (5)0.0218 (5)0.0038 (4)0.0005 (4)0.0031 (4)
O20.0204 (5)0.0242 (5)0.0143 (5)0.0009 (4)0.0025 (4)0.0003 (4)
O30.0215 (5)0.0292 (6)0.0236 (5)0.0047 (4)0.0074 (4)0.0034 (4)
O40.0240 (5)0.0188 (5)0.0256 (5)0.0040 (4)0.0030 (4)0.0053 (4)
O50.0227 (5)0.0159 (5)0.0170 (5)0.0008 (4)0.0042 (4)0.0013 (4)
N10.0154 (6)0.0121 (5)0.0146 (5)0.0012 (4)0.0009 (4)0.0011 (4)
N20.0158 (6)0.0154 (6)0.0171 (6)0.0013 (4)0.0014 (4)0.0007 (4)
C10.0186 (7)0.0168 (7)0.0170 (6)0.0016 (5)0.0028 (5)0.0029 (5)
C20.0197 (7)0.0138 (7)0.0226 (7)0.0014 (5)0.0034 (5)0.0007 (5)
C30.0138 (6)0.0174 (7)0.0199 (7)0.0014 (5)0.0018 (5)0.0021 (5)
C40.0181 (7)0.0186 (7)0.0161 (6)0.0013 (5)0.0002 (5)0.0019 (5)
C50.0171 (7)0.0145 (7)0.0180 (7)0.0001 (5)0.0009 (5)0.0019 (5)
C60.0132 (6)0.0149 (6)0.0152 (6)0.0020 (5)0.0002 (5)0.0021 (5)
C70.0237 (7)0.0211 (7)0.0216 (7)0.0036 (6)0.0006 (6)0.0043 (6)
C80.0138 (6)0.0157 (7)0.0145 (6)0.0006 (5)0.0029 (5)0.0031 (5)
C90.0182 (7)0.0166 (7)0.0191 (7)0.0018 (5)0.0022 (5)0.0005 (5)
C100.0201 (7)0.0141 (7)0.0286 (8)0.0003 (5)0.0034 (6)0.0033 (6)
C110.0158 (7)0.0195 (7)0.0290 (8)0.0008 (5)0.0009 (6)0.0101 (6)
C120.0142 (6)0.0229 (7)0.0198 (7)0.0016 (5)0.0000 (5)0.0056 (6)
C130.0140 (6)0.0151 (7)0.0170 (6)0.0013 (5)0.0034 (5)0.0016 (5)
C140.0130 (6)0.0191 (7)0.0218 (7)0.0027 (5)0.0009 (5)0.0006 (6)
C150.0173 (7)0.0187 (7)0.0285 (8)0.0005 (5)0.0010 (6)0.0057 (6)
C160.0170 (7)0.0186 (7)0.0328 (8)0.0010 (6)0.0005 (6)0.0000 (6)
C170.0141 (6)0.0229 (7)0.0242 (7)0.0039 (6)0.0027 (5)0.0020 (6)
C180.0192 (7)0.0212 (7)0.0218 (7)0.0034 (6)0.0044 (6)0.0032 (6)
C190.0179 (7)0.0162 (7)0.0238 (7)0.0016 (5)0.0037 (5)0.0003 (6)
C200.0227 (8)0.0299 (9)0.0261 (8)0.0031 (6)0.0005 (6)0.0038 (7)
C210.0160 (6)0.0148 (7)0.0165 (7)0.0003 (5)0.0009 (5)0.0001 (5)
C220.0128 (6)0.0129 (6)0.0174 (7)0.0000 (5)0.0002 (5)0.0011 (5)
C230.0137 (6)0.0163 (7)0.0162 (6)0.0008 (5)0.0004 (5)0.0008 (5)
C240.0160 (6)0.0150 (7)0.0167 (6)0.0008 (5)0.0040 (5)0.0021 (5)
C250.0181 (7)0.0192 (7)0.0164 (6)0.0005 (5)0.0015 (5)0.0016 (5)
C260.0226 (7)0.0178 (7)0.0195 (7)0.0032 (6)0.0033 (6)0.0032 (5)
C270.0233 (7)0.0139 (7)0.0226 (7)0.0008 (5)0.0065 (6)0.0017 (5)
C280.0191 (7)0.0172 (7)0.0176 (7)0.0022 (5)0.0029 (5)0.0034 (5)
C290.0164 (6)0.0169 (7)0.0157 (6)0.0008 (5)0.0035 (5)0.0006 (5)
C300.0235 (7)0.0230 (8)0.0201 (7)0.0018 (6)0.0051 (6)0.0023 (6)
Geometric parameters (Å, º) top
S1—O21.4291 (10)C12—C131.400 (2)
S1—O11.4318 (10)C12—H120.9300
S1—N11.6930 (11)C14—C191.391 (2)
S1—C61.7545 (14)C14—C151.392 (2)
S2—O31.4269 (11)C15—C161.388 (2)
S2—O41.4340 (11)C15—H150.9300
S2—N21.6774 (12)C16—C171.397 (2)
S2—C141.7617 (15)C16—H160.9300
O5—C291.3686 (17)C17—C181.396 (2)
O5—C301.4250 (17)C17—C201.502 (2)
N1—C81.4339 (17)C18—C191.383 (2)
N1—C221.4466 (17)C18—H180.9300
N2—C131.4403 (17)C19—H190.9300
N2—C211.4784 (17)C20—H20A0.9600
C1—C21.384 (2)C20—H20B0.9600
C1—C61.3873 (19)C20—H20C0.9600
C1—H10.9300C21—C221.5027 (18)
C2—C31.395 (2)C21—H21A0.9700
C2—H20.9300C21—H21B0.9700
C3—C41.3972 (19)C22—C231.3312 (19)
C3—C71.5029 (19)C23—C241.4742 (19)
C4—C51.384 (2)C23—H230.9300
C4—H40.9300C24—C251.398 (2)
C5—C61.3952 (19)C24—C291.4087 (19)
C5—H50.9300C25—C261.391 (2)
C7—H7A0.9600C25—H250.9300
C7—H7B0.9600C26—C271.381 (2)
C7—H7C0.9600C26—H260.9300
C8—C91.3966 (19)C27—C281.393 (2)
C8—C131.4044 (19)C27—H270.9300
C9—C101.381 (2)C28—C291.3909 (19)
C9—H90.9300C28—H280.9300
C10—C111.385 (2)C30—H30A0.9600
C10—H100.9300C30—H30B0.9600
C11—C121.380 (2)C30—H30C0.9600
C11—H110.9300
O2—S1—O1119.54 (6)C19—C14—C15120.68 (13)
O2—S1—N1106.53 (6)C19—C14—S2119.77 (11)
O1—S1—N1107.74 (6)C15—C14—S2119.53 (11)
O2—S1—C6108.72 (6)C16—C15—C14119.33 (14)
O1—S1—C6109.09 (6)C16—C15—H15120
N1—S1—C6104.13 (6)C14—C15—H15120
O3—S2—O4119.36 (6)C15—C16—C17121.09 (14)
O3—S2—N2107.26 (6)C15—C16—H16119
O4—S2—N2105.58 (6)C17—C16—H16119
O3—S2—C14108.42 (7)C18—C17—C16118.19 (14)
O4—S2—C14108.96 (7)C18—C17—C20120.44 (14)
N2—S2—C14106.54 (6)C16—C17—C20121.35 (14)
C29—O5—C30118.20 (11)C19—C18—C17121.65 (14)
C8—N1—C22116.23 (11)C19—C18—H18119
C8—N1—S1119.64 (9)C17—C18—H18119
C22—N1—S1113.18 (9)C18—C19—C14119.04 (14)
C13—N2—C21115.12 (11)C18—C19—H19120
C13—N2—S2116.99 (9)C14—C19—H19120
C21—N2—S2116.38 (9)C17—C20—H20A109
C2—C1—C6119.34 (13)C17—C20—H20B109
C2—C1—H1120H20A—C20—H20B109
C6—C1—H1120C17—C20—H20C109
C1—C2—C3120.84 (13)H20A—C20—H20C109
C1—C2—H2120H20B—C20—H20C109
C3—C2—H2120N2—C21—C22111.64 (11)
C2—C3—C4118.74 (13)N2—C21—H21A109
C2—C3—C7120.39 (13)C22—C21—H21A109
C4—C3—C7120.87 (13)N2—C21—H21B109
C5—C4—C3121.26 (13)C22—C21—H21B109
C5—C4—H4119H21A—C21—H21B108
C3—C4—H4119C23—C22—N1118.92 (12)
C4—C5—C6118.69 (13)C23—C22—C21127.79 (12)
C4—C5—H5120N1—C22—C21113.28 (11)
C6—C5—H5120C22—C23—C24127.66 (12)
C1—C6—C5121.13 (12)C22—C23—H23116
C1—C6—S1119.49 (10)C24—C23—H23116
C5—C6—S1119.26 (10)C25—C24—C29117.98 (13)
C3—C7—H7A109C25—C24—C23123.35 (12)
C3—C7—H7B109C29—C24—C23118.37 (12)
H7A—C7—H7B109C26—C25—C24121.26 (13)
C3—C7—H7C109C26—C25—H25119
H7A—C7—H7C109C24—C25—H25119
H7B—C7—H7C109C27—C26—C25119.75 (13)
C9—C8—C13119.24 (12)C27—C26—H26120
C9—C8—N1119.32 (12)C25—C26—H26120
C13—C8—N1121.29 (12)C26—C27—C28120.53 (13)
C10—C9—C8120.82 (13)C26—C27—H27120
C10—C9—H9119.6C28—C27—H27120
C8—C9—H9120C29—C28—C27119.60 (13)
C9—C10—C11119.86 (14)C29—C28—H28120
C9—C10—H10120C27—C28—H28120
C11—C10—H10120O5—C29—C28124.35 (12)
C12—C11—C10120.20 (13)O5—C29—C24114.77 (12)
C12—C11—H11120C28—C29—C24120.88 (13)
C10—C11—H11120O5—C30—H30A109
C11—C12—C13120.70 (14)O5—C30—H30B109
C11—C12—H12120H30A—C30—H30B109
C13—C12—H12120O5—C30—H30C109
C12—C13—C8119.01 (13)H30A—C30—H30C109
C12—C13—N2119.96 (12)H30B—C30—H30C109
C8—C13—N2121.02 (12)
N1—C22—C23—C24172.0 (1)S1—N1—C22—C2373.8 (1)
N2—C21—C22—C23127.2 (1)C14—S2—N2—C2184.8 (1)
C6—S1—N1—C891.8 (1)
(III) (E)-methyl 2-[(1,4-di-p-tosyl-1,2,3,4-tetrahydroquinoxalin-2-ylidene)methyl]benzoate top
Crystal data top
C31H28N2O6S2Z = 2
Mr = 588.67F(000) = 616
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Melting point: 441 K
a = 10.1431 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7721 (4) ÅCell parameters from 4963 reflections
c = 11.8879 (9) Åθ = 2.4–26.3°
α = 101.093 (1)°µ = 0.25 mm1
β = 103.928 (2)°T = 100 K
γ = 91.248 (3)°Block, colourless
V = 1348.55 (15) Å30.45 × 0.45 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4625 independent reflections
Radiation source: fine-focus sealed tube4153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.897, Tmax = 0.907k = 1313
9605 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.9284P]
where P = (Fo2 + 2Fc2)/3
4625 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C31H28N2O6S2γ = 91.248 (3)°
Mr = 588.67V = 1348.55 (15) Å3
Triclinic, P1Z = 2
a = 10.1431 (7) ÅMo Kα radiation
b = 11.7721 (4) ŵ = 0.25 mm1
c = 11.8879 (9) ÅT = 100 K
α = 101.093 (1)°0.45 × 0.45 × 0.40 mm
β = 103.928 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4625 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4153 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.907Rint = 0.027
9605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
4625 reflectionsΔρmin = 0.35 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08193 (4)0.27896 (4)0.10050 (4)0.01639 (12)
S20.54542 (4)0.24880 (4)0.47822 (4)0.01615 (13)
N10.22339 (15)0.23010 (13)0.18022 (13)0.0158 (3)
N20.38448 (15)0.27713 (12)0.42298 (13)0.0158 (3)
O10.02637 (13)0.19212 (11)0.07954 (11)0.0210 (3)
O20.11751 (13)0.31297 (11)0.00200 (11)0.0209 (3)
O30.54273 (13)0.18077 (11)0.56543 (11)0.0215 (3)
O40.62193 (13)0.35885 (11)0.51281 (11)0.0216 (3)
O50.54019 (14)0.22762 (12)0.01423 (12)0.0271 (3)
O60.72143 (13)0.31911 (11)0.04071 (11)0.0206 (3)
C10.09944 (19)0.51271 (16)0.18985 (18)0.0229 (4)
H10.14760.52150.13430.034*
C20.0770 (2)0.60805 (17)0.26909 (18)0.0255 (4)
H20.11260.68100.26760.038*
C30.0023 (2)0.59778 (17)0.35109 (17)0.0233 (4)
C40.0489 (2)0.48755 (17)0.35234 (17)0.0232 (4)
H40.10080.47920.40540.035*
C50.02450 (19)0.39028 (16)0.27664 (16)0.0205 (4)
H50.05670.31690.28050.031*
C60.04909 (18)0.40359 (16)0.19437 (16)0.0177 (4)
C70.0229 (2)0.70366 (18)0.43458 (19)0.0312 (5)
H7A0.08100.68170.48080.056*
H7B0.06590.75850.39000.056*
H7C0.06230.73830.48620.056*
C80.20792 (18)0.15653 (15)0.26057 (16)0.0162 (4)
C90.12101 (18)0.05552 (16)0.21971 (17)0.0202 (4)
H90.07620.03490.13990.030*
C100.10067 (19)0.01407 (16)0.29600 (18)0.0235 (4)
H100.04120.08030.26760.035*
C110.1686 (2)0.01447 (17)0.41483 (18)0.0240 (4)
H110.15280.03100.46680.036*
C120.25986 (19)0.11074 (16)0.45551 (17)0.0207 (4)
H120.30630.12920.53500.031*
C130.28362 (17)0.18105 (15)0.37916 (16)0.0159 (4)
C140.59961 (17)0.16309 (15)0.36214 (15)0.0161 (4)
C150.56057 (19)0.04530 (15)0.32920 (16)0.0189 (4)
H150.50780.01120.36950.028*
C160.60124 (19)0.02064 (16)0.23567 (17)0.0209 (4)
H160.57470.09950.21280.031*
C170.68126 (18)0.02893 (16)0.17495 (16)0.0194 (4)
C180.71951 (19)0.14693 (16)0.21036 (17)0.0209 (4)
H180.77340.18100.17100.031*
C190.67901 (18)0.21473 (16)0.30302 (17)0.0196 (4)
H190.70460.29380.32540.029*
C200.7231 (2)0.04244 (17)0.07159 (18)0.0270 (5)
H20A0.74950.11610.08940.049*
H20B0.79850.00230.05670.049*
H20C0.64800.05450.00270.049*
C210.36741 (18)0.36796 (15)0.35095 (16)0.0161 (4)
H21A0.44980.41910.37390.024*
H21B0.29320.41400.36660.024*
C220.33779 (17)0.31632 (15)0.22057 (16)0.0153 (4)
C230.40004 (18)0.34132 (15)0.14055 (16)0.0164 (4)
H230.37330.29400.06550.025*
C240.50588 (18)0.43464 (15)0.15655 (15)0.0161 (4)
C250.50153 (19)0.54244 (15)0.22961 (16)0.0178 (4)
H250.43430.55250.27110.027*
C260.59472 (19)0.63431 (16)0.24160 (16)0.0198 (4)
H260.59040.70460.29170.030*
C270.69420 (19)0.62196 (16)0.17936 (16)0.0198 (4)
H270.75650.68380.18690.030*
C280.70038 (18)0.51690 (16)0.10582 (16)0.0183 (4)
H280.76740.50870.06410.027*
C290.60818 (18)0.42322 (15)0.09311 (15)0.0164 (4)
C300.61616 (18)0.31296 (16)0.00907 (16)0.0175 (4)
C310.7330 (2)0.21694 (17)0.12621 (17)0.0230 (4)
H31A0.82160.21980.14150.041*
H31B0.66460.21420.19850.041*
H31C0.72040.14890.09550.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0151 (2)0.0190 (2)0.0159 (2)0.00112 (17)0.00476 (17)0.00459 (18)
S20.0179 (2)0.0161 (2)0.0137 (2)0.00183 (17)0.00360 (17)0.00150 (17)
N10.0144 (7)0.0172 (8)0.0168 (8)0.0009 (6)0.0058 (6)0.0037 (6)
N20.0166 (8)0.0157 (7)0.0165 (8)0.0020 (6)0.0058 (6)0.0046 (6)
O10.0173 (7)0.0232 (7)0.0218 (7)0.0012 (5)0.0037 (5)0.0046 (5)
O20.0207 (7)0.0266 (7)0.0176 (7)0.0018 (5)0.0059 (5)0.0079 (5)
O30.0251 (7)0.0241 (7)0.0159 (7)0.0053 (6)0.0046 (5)0.0063 (5)
O40.0219 (7)0.0193 (7)0.0203 (7)0.0002 (5)0.0026 (5)0.0008 (5)
O50.0275 (8)0.0233 (7)0.0306 (8)0.0058 (6)0.0159 (6)0.0044 (6)
O60.0205 (7)0.0213 (7)0.0222 (7)0.0025 (5)0.0115 (5)0.0023 (5)
C10.0232 (10)0.0229 (10)0.0275 (11)0.0052 (8)0.0114 (8)0.0107 (8)
C20.0300 (11)0.0189 (10)0.0302 (11)0.0031 (8)0.0086 (9)0.0095 (8)
C30.0238 (10)0.0224 (10)0.0221 (10)0.0058 (8)0.0021 (8)0.0045 (8)
C40.0221 (10)0.0296 (11)0.0190 (10)0.0019 (8)0.0074 (8)0.0047 (8)
C50.0197 (9)0.0211 (10)0.0208 (10)0.0011 (8)0.0049 (8)0.0049 (8)
C60.0153 (9)0.0206 (9)0.0179 (9)0.0039 (7)0.0039 (7)0.0053 (7)
C70.0384 (12)0.0272 (11)0.0267 (11)0.0088 (9)0.0080 (9)0.0020 (9)
C80.0166 (9)0.0148 (9)0.0206 (10)0.0048 (7)0.0092 (7)0.0053 (7)
C90.0178 (9)0.0187 (9)0.0233 (10)0.0014 (7)0.0054 (8)0.0022 (8)
C100.0212 (10)0.0164 (9)0.0343 (12)0.0013 (8)0.0089 (8)0.0066 (8)
C110.0265 (10)0.0213 (10)0.0304 (11)0.0037 (8)0.0126 (9)0.0129 (8)
C120.0221 (10)0.0214 (10)0.0215 (10)0.0052 (8)0.0083 (8)0.0078 (8)
C130.0160 (9)0.0138 (9)0.0196 (9)0.0036 (7)0.0083 (7)0.0022 (7)
C140.0141 (9)0.0168 (9)0.0166 (9)0.0040 (7)0.0026 (7)0.0032 (7)
C150.0211 (9)0.0169 (9)0.0207 (10)0.0013 (7)0.0077 (8)0.0058 (7)
C160.0255 (10)0.0147 (9)0.0223 (10)0.0001 (8)0.0070 (8)0.0021 (8)
C170.0189 (9)0.0196 (9)0.0199 (10)0.0023 (7)0.0059 (7)0.0027 (7)
C180.0192 (9)0.0227 (10)0.0227 (10)0.0012 (8)0.0090 (8)0.0050 (8)
C190.0188 (9)0.0160 (9)0.0235 (10)0.0007 (7)0.0062 (8)0.0020 (7)
C200.0292 (11)0.0251 (10)0.0271 (11)0.0014 (8)0.0141 (9)0.0021 (8)
C210.0179 (9)0.0133 (9)0.0185 (9)0.0013 (7)0.0060 (7)0.0043 (7)
C220.0151 (9)0.0132 (8)0.0180 (9)0.0021 (7)0.0047 (7)0.0036 (7)
C230.0162 (9)0.0162 (9)0.0173 (9)0.0022 (7)0.0055 (7)0.0032 (7)
C240.0160 (9)0.0198 (9)0.0127 (9)0.0019 (7)0.0026 (7)0.0053 (7)
C250.0216 (10)0.0187 (9)0.0159 (9)0.0030 (7)0.0086 (7)0.0054 (7)
C260.0256 (10)0.0163 (9)0.0164 (10)0.0010 (8)0.0035 (8)0.0028 (7)
C270.0195 (9)0.0185 (9)0.0211 (10)0.0034 (7)0.0028 (8)0.0070 (8)
C280.0171 (9)0.0232 (10)0.0166 (9)0.0012 (7)0.0052 (7)0.0076 (7)
C290.0176 (9)0.0204 (9)0.0117 (9)0.0030 (7)0.0023 (7)0.0058 (7)
C300.0150 (9)0.0231 (10)0.0154 (9)0.0009 (8)0.0032 (7)0.0070 (7)
C310.0244 (10)0.0268 (10)0.0189 (10)0.0046 (8)0.0099 (8)0.0014 (8)
Geometric parameters (Å, º) top
S1—O11.4267 (13)C12—C131.397 (3)
S1—O21.4279 (13)C12—H120.9300
S1—N11.6967 (15)C14—C151.387 (2)
S1—C61.7547 (18)C14—C191.389 (3)
S2—O41.4309 (13)C15—C161.383 (3)
S2—O31.4314 (13)C15—H150.9300
S2—N21.6731 (15)C16—C171.394 (3)
S2—C141.7545 (18)C16—H160.9300
N1—C81.439 (2)C17—C181.389 (3)
N1—C221.449 (2)C17—C201.505 (3)
N2—C131.436 (2)C18—C191.383 (3)
N2—C211.482 (2)C18—H180.9300
O5—C301.198 (2)C19—H190.9300
O6—C301.346 (2)C20—H20A0.9600
O6—C311.444 (2)C20—H20B0.9600
C1—C21.381 (3)C20—H20C0.9600
C1—C61.387 (3)C21—C221.506 (2)
C1—H10.9300C21—H21A0.9700
C2—C31.391 (3)C21—H21B0.9700
C2—H20.9300C22—C231.334 (2)
C3—C41.392 (3)C23—C241.472 (2)
C3—C71.505 (3)C23—H230.9300
C4—C51.380 (3)C24—C251.401 (2)
C4—H40.9300C24—C291.417 (2)
C5—C61.394 (3)C25—C261.384 (3)
C5—H50.9300C25—H250.9300
C7—H7A0.9600C26—C271.382 (3)
C7—H7B0.9600C26—H260.9300
C7—H7C0.9600C27—C281.383 (3)
C8—C91.398 (2)C27—H270.9300
C8—C131.405 (3)C28—C291.392 (2)
C9—C101.380 (3)C28—H280.9300
C9—H90.9300C29—C301.495 (2)
C10—C111.386 (3)C31—H31A0.9600
C10—H100.9300C31—H31B0.9600
C11—C121.379 (3)C31—H31C0.9600
C11—H110.9300
O1—S1—O2119.25 (8)C15—C14—S2119.69 (14)
O1—S1—N1107.07 (7)C19—C14—S2119.38 (13)
O2—S1—N1107.06 (7)C16—C15—C14119.07 (17)
O1—S1—C6109.11 (8)C16—C15—H15120.5
O2—S1—C6108.48 (8)C14—C15—H15120.5
N1—S1—C6104.95 (8)C15—C16—C17121.21 (17)
O4—S2—O3119.36 (8)C15—C16—H16119.4
O4—S2—N2105.58 (8)C17—C16—H16119.4
O3—S2—N2106.90 (8)C18—C17—C16118.45 (17)
O4—S2—C14109.05 (8)C18—C17—C20120.38 (17)
O3—S2—C14108.25 (8)C16—C17—C20121.16 (17)
N2—S2—C14107.07 (8)C19—C18—C17121.31 (17)
C8—N1—C22116.56 (14)C19—C18—H18119.3
C8—N1—S1118.71 (11)C17—C18—H18119.3
C22—N1—S1112.88 (11)C18—C19—C14119.04 (17)
C13—N2—C21114.38 (14)C18—C19—H19120.5
C13—N2—S2117.94 (11)C14—C19—H19120.5
C21—N2—S2115.49 (11)C17—C20—H20A109.5
C30—O6—C31115.02 (14)C17—C20—H20B109.5
C2—C1—C6118.99 (18)H20A—C20—H20B109.5
C2—C1—H1120.5C17—C20—H20C109.5
C6—C1—H1120.5H20A—C20—H20C109.5
C1—C2—C3121.72 (18)H20B—C20—H20C109.5
C1—C2—H2119.1N2—C21—C22111.73 (14)
C3—C2—H2119.1N2—C21—H21A109.3
C2—C3—C4118.07 (18)C22—C21—H21A109.3
C2—C3—C7120.44 (18)N2—C21—H21B109.3
C4—C3—C7121.49 (18)C22—C21—H21B109.3
C5—C4—C3121.47 (18)H21A—C21—H21B107.9
C5—C4—H4119.3C23—C22—N1117.92 (16)
C3—C4—H4119.3C23—C22—C21128.83 (16)
C4—C5—C6119.07 (17)N1—C22—C21113.23 (14)
C4—C5—H5120.5C22—C23—C24127.90 (16)
C6—C5—H5120.5C22—C23—H23116.1
C1—C6—C5120.64 (17)C24—C23—H23116.1
C1—C6—S1120.77 (14)C25—C24—C29117.56 (16)
C5—C6—S1118.55 (14)C25—C24—C23120.00 (16)
C3—C7—H7A109.5C29—C24—C23122.26 (16)
C3—C7—H7B109.5C26—C25—C24121.66 (17)
H7A—C7—H7B109.5C26—C25—H25119.2
C3—C7—H7C109.5C24—C25—H25119.2
H7A—C7—H7C109.5C27—C26—C25120.19 (17)
H7B—C7—H7C109.5C27—C26—H26119.9
C9—C8—C13118.64 (16)C25—C26—H26119.9
C9—C8—N1119.99 (16)C26—C27—C28119.47 (17)
C13—C8—N1121.30 (15)C26—C27—H27120.3
C10—C9—C8121.01 (18)C28—C27—H27120.3
C10—C9—H9119.5C27—C28—C29121.24 (17)
C8—C9—H9119.5C27—C28—H28119.4
C9—C10—C11120.16 (17)C29—C28—H28119.4
C9—C10—H10119.9C28—C29—C24119.87 (16)
C11—C10—H10119.9C28—C29—C30119.07 (16)
C12—C11—C10119.57 (17)C24—C29—C30121.03 (16)
C12—C11—H11120.2O5—C30—O6122.04 (17)
C10—C11—H11120.2O5—C30—C29126.13 (16)
C11—C12—C13121.06 (18)O6—C30—C29111.83 (15)
C11—C12—H12119.5O6—C31—H31A109.5
C13—C12—H12119.5O6—C31—H31B109.5
C12—C13—C8119.25 (16)H31A—C31—H31B109.5
C12—C13—N2119.66 (16)O6—C31—H31C109.5
C8—C13—N2121.09 (15)H31A—C31—H31C109.5
C15—C14—C19120.92 (17)H31B—C31—H31C109.5
N1—C22—C23—C24171.7 (2)S1—N1—C22—C2372.5 (2)
N2—C21—C22—C23128.1 (2)C14—S2—N2—C2177.3 (1)
C6—S1—N1—C884.8 (2)

Experimental details

(II)(III)
Crystal data
Chemical formulaC30H28N2O5S2C31H28N2O6S2
Mr560.66588.67
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)100100
a, b, c (Å)10.4081 (5), 24.0202 (11), 10.2842 (5)10.1431 (7), 11.7721 (4), 11.8879 (9)
α, β, γ (°)90, 93.314 (10), 90101.093 (1), 103.928 (2), 91.248 (3)
V3)2566.8 (2)1348.55 (15)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.250.25
Crystal size (mm)0.50 × 0.50 × 0.400.45 × 0.45 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.887, 0.9080.897, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
14680, 5223, 4688 9605, 4625, 4153
Rint0.0300.027
(sin θ/λ)max1)0.6250.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.07 0.036, 0.094, 1.04
No. of reflections52234625
No. of parameters352370
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.360.35, 0.35

Computer programs: SMART (Bruker, 1998), SMART, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Version 1.06; Farrugia, 1997) and CAMERON (Watkin et al., 1993), SHELXL97 and PARST 95 (Nardelli, 1995).

Selected geometric parameters (Å, º) for (II) top
S1—O21.4291 (10)S2—O31.4269 (11)
S1—O11.4318 (10)S2—O41.4340 (11)
S1—N11.6930 (11)O5—C291.3686 (17)
S1—C61.7545 (14)O5—C301.4250 (17)
O2—S1—O1119.54 (6)N1—S1—C6104.13 (6)
O1—S1—N1107.74 (6)C23—C22—N1118.92 (12)
O1—S1—C6109.09 (6)C23—C22—C21127.79 (12)
N1—C22—C23—C24172.0 (1)S1—N1—C22—C2373.8 (1)
N2—C21—C22—C23127.2 (1)C14—S2—N2—C2184.8 (1)
C6—S1—N1—C891.8 (1)
Hydrogen-bond geometry (Å, °) for (II) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.563.318 (2)139
C11—H11···Cg4ii0.932.883.697 (2)147
Cg2···Cg4iii3.948 (1)
Cg2 and Cg4 are the centroids of the C1–C6 and C14–C19 rings, respectively.

Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, 1/2 − y, 1/2 + z; (iii) 1 + x, y, z.
Selected geometric parameters (Å, º) for (III) top
S1—O11.4267 (13)S2—O41.4309 (13)
S1—O21.4279 (13)S2—O31.4314 (13)
S1—N11.6967 (15)O5—C301.198 (2)
S1—C61.7547 (18)
O1—S1—O2119.25 (8)O4—S2—O3119.36 (8)
O2—S1—N1107.06 (7)C23—C22—N1117.92 (16)
N1—S1—C6104.95 (8)C23—C22—C21128.83 (16)
N1—C22—C23—C24171.7 (2)S1—N1—C22—C2372.5 (2)
N2—C21—C22—C23128.1 (2)C14—S2—N2—C2177.3 (1)
C6—S1—N1—C884.8 (2)
Hydrogen-bond geometry (Å, °) for (III) top
D—H···AD—HH···AD···AD—H···A
C16–H16···O5i0.932.543.238 (2)132
C18—H18···O1ii0.932.543.396 (3)154
Cg5···Cg5iii3.938 (1)
Cg5 is the centroid of the C24–C29 ring.

Symmetry codes: (i) 1 − x, −y, −z; (ii) 1 + x, y, z; (iii) 1 − x, 1 − y, −z.
Isostructurality indices calculated for compounds (II), (IV), (V) and (VI) top
StructuresπIi(61)Iv %Ivmax %
(II)–(IV)0.0107-1133.911.298.9
(II)–(V)0.0079-1090.412.799.9
(II)–(VI)0.00977.376.898.5
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds