Download citation
Download citation
link to html
The crystal structures of the two organic-inorganic hybrids bis­(4-amino­pyridinium) hexa­chloridostannate(IV), (C5H7N2)2[SnCl6], and bis­(p-toluidinium) hexa­chlorido­stannate(IV), (C7H10N)2[SnCl6], differ in the way their cations pack in the layered structures. The Sn atom in the 4-amino­pyridinium compound lies on an inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010702327X/sk3125sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010702327X/sk3125Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010702327X/sk3125IIsup3.hkl
Contains datablock II

CCDC references: 655483; 655484

Comment top

As part of a study of the effect of cations on the crystal structures of organic–inorganic ammonium hexachloridostannate(IV) hybrids, we report here two new structures with different aromatic organic ammonium cations. This type of hybrid generally exhibits a structure consisting of alternating inorganic layers, characterized by isolated octahedra of [SnCl6]2- anions, and organic layers, made up of alkylammonium (CnH2n + 1NH3+) or aromatic ammonium (C6H5R—NH3+) cations (Lemmerer et al., 2007; Billing et al., 2007, and references therein). The two title compounds, bis(4-aminopyridinium) hexachloridostannate(IV), (I), and bis(p-toluidinium) hexachloridostannate(IV), (II), differ in their cation's hydrogen-bonding capability, with the cation in (I) able to hydrogen bond at both ends of the molecule, whereas the cation in (II) only has hydrogen-bonding capability at one end of the molecule. The two structures exhibit similarities and differences to previously reported crystal structures of this type. The asymmetric unit and atomic numbering schemes of (I) and (II) are shown in Fig. 1.

The organic–inorganic hybrid structure of (I) has SnCl6 octahedra at each of the eight vertices of the triclinic unit cell, encapsulating two 4-aminopyridinium cations in the centre of the unit cell (Fig. 2). A layered structure results, with the SnCl6 octahedra forming the inorganic layer and the cations packing in the organic layer. The asymmetric unit of the inorganic part contains an SnIV atom on an inversion centre and three Cl atoms on general positions, labelled Cl1, Cl2 and Cl3. The inversion symmetry operator generates the full octahedral coordination. Sn—Cl bond lengths are given in Table 1 and average out to 2.439 (9) Å. The bond angles between trans-related Cl atoms are exactly 180° and cis angles range from 88.78 (2) to 91.22 (2)°.

The organic part of (I) has one 4-aminopyridinum cation in the asymmetric unit. In the organic layer, these cations pack in an interdigitated fashion so that opposite ends of the cation hydrogen bond to inorganic layers. This results in a short inter-layer spacing of 8.3403 (8) Å. Adjacent cations are stacked antiparallel, with a centroid-to-centroid distance of 4.244 Å [s.u. value available?]. This distance is significantly greater than the 3.8 Å commonly used as the cut-off distance for accepted ππ interactions (Janiak, 2000). Closer contacts have been found for this cation in molecular crystals (3.473 Å; Kennedy & Kittner, 2005).

The interactions between the inorganic and organic parts are dominated by N—H···Cl—Sn charge-assisted hydrogen bonds, viz. two hydrogen bonds involving atom N2 of the ammonium group, being 2.54 and 2.66 Å long, and another hydrogen bond involving atom N1 of the pyridine ring, being 2.68 Å long. In addition, there is a short contact interaction between atoms N1 and Cl1(-x + 1, -y + 2, -z) (2.91 Å). These interactions result in a two-dimensional hydrogen-bond network parallel to (111). Fig. 3 illustrates the various interactions and Table 2 summarizes the geometric parameters. There is also an XY···π short contact between the ring centroid and atom Cl1 on the SnCl6 octahedra [Cl1···Cg = 3.910 (2) Å and Sn1—Cl1···Cg = 120.71 (2)°].

The packing of (II) is different from that of (I) (Fig. 4) in that it exhibits a more distinct organic layer, similar to what was observed for the previously reported hexachloridostannate(IV) hybrid structures. This is because the cations in the inorganic layer are more offset than in (I), and thus only slightly interdigitated, with only one end of the cation interacting with a single inorganic layer via hydrogen bonds. The interlayer spacing is larger than for structure (I), with a value of 12.652 (2) Å along the b axis. The p-toluidinium cations pack antiparallel, with a centroid-to-centroid distance of 5.251 (2) Å. The asymmetric unit is roughly twice that of (I), the inorganic part consisting of a complete [SnCl6]2- octahedron, where the SnIV atom and atoms Cl1 through to Cl6 are on general positions. The six unique Sn—Cl bond lengths average out to 2.429 (14) Å. The bond angles between trans-related Cl atoms deviate from 180° (Table 3) and cis angles range from 87.65 (3) to 92.04 (3)°. To balance the charge, two independent toluidinium cations are found in the asymmetric unit of the organic part.

In (II), hydrogen-bonding interactions between the Cl atoms and the ammonium group form a two-dimensional hydrogen-bonded sheet parallel to the ac plane. All six H atoms form simple hydrogen bonds, with no bifurcated geometries observed (Fig. 5 and Table 4).

In conclusion, by increasing the hydrogen-bonding capability of the cation from only one end of the cation in (II) to both, opposite ends of the cation in (I) the dimensionality of the hydrogen-bonding network is not changed. However, the inorganic layer changes from only slightly interdigitated in (II) to completely interdigitated in (I), allowing both ends of the cation to hydrogen bond to inorganic layers on opposite sides of the cation. This behaviour illustrates that the hydrogen-bonding capability of the cation can be utilized to give some control over the degree of overlap or interdigitation in the organic layer of this type of organic–inorganic hybrid.

Related literature top

For related literature, see: Billing et al. (2007); Janiak (2000); Kennedy & Kittner (2005); Lemmerer et al. (2007).

Experimental top

For the preparation of (I), 4-aminopyridinium chloride was prepared by the dropwise addition of excess HCl (0.52 ml, 37%, Aldrich) to a solution of 4-aminopyridine (0.874 g, 98%, Aldrich) in 15 ml of chloroform (99%, Saarchem). The resulting precipitate of 4-aminopyridinium chloride was filtered off. Compound (I) was crystallized from a solution of 4-aminopyridinium (0.421 g) and SnCl4·5H2O (0.571 g, 98%, Aldrich) in 45 ml of water, at room temperature, over a period of five weeks. For the preparation of (II), p-toluidinium chloride was precipitated by adding excess HCl (0.48 ml, 37%, Aldrich), dropwise, to a solution of p-toluidine (0.994 g, 99%, Aldrich) in 40 ml of chloroform (99%, Saarchem). The precipitate was filtered off. p-Toluidinium chloride (0.396 g) and SnCl4·5H2O (0.502 g, 98%, Aldrich) were dissolved in 40 ml of water. Compound (II) crystallized from the solution, at room temperature, over a period of four weeks.

Refinement top

For both compounds, all H atoms were refined using a riding model, with C—H distances of either 0.93 or 0.96 Å and N—H distances of either 0.86 or 0.89 Å, and with Uiso(H) values of 1.2Ueq(C,N) or 1.5Ueq(C,N).

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Views of the structures of (a) (I) and (b) (II) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) -x + 2, -y + 2, -z.]
[Figure 2] Fig. 2. A packing diagram of (I), viewed in perspective along the c axis.
[Figure 3] Fig. 3. A magnified view of the various N—H···Cl hydrogen bonds and short contacts (dashed lines) in (I). [Symmetry codes: (ii) -x + 1, -y + 2, -z; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 2, -y + 1, -z + 1.]
[Figure 4] Fig. 4. A packing diagram of (II), viewed along the a axis.
[Figure 5] Fig. 5. The N—H···Cl hydrogen bonds between the two toludinium cations cat1 (N1) and cat2 (N2) in (II). [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z.]
(I) Bis(4-aminopyridinium) hexachloridostannate(IV) top
Crystal data top
(C5H7N2)2[SnCl6]Z = 1
Mr = 521.64F(000) = 254
Triclinic, P1Dx = 1.904 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2248 (6) ÅCell parameters from 940 reflections
b = 8.3273 (7) Åθ = 3.6–28.4°
c = 8.3403 (8) ŵ = 2.28 mm1
α = 89.100 (6)°T = 293 K
β = 87.002 (6)°Block, colourless
γ = 65.225 (5)°0.34 × 0.26 × 0.18 mm
V = 454.96 (7) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2197 independent reflections
Radiation source: fine-focus sealed tube2109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 28°, θmin = 2.5°
Absorption correction: integration
(XPREP; Bruker, 1999)
h = 99
Tmin = 0.518, Tmax = 0.690k = 1010
6423 measured reflectionsl = 118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + 0.0957P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2197 reflectionsΔρmax = 0.41 e Å3
98 parametersΔρmin = 0.62 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (2)
Crystal data top
(C5H7N2)2[SnCl6]γ = 65.225 (5)°
Mr = 521.64V = 454.96 (7) Å3
Triclinic, P1Z = 1
a = 7.2248 (6) ÅMo Kα radiation
b = 8.3273 (7) ŵ = 2.28 mm1
c = 8.3403 (8) ÅT = 293 K
α = 89.100 (6)°0.34 × 0.26 × 0.18 mm
β = 87.002 (6)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2197 independent reflections
Absorption correction: integration
(XPREP; Bruker, 1999)
2109 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.690Rint = 0.074
6423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.09Δρmax = 0.41 e Å3
2197 reflectionsΔρmin = 0.62 e Å3
98 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6760 (3)0.5754 (3)0.5511 (3)0.0361 (4)
C20.7971 (3)0.4945 (3)0.4113 (3)0.0471 (6)
H20.90180.38150.41630.057*
C30.7597 (4)0.5822 (5)0.2709 (3)0.0616 (8)
H30.8410.52980.17950.074*
C40.5183 (3)0.7451 (3)0.5347 (3)0.0440 (5)
H40.43570.80320.62370.053*
C50.4866 (4)0.8241 (4)0.3894 (4)0.0577 (7)
H50.37990.93520.3790.069*
N10.6060 (4)0.7449 (4)0.2612 (3)0.0664 (7)
H10.58470.79840.17050.08*
N20.7062 (3)0.4962 (3)0.6925 (3)0.0498 (5)
H2A0.6290.54870.7750.06*
H2B0.80290.39240.70190.06*
Cl10.69151 (7)1.27333 (7)0.02804 (6)0.04090 (13)
Cl20.95519 (7)0.93208 (7)0.28048 (6)0.03919 (12)
Cl30.79724 (8)0.84587 (8)0.08407 (7)0.04406 (13)
Sn11100.02716 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (8)0.0370 (10)0.0387 (11)0.0166 (8)0.0022 (7)0.0013 (8)
C20.0427 (10)0.0536 (14)0.0467 (13)0.0226 (10)0.0080 (8)0.0132 (11)
C30.0779 (17)0.092 (2)0.0384 (14)0.0599 (18)0.0114 (11)0.0128 (14)
C40.0425 (10)0.0383 (11)0.0475 (13)0.0135 (9)0.0017 (9)0.0018 (9)
C50.0664 (14)0.0520 (15)0.0638 (18)0.0319 (12)0.0255 (13)0.0185 (13)
N10.0992 (18)0.090 (2)0.0417 (13)0.0685 (17)0.0261 (12)0.0235 (12)
N20.0515 (10)0.0463 (11)0.0424 (11)0.0118 (9)0.0016 (8)0.0112 (9)
Cl10.0359 (2)0.0360 (3)0.0353 (3)0.00001 (19)0.00007 (17)0.0004 (2)
Cl20.0397 (2)0.0427 (3)0.0273 (2)0.0102 (2)0.00196 (16)0.00599 (19)
Cl30.0497 (3)0.0512 (3)0.0408 (3)0.0302 (2)0.0055 (2)0.0028 (2)
Sn10.02590 (9)0.02714 (11)0.02442 (11)0.00732 (7)0.00045 (6)0.00217 (7)
Geometric parameters (Å, º) top
C1—N21.325 (3)C5—H50.93
C1—C41.405 (3)N1—H10.86
C1—C21.415 (3)N2—H2A0.86
C2—C31.348 (4)N2—H2B0.86
C2—H20.93Cl1—Sn12.4317 (5)
C3—N11.349 (4)Cl2—Sn12.4351 (5)
C3—H30.93Cl3—Sn12.4487 (5)
C4—C51.353 (4)Sn1—Cl1i2.4317 (5)
C4—H40.93Sn1—Cl2i2.4351 (6)
C5—N11.331 (4)Sn1—Cl3i2.4487 (5)
N2—C1—C4120.4 (2)C1—N2—H2A120
N2—C1—C2122.3 (2)C1—N2—H2B120
C4—C1—C2117.3 (2)H2A—N2—H2B120
C3—C2—C1119.6 (2)Cl1i—Sn1—Cl1180
C3—C2—H2120.2Cl1i—Sn1—Cl2i89.946 (19)
C1—C2—H2120.2Cl1—Sn1—Cl2i90.054 (19)
C2—C3—N1120.9 (3)Cl1i—Sn1—Cl290.054 (19)
C2—C3—H3119.6Cl1—Sn1—Cl289.946 (19)
N1—C3—H3119.6Cl2i—Sn1—Cl2180.0000 (10)
C5—C4—C1120.1 (2)Cl1i—Sn1—Cl3i89.86 (2)
C5—C4—H4120Cl1—Sn1—Cl3i90.14 (2)
C1—C4—H4120Cl2i—Sn1—Cl3i91.220 (19)
N1—C5—C4120.9 (3)Cl2—Sn1—Cl3i88.780 (19)
N1—C5—H5119.6Cl1i—Sn1—Cl390.14 (2)
C4—C5—H5119.6Cl1—Sn1—Cl389.86 (2)
C5—N1—C3121.3 (2)Cl2i—Sn1—Cl388.780 (19)
C5—N1—H1119.4Cl2—Sn1—Cl391.220 (19)
C3—N1—H1119.4Cl3i—Sn1—Cl3180
N2—C1—C2—C3179.6 (2)C2—C1—C4—C50.4 (3)
C4—C1—C2—C31.0 (3)C1—C4—C5—N11.5 (4)
C1—C2—C3—N11.2 (3)C4—C5—N1—C31.3 (4)
N2—C1—C4—C5179.1 (2)C2—C3—N1—C50.0 (4)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.862.683.375 (3)139
N1—H1···Cl1ii0.862.913.3602 (19)115
N2—H2A···Cl1iii0.862.663.491 (2)164
N2—H2B···Cl2iv0.862.543.388 (2)171
Symmetry codes: (ii) x+1, y+2, z; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1.
(II) bis(p-toluidinium)hexachloridostannate(IV) top
Crystal data top
(C7H10N)2[SnCl6]F(000) = 1080
Mr = 547.71Dx = 1.729 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 929 reflections
a = 7.1166 (5) Åθ = 3.3–28.3°
b = 25.304 (2) ŵ = 1.98 mm1
c = 11.6862 (9) ÅT = 293 K
β = 90.239 (4)°Plate, colourless
V = 2104.4 (3) Å30.4 × 0.16 × 0.07 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5075 independent reflections
Radiation source: fine-focus sealed tube4041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 28°, θmin = 1.9°
Absorption correction: integration
(XPREP; Bruker, 1999)
h = 99
Tmin = 0.583, Tmax = 0.879k = 3033
15513 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.1137P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.65 e Å3
5075 reflectionsΔρmin = 0.85 e Å3
212 parameters
Crystal data top
(C7H10N)2[SnCl6]V = 2104.4 (3) Å3
Mr = 547.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1166 (5) ŵ = 1.98 mm1
b = 25.304 (2) ÅT = 293 K
c = 11.6862 (9) Å0.4 × 0.16 × 0.07 mm
β = 90.239 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5075 independent reflections
Absorption correction: integration
(XPREP; Bruker, 1999)
4041 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.879Rint = 0.052
15513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.65 e Å3
5075 reflectionsΔρmin = 0.85 e Å3
212 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2702 (4)0.62050 (13)0.3467 (3)0.0370 (7)
C20.2218 (6)0.63635 (15)0.2381 (3)0.0536 (10)
H20.17380.61210.18580.064*
C30.2453 (6)0.68896 (15)0.2075 (3)0.0562 (10)
H30.21330.69960.13380.067*
C40.3148 (5)0.72571 (14)0.2835 (3)0.0477 (9)
C50.3635 (6)0.70826 (16)0.3911 (4)0.0633 (11)
H50.41240.73230.44350.076*
C60.3417 (6)0.65569 (17)0.4239 (3)0.0594 (11)
H60.37530.64480.49720.071*
C70.3397 (7)0.78281 (16)0.2500 (4)0.0729 (13)
H7A0.45690.79570.28010.109*
H7B0.23830.80340.28060.109*
H7C0.340.78570.16810.109*
N10.2490 (4)0.56445 (11)0.3804 (2)0.0462 (7)
H1A0.18460.54720.32660.069*
H1B0.18750.56260.44650.069*
H1C0.3620.54980.38850.069*
C80.2265 (4)0.36280 (13)0.0386 (3)0.0364 (7)
C90.1565 (5)0.33011 (15)0.1200 (3)0.0487 (9)
H90.12320.34330.19140.058*
C100.1353 (6)0.27710 (16)0.0956 (4)0.0577 (10)
H100.08630.25470.1510.069*
C110.1855 (5)0.25662 (14)0.0096 (4)0.0535 (10)
C120.2569 (6)0.29089 (16)0.0894 (4)0.0606 (11)
H120.29180.2780.16080.073*
C130.2781 (6)0.34431 (16)0.0659 (3)0.0573 (10)
H130.32680.36710.12070.069*
C140.1609 (7)0.19865 (17)0.0349 (5)0.0863 (16)
H14A0.16950.17890.0350.13*
H14B0.25750.18720.08640.13*
H14C0.040.19290.06950.13*
N20.2454 (4)0.41964 (11)0.0638 (2)0.0445 (7)
H2A0.31940.43460.01190.067*
H2B0.29550.42380.13320.067*
H2C0.13260.43480.06170.067*
Cl10.73767 (12)0.41018 (3)0.08675 (6)0.03974 (18)
Cl20.71968 (14)0.53261 (4)0.40523 (7)0.0521 (2)
Cl30.50048 (11)0.52603 (3)0.14627 (6)0.03698 (17)
Cl40.45906 (11)0.42230 (4)0.32560 (7)0.0481 (2)
Cl50.94557 (12)0.41728 (4)0.35579 (7)0.0468 (2)
Cl60.98387 (11)0.51894 (3)0.16011 (7)0.0435 (2)
Sn10.72437 (3)0.470019 (8)0.247759 (15)0.02851 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (17)0.0309 (17)0.0383 (17)0.0023 (14)0.0043 (13)0.0011 (14)
C20.082 (3)0.038 (2)0.0405 (19)0.0061 (19)0.0115 (19)0.0023 (16)
C30.079 (3)0.043 (2)0.047 (2)0.002 (2)0.0123 (19)0.0082 (18)
C40.050 (2)0.034 (2)0.059 (2)0.0022 (16)0.0062 (17)0.0028 (17)
C50.087 (3)0.050 (3)0.053 (2)0.017 (2)0.008 (2)0.0103 (19)
C60.077 (3)0.058 (3)0.043 (2)0.009 (2)0.0151 (19)0.0016 (18)
C70.090 (3)0.035 (2)0.094 (3)0.003 (2)0.015 (3)0.003 (2)
N10.0606 (18)0.0389 (17)0.0393 (15)0.0055 (14)0.0073 (13)0.0036 (13)
C80.0332 (15)0.0335 (18)0.0424 (17)0.0000 (13)0.0001 (13)0.0074 (14)
C90.057 (2)0.046 (2)0.0433 (19)0.0007 (18)0.0112 (16)0.0031 (17)
C100.063 (2)0.042 (2)0.068 (3)0.0075 (19)0.009 (2)0.006 (2)
C110.046 (2)0.037 (2)0.077 (3)0.0037 (17)0.0006 (19)0.014 (2)
C120.072 (3)0.052 (3)0.058 (2)0.006 (2)0.014 (2)0.022 (2)
C130.074 (3)0.053 (2)0.045 (2)0.010 (2)0.0138 (19)0.0062 (18)
C140.087 (3)0.045 (3)0.127 (5)0.009 (2)0.003 (3)0.027 (3)
N20.0508 (16)0.0353 (17)0.0474 (16)0.0036 (13)0.0016 (13)0.0029 (13)
Cl10.0498 (4)0.0352 (4)0.0342 (4)0.0059 (4)0.0011 (3)0.0067 (3)
Cl20.0632 (5)0.0543 (6)0.0388 (4)0.0100 (4)0.0056 (4)0.0198 (4)
Cl30.0386 (4)0.0351 (4)0.0372 (4)0.0077 (3)0.0032 (3)0.0037 (3)
Cl40.0408 (4)0.0601 (6)0.0435 (4)0.0085 (4)0.0091 (3)0.0118 (4)
Cl50.0447 (4)0.0580 (6)0.0377 (4)0.0174 (4)0.0064 (3)0.0048 (4)
Cl60.0372 (4)0.0428 (5)0.0506 (5)0.0103 (3)0.0060 (3)0.0023 (4)
Sn10.02847 (11)0.03138 (12)0.02569 (11)0.00169 (8)0.00056 (7)0.00006 (8)
Geometric parameters (Å, º) top
C1—C61.365 (5)C9—C101.379 (5)
C1—C21.373 (4)C9—H90.93
C1—N11.480 (4)C10—C111.382 (6)
C2—C31.389 (5)C10—H100.93
C2—H20.93C11—C121.373 (6)
C3—C41.377 (5)C11—C141.506 (5)
C3—H30.93C12—C131.388 (5)
C4—C51.375 (5)C12—H120.93
C4—C71.508 (5)C13—H130.93
C5—C61.393 (5)C14—H14A0.96
C5—H50.93C14—H14B0.96
C6—H60.93C14—H14C0.96
C7—H7A0.96N2—H2A0.89
C7—H7B0.96N2—H2B0.89
C7—H7C0.96N2—H2C0.89
N1—H1A0.89Cl1—Sn12.4173 (8)
N1—H1B0.89Cl2—Sn12.4282 (8)
N1—H1C0.89Cl3—Sn12.4369 (7)
C8—C91.357 (5)Cl4—Sn12.4217 (8)
C8—C131.360 (5)Cl5—Sn12.4158 (8)
C8—N21.474 (4)Cl6—Sn12.4510 (8)
C6—C1—C2120.8 (3)C11—C10—H10119.3
C6—C1—N1119.1 (3)C12—C11—C10117.7 (4)
C2—C1—N1120.0 (3)C12—C11—C14121.7 (4)
C1—C2—C3119.2 (3)C10—C11—C14120.6 (4)
C1—C2—H2120.4C11—C12—C13121.4 (4)
C3—C2—H2120.4C11—C12—H12119.3
C4—C3—C2121.6 (4)C13—C12—H12119.3
C4—C3—H3119.2C8—C13—C12118.9 (4)
C2—C3—H3119.2C8—C13—H13120.5
C5—C4—C3117.5 (4)C12—C13—H13120.5
C5—C4—C7121.1 (4)C11—C14—H14A109.5
C3—C4—C7121.4 (4)C11—C14—H14B109.5
C4—C5—C6122.0 (4)H14A—C14—H14B109.5
C4—C5—H5119C11—C14—H14C109.5
C6—C5—H5119H14A—C14—H14C109.5
C1—C6—C5118.8 (4)H14B—C14—H14C109.5
C1—C6—H6120.6C8—N2—H2A109.5
C5—C6—H6120.6C8—N2—H2B109.5
C4—C7—H7A109.5H2A—N2—H2B109.5
C4—C7—H7B109.5C8—N2—H2C109.5
H7A—C7—H7B109.5H2A—N2—H2C109.5
C4—C7—H7C109.5H2B—N2—H2C109.5
H7A—C7—H7C109.5Cl5—Sn1—Cl191.90 (3)
H7B—C7—H7C109.5Cl5—Sn1—Cl492.04 (3)
C1—N1—H1A109.5Cl1—Sn1—Cl490.76 (3)
C1—N1—H1B109.5Cl5—Sn1—Cl288.58 (3)
H1A—N1—H1B109.5Cl1—Sn1—Cl2177.61 (3)
C1—N1—H1C109.5Cl4—Sn1—Cl291.57 (3)
H1A—N1—H1C109.5Cl5—Sn1—Cl3177.34 (3)
H1B—N1—H1C109.5Cl1—Sn1—Cl390.75 (3)
C9—C8—C13121.4 (3)Cl4—Sn1—Cl387.91 (3)
C9—C8—N2119.2 (3)Cl2—Sn1—Cl388.77 (3)
C13—C8—N2119.4 (3)Cl5—Sn1—Cl690.39 (3)
C8—C9—C10119.2 (3)Cl1—Sn1—Cl687.65 (3)
C8—C9—H9120.4Cl4—Sn1—Cl6177.13 (3)
C10—C9—H9120.4Cl2—Sn1—Cl690.00 (3)
C9—C10—C11121.3 (4)Cl3—Sn1—Cl689.72 (3)
C9—C10—H10119.3
C6—C1—C2—C30.4 (6)C13—C8—C9—C100.8 (6)
N1—C1—C2—C3179.0 (3)N2—C8—C9—C10178.7 (3)
C1—C2—C3—C40.5 (6)C8—C9—C10—C110.6 (6)
C2—C3—C4—C51.1 (6)C9—C10—C11—C120.2 (6)
C2—C3—C4—C7179.8 (4)C9—C10—C11—C14179.8 (4)
C3—C4—C5—C60.9 (6)C10—C11—C12—C130.1 (6)
C7—C4—C5—C6180.0 (4)C14—C11—C12—C13179.6 (4)
C2—C1—C6—C50.5 (6)C9—C8—C13—C120.5 (6)
N1—C1—C6—C5179.2 (4)N2—C8—C13—C12179.0 (3)
C4—C5—C6—C10.1 (7)C11—C12—C13—C80.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl6i0.892.513.387 (3)167
N1—H1B···Cl5ii0.892.553.416 (3)164
N1—H1C···Cl20.892.593.456 (3)165
N2—H2A···Cl3iii0.892.463.351 (3)174
N2—H2B···Cl40.892.533.411 (3)172
N2—H2C···Cl6i0.892.643.326 (3)134
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula(C5H7N2)2[SnCl6](C7H10N)2[SnCl6]
Mr521.64547.71
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)293293
a, b, c (Å)7.2248 (6), 8.3273 (7), 8.3403 (8)7.1166 (5), 25.304 (2), 11.6862 (9)
α, β, γ (°)89.100 (6), 87.002 (6), 65.225 (5)90, 90.239 (4), 90
V3)454.96 (7)2104.4 (3)
Z14
Radiation typeMo KαMo Kα
µ (mm1)2.281.98
Crystal size (mm)0.34 × 0.26 × 0.180.4 × 0.16 × 0.07
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Bruker SMART 1K CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 1999)
Integration
(XPREP; Bruker, 1999)
Tmin, Tmax0.518, 0.6900.583, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
6423, 2197, 2109 15513, 5075, 4041
Rint0.0740.052
(sin θ/λ)max1)0.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.09 0.033, 0.082, 1.03
No. of reflections21975075
No. of parameters98212
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.620.65, 0.85

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected bond lengths (Å) for (I) top
Cl1—Sn12.4317 (5)Sn1—Cl1i2.4317 (5)
Cl2—Sn12.4351 (5)Sn1—Cl2i2.4351 (6)
Cl3—Sn12.4487 (5)Sn1—Cl3i2.4487 (5)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.862.683.375 (3)139
N1—H1···Cl1ii0.862.913.3602 (19)115
N2—H2A···Cl1iii0.862.663.491 (2)164
N2—H2B···Cl2iv0.862.543.388 (2)171
Symmetry codes: (ii) x+1, y+2, z; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
Cl1—Sn12.4173 (8)Cl4—Sn12.4217 (8)
Cl2—Sn12.4282 (8)Cl5—Sn12.4158 (8)
Cl3—Sn12.4369 (7)Cl6—Sn12.4510 (8)
Cl1—Sn1—Cl2177.61 (3)Cl4—Sn1—Cl6177.13 (3)
Cl5—Sn1—Cl3177.34 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl6i0.892.513.387 (3)167
N1—H1B···Cl5ii0.892.553.416 (3)164
N1—H1C···Cl20.892.593.456 (3)165
N2—H2A···Cl3iii0.892.463.351 (3)174
N2—H2B···Cl40.892.533.411 (3)172
N2—H2C···Cl6i0.892.643.326 (3)134
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds