Download citation
Download citation
link to html
In the title compound, C23H21N3O3, the indole ring is planar and the phenyl ring of the benzyl group makes a dihedral angle with the best plane of the indole ring of 73.77 (4)°. The double bond connecting the aza­bicyclic and indole moieties has Z geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106055971/sk3086sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106055971/sk3086Isup2.hkl
Contains datablock I

CCDC reference: 638335

Comment top

In view of the biological activity associated with 1-azabicyclo[2.2.2]octan-3-ones, we have undertaken the synthesis and structural analysis of a series of 2-(substituted benzylidene/heteroaryl-3-ylmethylene)-1-azabicyclo[2.2.2] octan-3-ones (Sonar et al., 2003). In order to confirm the double-bond geometry of title compound, (I), and to obtain more detailed information on the structural conformation of the molecule that may be of value in structure–activity analysis, its X-ray structure determination has been carried out and the results are presented here.

X-ray crystallography confirmed the molecular structure and atom connectivity for (I) as illustrated in Fig. 1, and selected geometric parameters are presented in Table 1. The indole ring is planar, with bond distances and angles comparable with those previously reported for other indole derivatives (Mason et al., 2003; Zarza et al., 1988). The benzene ring of the benzyl group linked to the N1 position of the indole ring is slightly twisted, making a dihedral angle of 73.77 (4)° with the plane of the indole ring system. There is an asymmetry of the exocyclic angles at C19 for (I).

The nitro group shows normal geometric parameters. The torsion angles [O2—N3—C6—C5 and O3—N3—C6—C7] indicate that there is not much deviation of the nitro-group plane from the indole moiety, facilitating conjugation. Furthermore, the observed length of the N3—C6 single bond is slightly shorter than the theoretical length for a Car—NO2 bond of 1.47 Å (Glusker et al., 1994), which indicates the formation of a weak conjugated π-electron system along this bond.

Compound (I) is the Z isomer, with the C11—C17 bond in a trans disposition with respect to the C3—C10 bond. The double bond has a nearly planar arrangement, since the r.m.s. deviation from the best plane passing through atoms N2/C11/C17/C10/C3 is 0.0147 (7) Å. Deviations from ideal geometry are observed in the bond angles around atoms C3, C10 and C11. The C10C11—C17 bond angle is close to the ideal value of 120°, whereas the C2C3—C10, C3—C10C11 and N2—C11—C17 bond angles are more distorted. These bond-angle deformations, which require little energy, are needed to release the intramolecular interactions between non-bonded atoms. The azabicyclic system presents very small distortions around atoms N2, C13, C14, C15, C16 and C17. The value of the C2C3—C10C11 torsion angle [-9.2 (2)°] indicates the deviation of the indole ring from the plane of the double bond connected to the azabicyclic ring. However, the C3—C10 bond length [1.4428 (17) Å], when compared with the standard value for a single bond connecting a Car atom to a Csp2 atom [1.470 (15) Å; Wilson, 1992], suggests extensive conjugation, beginning at atom O1 and extending through to the aromatic ring. Within the azabicyclic group, the bond angles at atoms C13, C14 and C15 are, on average, smaller than the ideal tetrahedral value of 109.5°, while those at atoms C12 and C16 are, on average, slightly larger than the tetrahedral value.

Related literature top

For related literature, see: Glusker et al. (1994); Mason et al. (2003); Sonar et al. (2003, 2006); Wilson (1992); Zarza et al. (1988).

Experimental top

1-Benzyl-5-nitroindole-3-carboxaldehyde, (II), was prepared by the reaction of 5-nitroindole-3-carboxaldehyde, (III), with benzyl chloride in the presence of potassium carbonate and dimethylformamide under reflux, according to a previously reported procedure (Sonar et al., 2006). The title compound was prepared by aldol condensation of 1-benzyl-5-nitro-indole-3-carboxaldehyde with 1-aza-bicyclo[2.2.2]octan-3-one to afford (Z)-2-(1-benzyl-5-nitro-1H-indol-3-ylmethylene)- 1-aza-bicyclo[2.2.2]octan-3-one, (I), as a single geometric isomer, according to the previously reported procedure of Sonar et al. (2003). Crystallization from ethyl acetate afforded (I) as a yellow crystalline product suitable for X-ray analysis. Spectroscopic analysis: 1H NMR (CDCl3, δ, p.p.m.): 2.01–2.07 (m, 4H), 2.65 (p, 1H), 2.94–3.04 (m, 2H), 3.13–3.23 (m, 2H), 5.42 (s, 2H), 7.10–7.13 (m, 2H), 7.25–7.37 (m, 5H), 8.06–8.10 (dd, 1H), 8.41 (s,1H), 8.96 (d, 1H); 13C NMR (CDCl3, δ, p.p.m.): 26.48, 40.63, 47.77, 51.37,110.46, 112.78, 116.35, 117.28, 118.34, 126.68, 128.06, 128.41, 129.21, 135.59, 136.93, 138.99, 142.38, 142.65, 205.14.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 1.00 Å (R3CH), 0.99 Å (R2CH2) and 0.95 Å (Csp2). Uiso(H) values were set to 1.2Ueq of the attached C atom.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELX97 and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(Z)-2-(1-Benzyl-5-nitro-1H-indol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-one top
Crystal data top
C23H21N3O3Z = 2
Mr = 387.43F(000) = 408
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3560 (1) ÅCell parameters from 4140 reflections
b = 9.4049 (1) Åθ = 1.0–27.5°
c = 11.1174 (2) ŵ = 0.10 mm1
α = 90.1103 (5)°T = 90 K
β = 104.3081 (5)°Block, yellow
γ = 106.1250 (6)°0.25 × 0.18 × 0.10 mm
V = 907.99 (2) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4162 independent reflections
Radiation source: fine-focus sealed tube3404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω scans at fixed χ = 55°h = 1212
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.977, Tmax = 0.991l = 1414
8270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.3204P]
where P = (Fo2 + 2Fc2)/3
4162 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H21N3O3γ = 106.1250 (6)°
Mr = 387.43V = 907.99 (2) Å3
Triclinic, P1Z = 2
a = 9.3560 (1) ÅMo Kα radiation
b = 9.4049 (1) ŵ = 0.10 mm1
c = 11.1174 (2) ÅT = 90 K
α = 90.1103 (5)°0.25 × 0.18 × 0.10 mm
β = 104.3081 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4162 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3404 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.991Rint = 0.024
8270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
4162 reflectionsΔρmin = 0.26 e Å3
262 parameters
Special details top

Experimental. Nine low-angle reflections were rejected during data reduction, as a result of asymmetric background measurements.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.52413 (12)0.42763 (12)0.35572 (10)0.0157 (2)
N20.02312 (12)0.20441 (12)0.24670 (10)0.0171 (2)
N30.75088 (12)0.14362 (12)0.76382 (10)0.0185 (2)
O10.04971 (10)0.14407 (10)0.39073 (8)0.0182 (2)
O20.65436 (11)0.04323 (11)0.79617 (9)0.0259 (2)
O30.88828 (10)0.18360 (11)0.82027 (8)0.0227 (2)
C20.37220 (14)0.34516 (14)0.32450 (11)0.0165 (3)
H20.29430.36400.25900.020*
C30.34877 (14)0.23124 (14)0.40159 (11)0.0155 (3)
C40.49666 (14)0.24628 (14)0.48707 (11)0.0151 (3)
C50.54642 (14)0.16980 (14)0.58896 (11)0.0160 (3)
H50.47770.08640.61270.019*
C60.69931 (14)0.22001 (14)0.65400 (11)0.0167 (3)
C70.80643 (15)0.34117 (15)0.62215 (12)0.0186 (3)
H70.91080.37040.66960.022*
C80.75854 (14)0.41759 (14)0.52104 (12)0.0176 (3)
H80.82860.49980.49720.021*
C90.60372 (14)0.36970 (14)0.45524 (11)0.0152 (3)
C100.21065 (14)0.11328 (14)0.39824 (11)0.0153 (3)
H100.22320.03720.45250.018*
C110.06732 (14)0.09675 (13)0.32898 (11)0.0148 (3)
C120.05007 (15)0.12965 (15)0.12032 (12)0.0213 (3)
H12A0.02590.09350.09050.026*
H12B0.08110.20240.06290.026*
C130.19333 (15)0.00278 (15)0.11735 (12)0.0214 (3)
H13A0.28640.01550.06260.026*
H13B0.18020.09490.08430.026*
C140.21145 (14)0.01971 (14)0.25141 (11)0.0167 (3)
H140.30010.10710.25450.020*
C150.23320 (14)0.12513 (14)0.29833 (12)0.0188 (3)
H15A0.24090.11900.38550.023*
H15B0.32930.14080.24660.023*
C160.09318 (15)0.25586 (14)0.29029 (13)0.0197 (3)
H16A0.12910.32590.23230.024*
H16B0.04460.30980.37340.024*
C170.06227 (14)0.03588 (14)0.33223 (11)0.0151 (3)
C180.59205 (14)0.54717 (14)0.28537 (11)0.0166 (3)
H18A0.68250.61750.34260.020*
H18B0.51600.60180.25230.020*
C190.64224 (14)0.49417 (14)0.17790 (11)0.0150 (3)
C200.55885 (14)0.36204 (14)0.10540 (12)0.0177 (3)
H200.47040.29950.12550.021*
C210.60486 (15)0.32176 (15)0.00391 (12)0.0202 (3)
H210.54830.23130.04470.024*
C220.73326 (15)0.41330 (15)0.02681 (12)0.0208 (3)
H220.76380.38620.09680.025*
C230.81668 (15)0.54441 (15)0.04513 (12)0.0203 (3)
H230.90450.60720.02440.024*
C240.77199 (14)0.58402 (14)0.14748 (12)0.0170 (3)
H240.83050.67320.19720.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0148 (5)0.0158 (5)0.0160 (5)0.0039 (4)0.0038 (4)0.0017 (4)
N20.0159 (5)0.0178 (5)0.0177 (5)0.0053 (4)0.0037 (4)0.0051 (4)
N30.0196 (6)0.0216 (6)0.0154 (5)0.0083 (5)0.0038 (4)0.0009 (4)
O10.0213 (5)0.0160 (5)0.0175 (4)0.0051 (4)0.0059 (4)0.0039 (4)
O20.0248 (5)0.0294 (6)0.0227 (5)0.0056 (4)0.0067 (4)0.0083 (4)
O30.0182 (5)0.0299 (5)0.0183 (5)0.0085 (4)0.0002 (4)0.0018 (4)
C20.0140 (6)0.0192 (6)0.0162 (6)0.0051 (5)0.0035 (5)0.0001 (5)
C30.0144 (6)0.0176 (6)0.0152 (6)0.0049 (5)0.0045 (5)0.0009 (5)
C40.0156 (6)0.0159 (6)0.0144 (6)0.0044 (5)0.0051 (5)0.0019 (5)
C50.0167 (6)0.0172 (6)0.0155 (6)0.0053 (5)0.0059 (5)0.0006 (5)
C60.0182 (6)0.0193 (6)0.0136 (6)0.0079 (5)0.0032 (5)0.0007 (5)
C70.0147 (6)0.0215 (7)0.0187 (6)0.0048 (5)0.0031 (5)0.0026 (5)
C80.0150 (6)0.0180 (6)0.0191 (6)0.0030 (5)0.0052 (5)0.0008 (5)
C90.0171 (6)0.0160 (6)0.0143 (6)0.0067 (5)0.0053 (5)0.0008 (5)
C100.0174 (6)0.0165 (6)0.0130 (5)0.0053 (5)0.0052 (5)0.0021 (5)
C110.0171 (6)0.0142 (6)0.0140 (6)0.0044 (5)0.0056 (5)0.0016 (5)
C120.0206 (7)0.0269 (7)0.0152 (6)0.0048 (6)0.0047 (5)0.0052 (5)
C130.0226 (7)0.0215 (7)0.0161 (6)0.0037 (5)0.0007 (5)0.0022 (5)
C140.0145 (6)0.0150 (6)0.0184 (6)0.0010 (5)0.0040 (5)0.0023 (5)
C150.0163 (6)0.0191 (7)0.0228 (6)0.0065 (5)0.0067 (5)0.0052 (5)
C160.0181 (6)0.0165 (6)0.0251 (7)0.0059 (5)0.0053 (5)0.0029 (5)
C170.0182 (6)0.0160 (6)0.0125 (6)0.0052 (5)0.0062 (5)0.0001 (5)
C180.0177 (6)0.0136 (6)0.0181 (6)0.0034 (5)0.0051 (5)0.0021 (5)
C190.0154 (6)0.0155 (6)0.0145 (6)0.0062 (5)0.0025 (5)0.0029 (5)
C200.0157 (6)0.0170 (6)0.0193 (6)0.0041 (5)0.0031 (5)0.0023 (5)
C210.0213 (7)0.0179 (6)0.0188 (6)0.0057 (5)0.0006 (5)0.0016 (5)
C220.0239 (7)0.0249 (7)0.0170 (6)0.0114 (6)0.0065 (5)0.0023 (5)
C230.0185 (6)0.0209 (7)0.0230 (6)0.0060 (5)0.0078 (5)0.0052 (5)
C240.0165 (6)0.0146 (6)0.0197 (6)0.0047 (5)0.0039 (5)0.0024 (5)
Geometric parameters (Å, º) top
N1—C21.3731 (16)C12—H12A0.9900
N1—C91.3769 (16)C12—H12B0.9900
N1—C181.4601 (16)C13—C141.5447 (17)
N2—C111.4429 (15)C13—H13A0.9900
N2—C121.4800 (16)C13—H13B0.9900
N2—C161.4850 (16)C14—C171.5090 (17)
N3—O31.2328 (14)C14—C151.5404 (18)
N3—O21.2347 (14)C14—H141.0000
N3—C61.4643 (16)C15—C161.5490 (17)
O1—C171.2261 (15)C15—H15A0.9900
C2—C31.3771 (18)C15—H15B0.9900
C2—H20.9500C16—H16A0.9900
C3—C41.4417 (17)C16—H16B0.9900
C3—C101.4428 (17)C18—C191.5170 (17)
C4—C51.3949 (17)C18—H18A0.9900
C4—C91.4167 (17)C18—H18B0.9900
C5—C61.3799 (17)C19—C241.3915 (17)
C5—H50.9500C19—C201.3962 (18)
C6—C71.4039 (18)C20—C211.3895 (18)
C7—C81.3834 (18)C20—H200.9500
C7—H70.9500C21—C221.3894 (19)
C8—C91.3960 (17)C21—H210.9500
C8—H80.9500C22—C231.3865 (19)
C10—C111.3374 (17)C22—H220.9500
C10—H100.9500C23—C241.3887 (18)
C11—C171.4863 (17)C23—H230.9500
C12—C131.5490 (18)C24—H240.9500
C2—N1—C9109.17 (10)C14—C13—H13B110.0
C2—N1—C18124.78 (10)C12—C13—H13B110.0
C9—N1—C18125.74 (10)H13A—C13—H13B108.4
C11—N2—C12108.33 (10)C17—C14—C15107.42 (10)
C11—N2—C16107.98 (10)C17—C14—C13107.62 (10)
C12—N2—C16108.31 (10)C15—C14—C13108.20 (10)
O3—N3—O2123.14 (11)C17—C14—H14111.1
O3—N3—C6118.44 (11)C15—C14—H14111.1
O2—N3—C6118.41 (10)C13—C14—H14111.1
N1—C2—C3110.36 (11)C14—C15—C16108.60 (10)
N1—C2—H2124.8C14—C15—H15A110.0
C3—C2—H2124.8C16—C15—H15A110.0
C2—C3—C4105.78 (11)C14—C15—H15B110.0
C2—C3—C10129.41 (11)C16—C15—H15B110.0
C4—C3—C10124.73 (11)H15A—C15—H15B108.4
C5—C4—C9119.13 (11)N2—C16—C15111.96 (10)
C5—C4—C3133.39 (12)N2—C16—H16A109.2
C9—C4—C3107.44 (11)C15—C16—H16A109.2
C6—C5—C4117.42 (12)N2—C16—H16B109.2
C6—C5—H5121.3C15—C16—H16B109.2
C4—C5—H5121.3H16A—C16—H16B107.9
C5—C6—C7123.75 (12)O1—C17—C11124.95 (11)
C5—C6—N3117.66 (11)O1—C17—C14124.73 (11)
C7—C6—N3118.58 (11)C11—C17—C14110.32 (10)
C8—C7—C6119.35 (12)N1—C18—C19113.81 (10)
C8—C7—H7120.3N1—C18—H18A108.8
C6—C7—H7120.3C19—C18—H18A108.8
C7—C8—C9117.69 (12)N1—C18—H18B108.8
C7—C8—H8121.2C19—C18—H18B108.8
C9—C8—H8121.2H18A—C18—H18B107.7
N1—C9—C8130.09 (12)C24—C19—C20119.12 (11)
N1—C9—C4107.24 (11)C24—C19—C18118.58 (11)
C8—C9—C4122.65 (11)C20—C19—C18122.23 (11)
C11—C10—C3128.65 (12)C21—C20—C19120.20 (12)
C11—C10—H10115.7C21—C20—H20119.9
C3—C10—H10115.7C19—C20—H20119.9
C10—C11—N2124.03 (11)C22—C21—C20120.25 (12)
C10—C11—C17122.04 (11)C22—C21—H21119.9
N2—C11—C17113.92 (10)C20—C21—H21119.9
N2—C12—C13112.22 (10)C23—C22—C21119.75 (12)
N2—C12—H12A109.2C23—C22—H22120.1
C13—C12—H12A109.2C21—C22—H22120.1
N2—C12—H12B109.2C22—C23—C24120.09 (12)
C13—C12—H12B109.2C22—C23—H23120.0
H12A—C12—H12B107.9C24—C23—H23120.0
C14—C13—C12108.38 (10)C23—C24—C19120.57 (12)
C14—C13—H13A110.0C23—C24—H24119.7
C12—C13—H13A110.0C19—C24—H24119.7
C9—N1—C2—C30.46 (14)C16—N2—C11—C10118.84 (13)
C18—N1—C2—C3173.43 (11)C12—N2—C11—C1756.82 (13)
N1—C2—C3—C40.75 (14)C16—N2—C11—C1760.27 (13)
N1—C2—C3—C10176.05 (12)C11—N2—C12—C1358.82 (13)
C2—C3—C4—C5176.95 (13)C16—N2—C12—C1358.06 (13)
C10—C3—C4—C56.0 (2)N2—C12—C13—C142.34 (15)
C2—C3—C4—C90.76 (13)C12—C13—C14—C1755.53 (14)
C10—C3—C4—C9176.23 (11)C12—C13—C14—C1560.26 (13)
C9—C4—C5—C60.22 (17)C17—C14—C15—C1658.61 (13)
C3—C4—C5—C6177.29 (12)C13—C14—C15—C1657.31 (13)
C4—C5—C6—C70.98 (19)C11—N2—C16—C1555.91 (13)
C4—C5—C6—N3177.76 (11)C12—N2—C16—C1561.19 (13)
O3—N3—C6—C5177.38 (11)C14—C15—C16—N22.84 (14)
O2—N3—C6—C53.33 (17)C10—C11—C17—O14.64 (19)
O3—N3—C6—C73.81 (17)N2—C11—C17—O1176.22 (11)
O2—N3—C6—C7175.47 (11)C10—C11—C17—C14176.34 (11)
C5—C6—C7—C80.78 (19)N2—C11—C17—C142.80 (14)
N3—C6—C7—C8177.95 (11)C15—C14—C17—O1124.26 (13)
C6—C7—C8—C90.20 (18)C13—C14—C17—O1119.44 (13)
C2—N1—C9—C8178.21 (12)C15—C14—C17—C1156.72 (13)
C18—N1—C9—C88.0 (2)C13—C14—C17—C1159.59 (13)
C2—N1—C9—C40.04 (13)C2—N1—C18—C1985.00 (14)
C18—N1—C9—C4173.86 (11)C9—N1—C18—C1987.89 (14)
C7—C8—C9—N1176.99 (12)N1—C18—C19—C24146.12 (11)
C7—C8—C9—C40.94 (18)N1—C18—C19—C2036.84 (16)
C5—C4—C9—N1177.60 (11)C24—C19—C20—C210.35 (18)
C3—C4—C9—N10.50 (13)C18—C19—C20—C21176.68 (11)
C5—C4—C9—C80.74 (18)C19—C20—C21—C220.60 (19)
C3—C4—C9—C8178.84 (11)C20—C21—C22—C230.78 (19)
C2—C3—C10—C119.2 (2)C21—C22—C23—C240.00 (19)
C4—C3—C10—C11174.55 (12)C22—C23—C24—C190.96 (19)
C3—C10—C11—N23.9 (2)C20—C19—C24—C231.13 (18)
C3—C10—C11—C17177.09 (11)C18—C19—C24—C23176.01 (11)
C12—N2—C11—C10124.07 (13)

Experimental details

Crystal data
Chemical formulaC23H21N3O3
Mr387.43
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)9.3560 (1), 9.4049 (1), 11.1174 (2)
α, β, γ (°)90.1103 (5), 104.3081 (5), 106.1250 (6)
V3)907.99 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.18 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.977, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8270, 4162, 3404
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.04
No. of reflections4162
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Sheldrick, 1995), SHELX97 and local procedures.

Selected geometric parameters (Å, º) top
N2—C111.4429 (15)C10—C111.3374 (17)
N3—C61.4643 (16)C11—C171.4863 (17)
C2—C3—C10129.41 (11)N2—C11—C17113.92 (10)
C11—C10—C3128.65 (12)C24—C19—C18118.58 (11)
C10—C11—C17122.04 (11)C20—C19—C18122.23 (11)
O2—N3—C6—C53.33 (17)C10—C11—C17—O14.64 (19)
O3—N3—C6—C73.81 (17)N2—C11—C17—O1176.22 (11)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds