Download citation
Download citation
link to html
Compounds (2R*,3S*)-1-(3,4-dimethoxy­phen­yl)-3-{3-meth­oxy-2-[(2R*)-tetra­hydro­pyran-2-yl­oxy]phen­yl}-2,3-ep­oxy-1-propanone, C23H26O7, (I), and trans-1-(3,4-dimethoxy­phen­yl)-3-[3-meth­oxy-2-(methoxy­methoxy)­phen­yl]-2,3-ep­oxy-1-propanone, C20H22O7, (II), were obtained on epoxidation of chalcones. The stereochemistries of (I) and (II) were elucidated. In both compounds, the substituents on the oxirane ring are trans-oriented. Compound (I) was obtained together with a diastereometric form that differs from (I) with respect to the configuration of the asymmetric C atom in the tetra­hydro­pyran group. The geometries of the substituted oxirane rings of (I) and (II) are very similar. The hydrogen-bonding patterns, mediated via weak C-H...O inter­actions, differ considerably. The crystal structures of (I) and (II) are compared with those of related chalcone epoxides. The conversion of (I) and (II) into lignin-related phenyl­coumarans is discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106036900/sk3047sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106036900/sk3047Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106036900/sk3047IIsup3.hkl
Contains datablock II

CCDC references: 625701; 625702

Comment top

Compounds (I) and (II) are obtained on epoxidation of chalcones (Li & Lundquist, 1997). Compound (I) (m.p. 401 K) and a diastereomer (m.p. 370–371 K) are obtained on epoxidation of the chalcone 1-(3,4-dimethoxyphenyl)-3-[3-methoxy-2-(tetrahydropyran-2-yloxy)phenyl] −2-propen-1-one. The epoxidation is accomplished with hydrogen peroxide using a method involving phase-transfer catalysis (Brunow & Lundquist, 1981, 1984). The epoxides can be converted to a lignin model of the phenylcoumaran type (III) in three reaction steps: BF3-catalysed rearrangement, sodium borohydride reduction and acid-catalysed ring closure. The yield of (III) obtained from (II) was low (Li & Lundquist, 1997). Studies of the reactions involved have shown that the outcome of the rearrangement reaction is strongly dependent on the structure of the epoxide and the conditions prevailing during the reaction (Ralph et al., 1987; Li et al., 1993). It should be noted that reduction of the rearrangement product with sodium borohydride under alkaline conditions lowers the yield substantially (Li et al., 1993). The synthesis of the cis isomer corresponding to (III) using (I) as starting material has been described (Li et al., 1997). The lignin model (IV) has also been prepared via a chalcone epoxide (Brunow & Lundquist, 1984); the stereochemistry of (IV) has been established by a crystal structure determination (Stomberg & Lundquist, 1987). Compound (IV) has been used as starting material in the synthesis of neolignans of the phenylcoumaran type (Juhász et al., 2000, 2001). It is notable that a chalcone epoxide of the topical type is an intermediate in a synthesis of the flavonolignan silychristin (Tanaka et al., 1989).

Perspective drawings and the atom-numbering of (I) and (II) are shown in Figs. 1 and 2, respectively. Selected bond distances and bond angles for both compounds are given in Table 1. The crystal structures establish the stereochemistries of (I) and (II) and confirm their molecular structures. Comparison of the 1H NMR spectra (Li & Lundquist, 1997) of (I) and its diastereomer of m.p. 370–371 K suggests that the diastereomers differ with respect to the configuration of the asymmetric carbon in the tetrahydropyranyl group. The substituents at the oxirane rings of (I) and (II) are trans-orientated. Chalcone epoxides described in the literature in general have the trans configuration but chalcone epoxides with the cis configuration are known (Wasserman & Aubrey, 1955; Matano, 1994).

Excepting the C10—C11 and O4—C11 bond lengths and bond angles involving the atoms of the oxirane rings (the C9—C10—C11 angles differ by 2.1º), the bond lengths and bond angles in the central parts of (I) and (II) are, within experimental error, the same (Table 1). The C1—C9—C10—C11 and C9—C10—C11—C12 torsion angles (denoted τ2 and τ3 in Table 2) differ just slightly, by 0.8 and 0.6º, respectively.

Comparison with the crystal structures of related chalcone epoxides was performed after a search of the Cambridge Structural Database (CSD; Version 5.27 of November 2005, plus two updates; Allen, 2002). The substituents at the oxirane ring are trans-orientated in the chalcone epoxides subjected to crystal structure determinations to date. Some pertinent structural data are tabulated in Table 2. It is apparent that torsion angle τ3 is less flexible than torsion angle τ2. The angles between the planes of the aromatic rings differ considerably.

There are weak C—H···O hydrogen bonds present in the crystal structures of both (I) and (II). (For geometrical details and notations of these hydrogen bonds see Tables 3 and 4.) The hydrogen-bonding patterns of (I) and (II) are quite different. For (I), on the first-level graph set, defined by Bernstein et al. (1995) and Grell et al. (1999), the following chains are formed: C(4) by hydrogen bond a, C(5) by f, C(6) by b, C(8) by d, and C(10) by c and e. On the second-level graph set, rings R22(10) (a, b), R22(27) (a, f) and R22(29) (b, f) and chains C21(8) (d, e), C22(8) (a, b), C22(10) (a, c; b, c), C22(14) (a, c), C22(15) (c, d), C22(16) (b, c), C22(17) (c, e), C22(18) (a, d; c, d; d, e), C22(19) (d, f; e, f), C22(20) (a, e; b, d; c, e), C22(22) (b, e), C22(24) (c, f) and C22(29) (b, f) were recognized. For (II), the hydrogen bonds can be descibed just on the first-level graph-set level, viz. chain C(8) for a, and intramolecular strings S(5) for b and S(6) for c. The assignments of graph-set descriptors were performed using PLUTO as described by Motherwell et al. (1999). All the examined chalcone epoxides (Table 2) have different hydrogen-bonding patterns.

Experimental top

The syntheses of compounds (I) and (II) are described by Li & Lundquist (1997). Crystals of (I) (m.p. 401 K) and (II) (m.p. 381–382 K) were obtained from ethanol.

Refinement top

H atoms were refined isotropically and were constrained to the ideal geometry using an appropriate riding model. For methyl groups, the C—H distances (0.98 Å) and C–C–H angles (109.5°) were kept fixed, while the torsion angles were allowed to refine with the starting position based on the threefold averaged circular Fourier synthesis. For other H atoms, C—H = 0.95–1.00 Å. For (I), Uiso(H) values were fixed at 1.2 or 1.5 times Ueq(C). Please check added text.

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A perspective drawing of (I), showing the atom numbering. The atomic displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A perspective drawing of (II), showing the atom numbering. The atomic displacement ellipsoids are shown at the 50% probability level.
(I) (2R*,3S*)-1-(3,4-dimethoxyphenyl)-3-{3-methoxy-2-[(2R*)-tetrahydropyran- 2-yloxy]phenyl}-2,3-epoxy-1-propanone top
Crystal data top
C23H26O7F(000) = 880
Mr = 414.44Dx = 1.365 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 7078 reflections
a = 14.4281 (5) Åθ = 2.5–32.1°
b = 18.8386 (7) ŵ = 0.10 mm1
c = 9.0887 (3) ÅT = 173 K
β = 125.285 (1)°Prism, colourless
V = 2016.52 (12) Å30.42 × 0.22 × 0.18 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
3639 independent reflections
Radiation source: fine-focus sealed tube3193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 33.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2121
Tmin = 0.608, Tmax = 0.982k = 2828
18037 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.072P)2 + 0.020P]
where P = (Fo2 + 2Fc2)/3
3639 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C23H26O7V = 2016.52 (12) Å3
Mr = 414.44Z = 4
Monoclinic, CcMo Kα radiation
a = 14.4281 (5) ŵ = 0.10 mm1
b = 18.8386 (7) ÅT = 173 K
c = 9.0887 (3) Å0.42 × 0.22 × 0.18 mm
β = 125.285 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3639 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3193 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.982Rint = 0.034
18037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
3639 reflectionsΔρmin = 0.18 e Å3
274 parameters
Special details top

Experimental. Data were collected at low temperature using a Siemens SMART CCD diffractometer equiped with a LT-2 device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 30 s per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Bruker, 2003a). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 7078 reflections with I>10σ(I) after integration of all the frames data using SAINT (Bruker, 2003b).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05273 (12)0.98417 (7)0.28979 (18)0.0336 (3)
O20.18225 (12)0.91853 (7)0.59272 (16)0.0340 (3)
O30.35467 (12)0.71243 (6)0.46411 (18)0.0336 (3)
O40.39322 (12)0.67530 (6)0.21211 (19)0.0327 (3)
O50.72969 (10)0.88301 (7)0.24914 (16)0.0293 (2)
O60.62968 (10)0.83612 (6)0.42010 (14)0.0239 (2)
O70.56041 (10)0.95177 (6)0.31418 (15)0.0276 (2)
C10.24632 (12)0.81536 (8)0.3156 (2)0.0227 (3)
C20.18137 (13)0.85382 (8)0.1563 (2)0.0252 (3)
H20.18210.84110.05580.030*
C30.11515 (14)0.91087 (9)0.1425 (2)0.0277 (3)
H30.07000.93630.03240.033*
C40.11537 (13)0.93045 (8)0.2897 (2)0.0257 (3)
C50.18502 (13)0.89333 (8)0.4551 (2)0.0250 (3)
C60.24838 (13)0.83617 (8)0.4662 (2)0.0241 (3)
H60.29370.81070.57610.029*
C70.02777 (16)1.01764 (10)0.1194 (3)0.0355 (4)
H7A0.01261.03970.07380.053*
H7B0.06981.05410.13510.053*
H7C0.08090.98200.03300.053*
C80.24673 (18)0.88047 (11)0.7592 (2)0.0375 (4)
H8A0.22030.83120.73920.056*
H8B0.23690.90280.84670.056*
H8C0.32720.88140.80580.056*
C90.31515 (14)0.75263 (8)0.3367 (2)0.0246 (3)
C100.34295 (13)0.74188 (8)0.2022 (2)0.0247 (3)
H100.29170.76430.08080.030*
C110.46590 (13)0.73650 (8)0.2785 (2)0.0243 (3)
H110.51920.74050.41260.029*
C120.51144 (13)0.76015 (8)0.1763 (2)0.0235 (3)
C130.47217 (14)0.73067 (9)0.0081 (2)0.0285 (3)
H130.41470.69530.04360.034*
C140.51799 (15)0.75361 (10)0.0817 (2)0.0308 (3)
H140.49110.73430.19650.037*
C150.60361 (14)0.80494 (9)0.0048 (2)0.0291 (3)
H150.63480.81990.06740.035*
C160.64375 (13)0.83445 (8)0.1628 (2)0.0249 (3)
C170.59533 (12)0.81245 (8)0.25264 (19)0.0223 (3)
C180.77905 (17)0.90537 (10)0.1583 (3)0.0332 (3)
H18A0.80790.86390.13150.050*
H18B0.84170.93820.23560.050*
H18C0.72140.92930.04560.050*
C190.64536 (13)0.91141 (8)0.4610 (2)0.0242 (3)
H190.72090.92600.49010.029*
C200.64751 (13)0.91913 (8)0.62880 (19)0.0254 (3)
H20A0.70090.88400.71980.030*
H20B0.67540.96710.68030.030*
C210.53056 (15)0.90814 (8)0.5887 (2)0.0265 (3)
H21A0.53280.91900.69740.032*
H21B0.50680.85810.55480.032*
C220.44625 (14)0.95694 (9)0.4349 (2)0.0272 (3)
H22A0.36890.94840.40280.033*
H22B0.46641.00710.47280.033*
C230.44844 (14)0.94287 (9)0.2723 (2)0.0269 (3)
H23A0.42200.89380.22910.032*
H23B0.39540.97580.17400.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0385 (6)0.0346 (6)0.0312 (6)0.0122 (5)0.0221 (5)0.0050 (5)
O20.0454 (7)0.0376 (6)0.0264 (6)0.0100 (5)0.0250 (5)0.0029 (5)
O30.0435 (7)0.0277 (5)0.0370 (6)0.0059 (5)0.0276 (6)0.0062 (5)
O40.0409 (7)0.0207 (5)0.0454 (7)0.0031 (4)0.0300 (6)0.0069 (5)
O50.0326 (6)0.0352 (6)0.0282 (5)0.0041 (5)0.0222 (5)0.0029 (4)
O60.0293 (5)0.0250 (5)0.0199 (4)0.0009 (4)0.0157 (4)0.0010 (4)
O70.0343 (6)0.0271 (5)0.0266 (5)0.0032 (4)0.0207 (5)0.0053 (4)
C10.0241 (6)0.0226 (6)0.0248 (6)0.0020 (5)0.0162 (5)0.0015 (5)
C20.0271 (7)0.0281 (7)0.0226 (6)0.0009 (5)0.0156 (5)0.0020 (5)
C30.0294 (7)0.0302 (7)0.0237 (7)0.0043 (6)0.0154 (6)0.0028 (5)
C40.0260 (7)0.0260 (7)0.0268 (7)0.0023 (5)0.0162 (6)0.0018 (5)
C50.0276 (7)0.0280 (7)0.0229 (6)0.0001 (5)0.0167 (6)0.0000 (5)
C60.0258 (6)0.0255 (6)0.0223 (6)0.0004 (5)0.0146 (5)0.0011 (5)
C70.0332 (8)0.0374 (8)0.0388 (9)0.0122 (7)0.0224 (7)0.0118 (7)
C80.0478 (10)0.0424 (9)0.0253 (7)0.0047 (8)0.0228 (7)0.0012 (7)
C90.0267 (7)0.0226 (6)0.0274 (7)0.0029 (5)0.0172 (6)0.0030 (5)
C100.0265 (7)0.0227 (6)0.0271 (7)0.0013 (5)0.0167 (6)0.0040 (5)
C110.0262 (7)0.0223 (6)0.0268 (7)0.0012 (5)0.0166 (6)0.0011 (5)
C120.0232 (6)0.0256 (6)0.0221 (6)0.0031 (5)0.0133 (5)0.0008 (5)
C130.0275 (7)0.0316 (7)0.0248 (7)0.0004 (6)0.0142 (6)0.0055 (6)
C140.0329 (8)0.0374 (8)0.0219 (7)0.0054 (6)0.0158 (6)0.0032 (6)
C150.0334 (8)0.0354 (8)0.0234 (7)0.0049 (6)0.0191 (6)0.0005 (6)
C160.0257 (7)0.0289 (7)0.0233 (6)0.0044 (5)0.0160 (6)0.0008 (5)
C170.0231 (6)0.0261 (6)0.0199 (6)0.0034 (5)0.0136 (5)0.0005 (5)
C180.0386 (9)0.0379 (8)0.0354 (8)0.0035 (7)0.0284 (7)0.0017 (7)
C190.0265 (7)0.0253 (6)0.0228 (6)0.0013 (5)0.0154 (6)0.0024 (5)
C200.0289 (7)0.0273 (7)0.0190 (6)0.0003 (5)0.0133 (6)0.0018 (5)
C210.0355 (8)0.0260 (7)0.0251 (6)0.0001 (5)0.0217 (6)0.0004 (5)
C220.0313 (8)0.0279 (7)0.0274 (7)0.0019 (5)0.0199 (6)0.0009 (5)
C230.0289 (7)0.0295 (7)0.0231 (6)0.0041 (5)0.0156 (6)0.0022 (5)
Geometric parameters (Å, º) top
C1—C91.483 (2)C8—H8B0.9800
O3—C91.215 (2)C8—H8C0.9800
C9—C101.504 (2)C10—H101.0000
C10—C111.489 (2)C11—H111.0000
O4—C101.4256 (19)C12—C171.395 (2)
O4—C111.4359 (19)C12—C131.401 (2)
C11—C121.483 (2)C13—C141.384 (3)
O1—C41.3574 (19)C13—H130.9500
O1—C71.438 (2)C14—C151.397 (3)
O2—C51.3598 (18)C14—H140.9500
O2—C81.429 (2)C15—C161.395 (2)
O5—C161.366 (2)C15—H150.9500
O5—C181.430 (2)C16—C171.409 (2)
O6—C171.3746 (17)C18—H18A0.9800
O6—C191.4505 (18)C18—H18B0.9800
O7—C191.4042 (19)C18—H18C0.9800
O7—C231.440 (2)C19—C201.514 (2)
C1—C21.390 (2)C19—H191.0000
C1—C61.407 (2)C20—C211.521 (2)
C2—C31.395 (2)C20—H20A0.9900
C2—H20.9500C20—H20B0.9900
C3—C41.386 (2)C21—C221.522 (2)
C3—H30.9500C21—H21A0.9900
C4—C51.419 (2)C21—H21B0.9900
C5—C61.378 (2)C22—C231.519 (2)
C6—H60.9500C22—H22A0.9900
C7—H7A0.9800C22—H22B0.9900
C7—H7B0.9800C23—H23A0.9900
C7—H7C0.9800C23—H23B0.9900
C8—H8A0.9800
C1—C9—C10118.37 (13)C13—C12—C11121.18 (14)
O3—C9—C1122.03 (14)C14—C13—C12119.32 (16)
O3—C9—C10119.47 (14)C14—C13—H13120.3
O4—C10—C9115.59 (13)C12—C13—H13120.3
O4—C10—C1158.99 (10)C13—C14—C15120.44 (15)
O4—C11—C1058.31 (10)C13—C14—H14119.8
O4—C11—C12117.26 (13)C15—C14—H14119.8
C10—C11—C12121.84 (14)C14—C15—C16120.77 (15)
C4—O1—C7116.74 (14)C14—C15—H15119.6
C5—O2—C8116.84 (13)C16—C15—H15119.6
C10—O4—C1162.71 (10)O5—C16—C15124.13 (15)
C16—O5—C18117.05 (13)O5—C16—C17116.94 (13)
C17—O6—C19120.29 (12)C15—C16—C17118.91 (14)
C19—O7—C23114.72 (12)O6—C17—C12115.74 (13)
C2—C1—C6119.37 (14)O6—C17—C16124.33 (14)
C2—C1—C9123.25 (13)C12—C17—C16119.82 (13)
C6—C1—C9117.38 (13)O5—C18—H18A109.5
C1—C2—C3120.67 (14)O5—C18—H18B109.5
C1—C2—H2119.7H18A—C18—H18B109.5
C3—C2—H2119.7O5—C18—H18C109.5
C4—C3—C2119.92 (14)H18A—C18—H18C109.5
C4—C3—H3120.0H18B—C18—H18C109.5
C2—C3—H3120.0O7—C19—O6111.38 (12)
O1—C4—C3124.68 (14)O7—C19—C20113.84 (13)
O1—C4—C5115.52 (13)O6—C19—C20105.17 (12)
C3—C4—C5119.80 (14)O7—C19—H19108.8
O2—C5—C6125.19 (14)O6—C19—H19108.8
O2—C5—C4115.06 (13)C20—C19—H19108.8
C6—C5—C4119.75 (13)C21—C20—C19111.80 (12)
C5—C6—C1120.41 (14)C21—C20—H20A109.3
C5—C6—H6119.8C19—C20—H20A109.3
C1—C6—H6119.8C21—C20—H20B109.3
O1—C7—H7A109.5C19—C20—H20B109.3
O1—C7—H7B109.5H20A—C20—H20B107.9
H7A—C7—H7B109.5C20—C21—C22108.97 (12)
O1—C7—H7C109.5C20—C21—H21A109.9
H7A—C7—H7C109.5C22—C21—H21A109.9
H7B—C7—H7C109.5C20—C21—H21B109.9
O2—C8—H8A109.5C22—C21—H21B109.9
O2—C8—H8B109.5H21A—C21—H21B108.3
H8A—C8—H8B109.5C23—C22—C21109.50 (13)
O2—C8—H8C109.5C23—C22—H22A109.8
H8A—C8—H8C109.5C21—C22—H22A109.8
H8B—C8—H8C109.5C23—C22—H22B109.8
C11—C10—C9115.84 (14)C21—C22—H22B109.8
O4—C10—H10117.8H22A—C22—H22B108.2
C11—C10—H10117.8O7—C23—C22111.92 (13)
C9—C10—H10117.8O7—C23—H23A109.2
O4—C11—H11115.7C22—C23—H23A109.2
C10—C11—H11115.7O7—C23—H23B109.2
C12—C11—H11115.7C22—C23—H23B109.2
C17—C12—C13120.69 (14)H23A—C23—H23B107.9
C17—C12—C11118.13 (13)
C6—C1—C2—C32.5 (2)C10—C11—C12—C17121.61 (16)
C9—C1—C2—C3177.72 (15)O4—C11—C12—C139.1 (2)
C1—C2—C3—C41.2 (2)C10—C11—C12—C1358.8 (2)
C7—O1—C4—C36.8 (2)C17—C12—C13—C140.4 (2)
C7—O1—C4—C5173.40 (15)C11—C12—C13—C14179.17 (15)
C2—C3—C4—O1178.78 (16)C12—C13—C14—C150.9 (3)
C2—C3—C4—C51.4 (2)C13—C14—C15—C160.6 (3)
C8—O2—C5—C62.8 (2)C18—O5—C16—C151.3 (2)
C8—O2—C5—C4176.94 (15)C18—O5—C16—C17179.94 (14)
O1—C4—C5—O22.3 (2)C14—C15—C16—O5177.70 (15)
C3—C4—C5—O2177.56 (16)C14—C15—C16—C170.9 (2)
O1—C4—C5—C6177.49 (15)C19—O6—C17—C12136.15 (14)
C3—C4—C5—C62.7 (2)C19—O6—C17—C1647.8 (2)
O2—C5—C6—C1178.91 (15)C13—C12—C17—O6178.22 (14)
C4—C5—C6—C11.4 (2)C11—C12—C17—O61.37 (19)
C2—C1—C6—C51.2 (2)C13—C12—C17—C161.9 (2)
C9—C1—C6—C5179.00 (14)C11—C12—C17—C16177.65 (13)
C2—C1—C9—O3166.56 (16)O5—C16—C17—O60.6 (2)
C6—C1—C9—O313.6 (2)C15—C16—C17—O6178.13 (14)
C2—C1—C9—C1017.7 (2)O5—C16—C17—C12176.55 (13)
C6—C1—C9—C10162.10 (13)C15—C16—C17—C122.2 (2)
C11—O4—C10—C9106.02 (15)C23—O7—C19—O667.84 (16)
O3—C9—C10—O413.8 (2)C23—O7—C19—C2050.85 (17)
C1—C9—C10—O4170.34 (13)C17—O6—C19—O739.66 (18)
O3—C9—C10—C1152.4 (2)C17—O6—C19—C20163.43 (12)
C1—C9—C10—C11123.41 (15)O7—C19—C20—C2150.31 (18)
C10—O4—C11—C12112.29 (15)O6—C19—C20—C2171.88 (15)
C9—C10—C11—O4105.60 (15)C19—C20—C21—C2252.97 (17)
O4—C10—C11—C12104.49 (16)C20—C21—C22—C2356.24 (17)
C9—C10—C11—C12149.91 (13)C19—O7—C23—C2254.54 (17)
O4—C11—C12—C17170.46 (13)C21—C22—C23—O757.01 (17)
(II) trans-1-(3,4-dimethoxyphenyl)-3-(3-methoxy-2-methoxymethoxyphenyl)-2,3- epoxy-1-propanone top
Crystal data top
C20H22O7F(000) = 792
Mr = 374.38Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3556 reflections
a = 12.7503 (10) Åθ = 2.5–22.7°
b = 9.4201 (7) ŵ = 0.10 mm1
c = 15.4409 (12) ÅT = 173 K
β = 94.706 (2)°Needle with an arrow-head end, colorless
V = 1848.3 (2) Å30.65 × 0.14 × 0.06 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
3280 independent reflections
Radiation source: fine-focus sealed tube2257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.805, Tmax = 0.994k = 1111
19850 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113Only H-atom coordinates refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.460P]
where P = (Fo2 + 2Fc2)/3
3280 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C20H22O7V = 1848.3 (2) Å3
Mr = 374.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7503 (10) ŵ = 0.10 mm1
b = 9.4201 (7) ÅT = 173 K
c = 15.4409 (12) Å0.65 × 0.14 × 0.06 mm
β = 94.706 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2257 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.994Rint = 0.057
19850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113Only H-atom coordinates refined
S = 1.01Δρmax = 0.39 e Å3
3280 reflectionsΔρmin = 0.14 e Å3
270 parameters
Special details top

Experimental. Data were collected at low temperature using a Siemens SMART CCD diffractometer equiped with a LT-2 device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 30 s per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Bruker, 2003a). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 3556 reflections with I>10σ(I) after integration of all the frames data using SAINT (Bruker, 2003b).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.86916 (13)0.22744 (16)0.37251 (9)0.0521 (4)
O20.97263 (12)0.16958 (15)0.51711 (9)0.0473 (4)
O30.90694 (14)0.58207 (17)0.71809 (10)0.0646 (5)
O40.86665 (13)0.86795 (16)0.70153 (11)0.0588 (5)
O50.54610 (11)0.81483 (15)0.70368 (9)0.0453 (4)
O60.52449 (15)0.64410 (17)0.59345 (10)0.0656 (5)
O70.40794 (13)1.01620 (17)0.64405 (10)0.0577 (5)
C10.87274 (16)0.5238 (2)0.57035 (13)0.0377 (5)
C20.92472 (15)0.3935 (2)0.58090 (13)0.0376 (5)
H20.96220.37130.63490.038 (5)*
C30.92223 (16)0.2974 (2)0.51417 (13)0.0384 (5)
C40.86580 (16)0.3292 (2)0.43418 (13)0.0401 (5)
C50.81294 (17)0.4567 (2)0.42385 (14)0.0441 (5)
H50.77390.47800.37040.055 (6)*
C60.81693 (17)0.5540 (2)0.49191 (13)0.0435 (5)
H60.78100.64210.48440.042 (6)*
C71.02743 (18)0.1310 (2)0.59851 (14)0.0468 (6)
H7A1.08100.20270.61510.050 (6)*
H7B1.06130.03850.59280.043 (6)*
H7C0.97740.12540.64330.051 (6)*
C80.8243 (2)0.2591 (3)0.28698 (14)0.0561 (7)
H8A0.74810.27170.28800.071 (8)*
H8B0.83840.18080.24780.081 (8)*
H8C0.85560.34670.26640.060 (7)*
C90.87822 (17)0.6218 (2)0.64538 (14)0.0446 (5)
C100.84505 (17)0.7733 (2)0.63022 (15)0.0460 (6)
H100.85050.81260.57060.046 (6)*
C110.76023 (16)0.8292 (2)0.67980 (13)0.0414 (5)
H110.73030.76010.72030.053 (6)*
C120.68639 (17)0.9407 (2)0.64478 (12)0.0383 (5)
C130.72199 (19)1.0577 (2)0.59966 (13)0.0460 (6)
H130.79471.06710.59150.042 (6)*
C140.6521 (2)1.1588 (2)0.56717 (14)0.0514 (6)
H140.67691.23720.53600.064 (7)*
C150.5461 (2)1.1483 (2)0.57917 (13)0.0490 (6)
H150.49841.21860.55590.060 (7)*
C160.50976 (18)1.0346 (2)0.62536 (13)0.0432 (5)
C170.58059 (17)0.9289 (2)0.65674 (12)0.0380 (5)
C180.3332 (2)1.1197 (3)0.61232 (17)0.0675 (8)
H18A0.35301.21260.63720.072 (8)*
H18B0.26331.09330.62910.092 (10)*
H18C0.33181.12450.54880.074 (8)*
C190.4761 (2)0.7200 (2)0.65499 (15)0.0534 (6)
H19A0.44590.65280.69550.048 (6)*
H19B0.41740.77540.62580.056 (7)*
C200.5818 (3)0.5253 (3)0.6265 (2)0.0781 (9)
H20A0.63800.55680.66930.119 (13)*
H20B0.61280.47600.57880.098 (10)*
H20C0.53460.46060.65430.095 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0728 (11)0.0500 (9)0.0337 (8)0.0179 (8)0.0056 (7)0.0004 (7)
O20.0596 (10)0.0448 (9)0.0379 (8)0.0217 (8)0.0071 (7)0.0040 (7)
O30.0931 (14)0.0559 (10)0.0424 (10)0.0222 (9)0.0100 (9)0.0048 (8)
O40.0560 (11)0.0495 (10)0.0685 (11)0.0028 (8)0.0093 (8)0.0140 (8)
O50.0534 (9)0.0447 (9)0.0383 (8)0.0062 (8)0.0078 (7)0.0065 (7)
O60.1076 (15)0.0419 (10)0.0487 (10)0.0061 (10)0.0158 (10)0.0015 (8)
O70.0522 (10)0.0650 (11)0.0560 (10)0.0233 (9)0.0054 (8)0.0003 (8)
C10.0363 (12)0.0374 (12)0.0400 (12)0.0053 (10)0.0060 (9)0.0021 (9)
C20.0362 (12)0.0417 (12)0.0352 (11)0.0080 (10)0.0051 (9)0.0060 (10)
C30.0417 (13)0.0389 (12)0.0360 (11)0.0110 (10)0.0105 (9)0.0064 (10)
C40.0466 (13)0.0414 (12)0.0334 (11)0.0079 (10)0.0106 (10)0.0033 (10)
C50.0478 (14)0.0476 (13)0.0367 (12)0.0078 (11)0.0014 (10)0.0068 (10)
C60.0457 (13)0.0390 (12)0.0457 (13)0.0133 (10)0.0025 (10)0.0037 (10)
C70.0498 (14)0.0454 (14)0.0448 (13)0.0141 (12)0.0023 (11)0.0088 (11)
C80.0687 (18)0.0666 (17)0.0327 (12)0.0125 (14)0.0033 (11)0.0018 (12)
C90.0431 (13)0.0448 (13)0.0457 (14)0.0075 (10)0.0033 (10)0.0010 (11)
C100.0492 (14)0.0452 (13)0.0439 (13)0.0023 (11)0.0043 (10)0.0026 (11)
C110.0451 (13)0.0409 (12)0.0377 (12)0.0026 (10)0.0001 (10)0.0047 (10)
C120.0553 (14)0.0302 (11)0.0289 (11)0.0053 (10)0.0006 (10)0.0043 (9)
C130.0534 (15)0.0390 (13)0.0455 (13)0.0027 (11)0.0027 (11)0.0070 (10)
C140.0741 (18)0.0327 (12)0.0466 (14)0.0007 (12)0.0002 (12)0.0026 (11)
C150.0733 (18)0.0324 (12)0.0395 (13)0.0135 (12)0.0070 (12)0.0039 (10)
C160.0535 (15)0.0395 (13)0.0357 (12)0.0124 (11)0.0014 (10)0.0083 (10)
C170.0496 (14)0.0354 (12)0.0291 (11)0.0053 (10)0.0040 (9)0.0028 (9)
C180.0658 (19)0.0740 (19)0.0603 (17)0.0344 (15)0.0103 (14)0.0140 (14)
C190.0591 (16)0.0463 (14)0.0549 (14)0.0031 (13)0.0053 (12)0.0098 (12)
C200.112 (3)0.0407 (15)0.085 (2)0.0029 (16)0.034 (2)0.0058 (15)
Geometric parameters (Å, º) top
C1—C91.478 (3)C7—H7A0.9800
O3—C91.211 (2)C7—H7B0.9800
C9—C101.502 (3)C7—H7C0.9800
O4—C101.426 (3)C8—H8A0.9800
O4—C111.418 (3)C8—H8B0.9800
C10—C111.473 (3)C8—H8C0.9800
C11—C121.483 (3)C10—H101.0000
O1—C41.354 (2)C11—H111.0000
O1—C81.427 (2)C12—C171.381 (3)
O2—C31.363 (2)C12—C131.400 (3)
O2—C71.434 (2)C13—C141.371 (3)
O5—C171.388 (2)C13—H130.9500
O5—C191.432 (3)C14—C151.383 (3)
O6—C191.375 (3)C14—H140.9500
O6—C201.409 (3)C15—C161.387 (3)
O7—C161.364 (3)C15—H150.9500
O7—C181.422 (3)C16—C171.404 (3)
C1—C61.383 (3)C18—H18A0.9800
C1—C21.398 (3)C18—H18B0.9800
C2—C31.370 (3)C18—H18C0.9800
C2—H20.9500C19—H19A0.9900
C3—C41.410 (3)C19—H19B0.9900
C4—C51.380 (3)C20—H20A0.9800
C5—C61.393 (3)C20—H20B0.9800
C5—H50.9500C20—H20C0.9800
C6—H60.9500
C1—C9—C10118.46 (19)O4—C10—H10117.1
O3—C9—C1121.7 (2)C11—C10—H10117.1
O3—C9—C10119.9 (2)C9—C10—H10117.1
O4—C10—C9116.10 (18)O4—C11—C1059.07 (13)
O4—C10—C1158.57 (13)O4—C11—H11115.2
C11—C10—C9117.93 (19)C12—C11—H11115.2
C11—O4—C1062.36 (13)C10—C11—H11115.2
O4—C11—C12118.07 (18)C17—C12—C13119.33 (19)
C12—C11—C10122.35 (19)C17—C12—C11119.52 (19)
C4—O1—C8117.99 (17)C13—C12—C11121.1 (2)
C3—O2—C7116.57 (16)C14—C13—C12120.1 (2)
C17—O5—C19114.82 (15)C14—C13—H13119.9
C19—O6—C20114.30 (19)C12—C13—H13119.9
C16—O7—C18117.5 (2)C13—C14—C15120.9 (2)
C6—C1—C2119.19 (19)C13—C14—H14119.5
C6—C1—C9123.06 (19)C15—C14—H14119.5
C2—C1—C9117.73 (18)C16—C15—C14119.7 (2)
C3—C2—C1120.74 (19)C16—C15—H15120.1
C3—C2—H2119.6C14—C15—H15120.1
C1—C2—H2119.6C15—C16—O7124.8 (2)
C2—C3—O2125.21 (18)C15—C16—C17119.5 (2)
C2—C3—C4119.81 (18)O7—C16—C17115.67 (19)
O2—C3—C4114.97 (17)O5—C17—C12119.12 (18)
O1—C4—C3114.98 (18)O5—C17—C16120.48 (19)
O1—C4—C5125.31 (19)C12—C17—C16120.3 (2)
C3—C4—C5119.71 (19)O7—C18—H18A109.5
C6—C5—C4119.9 (2)O7—C18—H18B109.5
C6—C5—H5120.0H18A—C18—H18B109.5
C4—C5—H5120.0O7—C18—H18C109.5
C5—C6—C1120.63 (19)H18A—C18—H18C109.5
C5—C6—H6119.7H18B—C18—H18C109.5
C1—C6—H6119.7O6—C19—O5113.1 (2)
O2—C7—H7A109.5O6—C19—H19A109.0
O2—C7—H7B109.5O5—C19—H19A109.0
H7A—C7—H7B109.5O6—C19—H19B109.0
O2—C7—H7C109.5O5—C19—H19B109.0
H7A—C7—H7C109.5H19A—C19—H19B107.8
H7B—C7—H7C109.5O6—C20—H20A109.5
O1—C8—H8A109.5O6—C20—H20B109.5
O1—C8—H8B109.5H20A—C20—H20B109.5
H8A—C8—H8B109.5O6—C20—H20C109.5
O1—C8—H8C109.5H20A—C20—H20C109.5
H8A—C8—H8C109.5H20B—C20—H20C109.5
H8B—C8—H8C109.5
C6—C1—C2—C31.1 (3)C9—C10—C11—O4105.0 (2)
C9—C1—C2—C3179.57 (19)O4—C10—C11—C12105.7 (2)
C1—C2—C3—O2178.04 (19)C9—C10—C11—C12149.3 (2)
C1—C2—C3—C40.7 (3)O4—C11—C12—C17152.82 (18)
C7—O2—C3—C23.6 (3)C10—C11—C12—C17137.8 (2)
C7—O2—C3—C4177.60 (18)O4—C11—C12—C1327.2 (3)
C8—O1—C4—C3172.81 (19)C10—C11—C12—C1342.2 (3)
C8—O1—C4—C57.1 (3)C17—C12—C13—C140.5 (3)
C2—C3—C4—O1179.50 (18)C11—C12—C13—C14179.40 (19)
O2—C3—C4—O10.7 (3)C12—C13—C14—C150.8 (3)
C2—C3—C4—C50.4 (3)C13—C14—C15—C160.6 (3)
O2—C3—C4—C5179.21 (18)C14—C15—C16—O7177.36 (19)
O1—C4—C5—C6178.9 (2)C14—C15—C16—C172.3 (3)
C3—C4—C5—C61.0 (3)C18—O7—C16—C151.3 (3)
C4—C5—C6—C10.6 (3)C18—O7—C16—C17179.05 (18)
C2—C1—C6—C50.5 (3)C19—O5—C17—C12116.1 (2)
C9—C1—C6—C5178.9 (2)C19—O5—C17—C1666.9 (2)
C6—C1—C9—O3163.4 (2)C13—C12—C17—O5178.16 (16)
C2—C1—C9—O315.0 (3)C11—C12—C17—O51.9 (3)
C6—C1—C9—C1015.4 (3)C13—C12—C17—C161.2 (3)
C2—C1—C9—C10166.20 (19)C11—C12—C17—C16178.90 (17)
C11—O4—C10—C9108.2 (2)C15—C16—C17—O5179.52 (17)
O3—C9—C10—O410.3 (3)O7—C16—C17—O50.1 (3)
C1—C9—C10—O4170.88 (18)C15—C16—C17—C122.6 (3)
O3—C9—C10—C1156.3 (3)O7—C16—C17—C12177.09 (18)
C1—C9—C10—C11122.6 (2)C20—O6—C19—O580.5 (3)
C10—O4—C11—C12112.8 (2)C17—O5—C19—O668.8 (2)

Experimental details

(I)(II)
Crystal data
Chemical formulaC23H26O7C20H22O7
Mr414.44374.38
Crystal system, space groupMonoclinic, CcMonoclinic, P21/c
Temperature (K)173173
a, b, c (Å)14.4281 (5), 18.8386 (7), 9.0887 (3)12.7503 (10), 9.4201 (7), 15.4409 (12)
β (°) 125.285 (1) 94.706 (2)
V3)2016.52 (12)1848.3 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.42 × 0.22 × 0.180.65 × 0.14 × 0.06
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.608, 0.9820.805, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
18037, 3639, 3193 19850, 3280, 2257
Rint0.0340.057
(sin θ/λ)max1)0.7690.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.01 0.044, 0.113, 1.01
No. of reflections36393280
No. of parameters274270
No. of restraints20
H-atom treatmentH-atom parameters constrainedOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.32, 0.180.39, 0.14

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT and SADABS (Sheldrick, 2003), SHELXTL (Bruker, 2003), SHELXTL, DIAMOND (Brandenburg, 2005).

Selected geometrical parameters (Å,°) for compounds (I) and (II) top
Bond(I)(II)Angle(I)(II)
C1-C91.483 (2)1.478 (3)C1-C9-C10118.37 (13)118.46 (19)
O3-C91.215 (2)1.211 (2)O3-C9-C1122.03 (14)121.7 (2)
C9-C101.504 (2)1.502 (3)O3-C9-C10119.47 (14)119.9 (2)
C10-C111.489 (2)1.473 (3)O4-C10-C9115.59 (13)116.10 (18)
O4-C101.4256 (19)1.426 (3)O4-C10-C1158.99 (10)58.57 (13)
O4-C111.4359 (19)1.418 (3)O4-C11-C1058.31 (10)59.07 (13)
C11-C121.483 (2)1.483 (3)C10-O4-C1162.71 (10)62.36 (13)
O4-C11-C12117.26 (13)118.07 (18)
C9-C10-C11115.84 (14)117.93 (19)
C10-C11-C12121.84 (14)122.35 (19)
Comparative geometrical parameters (°) for examined chalcone epoxides top
Codeτ1τ2τ3A/B
(I)a147123.41 (15)-149.91 (13)85.44 (9)
(II)a148122.6 (2)-149.3 (2)89.92 (10)
EXEWOTb157122.8-154.2107.7
EXEWOTc149101.5-151.165.3
FATQOHd*147113.0-154.248.6
LIGXUUe169 (5)112.8 (7)-151.0 (6)99.0
LIGXUU01f157 (15)145 (1)-149 (1)114.5
QECFAFg148147.4-150.5127.3
QINFICh151143.3-150.7144.0
SOMHEHi106119.9-148.493.9
WAMLOMj148121.5-152.187.1
TECTAXk147158.8-153.2133.1
VAZBOOl*150150.0-154.6103.8
Notes:

τ1=H10-C10-C11-H11, τ2=C1-C9-C10-C11, τ3=C9-C10-C11-C12, A/B=angle between the aromatic rings in relation to the oxirane group.

(a) this work; (b) Bakó et al. (2004), first molecule; (c) Bakó et al. (2004), second molecule; (d) Shi et al. (2004); (e) Stomberg et al. (1994), monoclinic form; (f) Stomberg et al. (1994), trigonal form; (g) Bakó et al. (1999); (h) Bardet et al. (1999); (i) Baures et al. (1990); (j) Xu et al. (2005); (k) Zhang et al. (2006); (l) Cuthbertson et al. (2005); (*) Racemic crystal - data for the opposite enantiomer are deposited in CSD.
Hydrogen-bonding geometry (Å, °) top
LabelD—H···AD—HH···AD···AD—H···A
[a]C3—H3···O1i0.952.563.415 (2)150
[b]C7—H7A···O2i0.982.483.396 (2)155
[c]C7—H7B···O4ii0.982.533.456 (2)157
[d]C14—H14···O3iii0.952.563.458 (2)158
[e]C18—H18A···O3iv0.982.453.384 (2)158
[f]C21—H21A···O7v0.992.593.2139 (19)121
Symmetry codes: (i) x, 2 − y, z − 1/2; (ii) x − 1/2, 1/2 + y, z; (iii) x, y, z − 1; (iv) 1/2 + x, 3/2 − y, z − 1/2; (v) x, 2 − y, 1/2 + z.
Hydrogen-bonding geometry (Å, °) top
LabelD—H···AD—HH···AD···AD—H···A
[a]C7—H7C···O3i0.982.532.923 (3)104
[b]C11—H11···O51.002.402.788 (3)102
[c]C19—H19B···O70.992.292.924 (3)121
Symmetry code: (i) −x + 2, y − 1/2, −z + 3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds