Download citation
Download citation
link to html
The two title compounds, both with formula C18H16ClN3O, are structurally similar Schiff bases derived from the condensation of 4-chloro­benzaldehyde or 2-chloro­benzaldehyde with 4-amino­anti­pyrine in methanol solution. As expected, both compounds adopt trans configurations about the central C=N bonds. In the crystal structure of the 4-chloro analogue, mol­ecules are linked through weak C-H...O hydrogen bonds, forming chains running along the a axis. In the crystal structure of the 2-chloro analogue, mol­ecules are linked through weak C-H...O and C-H...Cl hydrogen bonds, forming layers parallel to the ab plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106021512/sk3029sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106021512/sk3029Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106021512/sk3029IIsup3.hkl
Contains datablock a

CCDC references: 618619; 618620

Comment top

Antipyrine and its derivatives exhibit a wide range of biological activities and applications (Yadav et al., 2003; Ismail, 2000; Abd El Rehim et al., 2001). A few crystal structures of antipyrine derivatives have been investigated (Liang et al., 2002; Li & Zhang, 2004, 2005; Zhang & Li, 2005). Schiff bases have demonstrated significant biological activity and new examples are being tested for their antitumor, antimicrobial and antiviral activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). Recently, the crystal structure of 4-[(2,4-dichlorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1,2- dihydropyrazol-3-one, (III), has been reported (Jing et al., 2005). However, the crystal structures of antipyrine derivatives influenced by the substituent groups have seldom been reported. In this paper, the crystal structures and the substituent effects of the two structurally similar title antipyrine derivatives, viz. the para-substituted compound (I) and the ortho-substituted compound (II), are reported.

The structures of (I) and (II) (Figs. 1 and 2) are analogous to those of ortho- and para-substituted (III). The bond lengths and angles in (I) and (II) are comparable to one another and to the corresponding values in (III), and all lie within normal ranges (Allen et al., 1987). The main difference between the two structures is the position of the Cl atoms. In (I), the Cl1 atom is located at the para position, and thus it cannot participate in the forming of intramolecular hydrogen bonds, while in (II), the Cl1 atom is located at the ortho position, forming an intramolecular C7—H7···Cl1 hydrogen bond (Table 1). In each of the compounds, the C7N1 bond lengths [1.276 (2) Å in (I) and 1.278 (3) Å in (II)] conform to the value for double bonds. The distance between atoms C8 and N1 [1.392 (2) Å in both (I) and (II)] is intermediate between a C—N single bond and a CN double bond length, because of conjugation effects in each of the molecules. The conjugation effects also cause the pyrazoline and C1–C6 phenyl rings to be nearly coplanar, with a mean deviation from the overall plane of 0.0672 Å in (I) and 0.1125 Å in (II). The dihedral angle between the C1–C6 phenyl ring and the pyrazoline ring is 8.7 (2)° for (I) and 13.2 (2)° for (II). The dihedral angle between the C13–C18 phenyl ring and the pyrazoline ring is 51.6 (2)° for (I) and 75.5 (2)° for (II). As expected, the molecular structures adopt trans configurations about the central CN bonds, which is also observed in (III).

In the crystal structure of (I), molecules are linked through weak C—H···O hydrogen bonds (Table 1), forming chains running along the a axis (Fig. 3). In the crystal structure of (II), molecules are linked through weak C—H···O and C—H···Cl hydrogen bonds, forming layers parallel to the ab plane (Fig. 4). The same pattern can be observed in (III), in which the ortho-positional Cl1 atom participates in the formation of intermolecular C—H···Cl hydrogen bonds, while the para-positional Cl2 atom does not participate in any hydrogen bonds.

In conclusion, in the chloro-substituted antipyrine Schiff bases, the ortho-positional Cl atom can participate in the formation of both intramolecular and intermolecular hydrogen bonds; however, the para-positional Cl atom cannot participate in any hydrogen bonds. The positions of substituent groups can significantly influence the final structures.

Experimental top

For the preparation of (I), a mixture of 4-chlorobenzylaldehyde (0.1 mmol, 14.1 mg) and 4-aminoantipyrine (0.1 mmol, 20.3 mg) were dissolved in methanol (10 ml). The mixture was stirred for about 1 h at room temperature to give a clear yellow solution. After the solution had been kept in air for 3 d, yellow prism-shaped crystals were formed. Compound (II) was prepared by a procedure similar to that described for (I), with 4-chlorobenzylaldehyde replaced by 2-chlorobenzylaldehyde (0.1 mmol, 14.1 mg). Yellow prism-shaped crystals of (II) were obtained after evaporating the solution in air for 6 d.

Refinement top

All H atoms in (I) and (II) were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å and with Uiso(H) values of 1.2 or 1.5 times Ueq(C). The Flack (1983) parameter value of (II) is based on an `on-the-cheap' refinement.

Computing details top

For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The molecular packing of (I), viewed along the a axis. Intramolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the interactions shown have been omitted.
[Figure 4] Fig. 4. The molecular packing of (II), viewed along the a axis. Intramolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the interactions shown have been omitted.
(I) 4-(4-Chlorobenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C18H16ClN3OF(000) = 1360
Mr = 325.79Dx = 1.318 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5083 reflections
a = 6.971 (1) Åθ = 2.4–24.5°
b = 17.508 (1) ŵ = 0.24 mm1
c = 26.905 (2) ÅT = 298 K
V = 3283.7 (6) Å3Prism, yellow
Z = 80.35 × 0.20 × 0.17 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3402 independent reflections
Radiation source: fine-focus sealed tube2620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.921, Tmax = 0.960k = 2121
24843 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.8176P]
where P = (Fo2 + 2Fc2)/3
3402 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H16ClN3OV = 3283.7 (6) Å3
Mr = 325.79Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.971 (1) ŵ = 0.24 mm1
b = 17.508 (1) ÅT = 298 K
c = 26.905 (2) Å0.35 × 0.20 × 0.17 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2620 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.960Rint = 0.037
24843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
3402 reflectionsΔρmin = 0.28 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66199 (12)1.04863 (5)0.28220 (2)0.0999 (3)
O10.76288 (18)0.87648 (8)0.58652 (5)0.0652 (4)
N11.0174 (2)0.88957 (8)0.49072 (5)0.0498 (4)
N21.19968 (19)0.78390 (9)0.59305 (6)0.0487 (4)
N31.02877 (19)0.81017 (9)0.61493 (5)0.0499 (4)
C10.9432 (3)0.94939 (12)0.39332 (8)0.0633 (5)
H11.06170.92610.39810.076*
C20.8964 (3)0.97778 (13)0.34713 (8)0.0708 (6)
H20.98210.97350.32080.085*
C30.7216 (3)1.01242 (12)0.34052 (8)0.0629 (5)
C40.5927 (3)1.01929 (11)0.37853 (8)0.0613 (5)
H40.47501.04310.37350.074*
C50.6408 (3)0.99016 (11)0.42441 (8)0.0566 (5)
H50.55360.99410.45050.068*
C60.8162 (3)0.95506 (10)0.43265 (7)0.0497 (4)
C70.8611 (3)0.92509 (10)0.48203 (7)0.0519 (4)
H70.77360.93210.50770.062*
C81.0520 (2)0.85825 (10)0.53743 (6)0.0449 (4)
C91.2152 (2)0.81793 (10)0.54810 (7)0.0457 (4)
C100.9273 (2)0.85325 (10)0.57957 (7)0.0481 (4)
C111.3897 (3)0.81000 (12)0.51708 (8)0.0653 (6)
H11A1.49430.83660.53260.098*
H11B1.36630.83140.48480.098*
H11C1.42170.75690.51380.098*
C121.3602 (3)0.76816 (12)0.62631 (8)0.0618 (5)
H12A1.46680.74930.60740.093*
H12B1.32260.73050.65030.093*
H12C1.39680.81430.64310.093*
C130.9352 (2)0.76378 (11)0.65078 (6)0.0506 (5)
C140.9495 (3)0.68508 (13)0.64998 (8)0.0614 (5)
H141.02400.66090.62600.074*
C150.8520 (3)0.64253 (15)0.68512 (9)0.0757 (6)
H150.86260.58960.68500.091*
C160.7401 (4)0.67757 (19)0.72015 (9)0.0833 (7)
H160.67490.64860.74370.100*
C170.7245 (3)0.75551 (19)0.72040 (8)0.0787 (7)
H170.64650.77910.74380.094*
C180.8230 (3)0.79949 (14)0.68635 (7)0.0629 (5)
H180.81410.85250.68730.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1167 (6)0.1139 (6)0.0690 (4)0.0311 (4)0.0041 (4)0.0246 (3)
O10.0394 (7)0.0882 (10)0.0679 (9)0.0190 (7)0.0047 (6)0.0037 (7)
N10.0477 (8)0.0462 (8)0.0556 (9)0.0020 (7)0.0013 (7)0.0052 (7)
N20.0323 (7)0.0569 (9)0.0570 (9)0.0057 (6)0.0007 (6)0.0049 (7)
N30.0352 (7)0.0613 (9)0.0533 (9)0.0072 (7)0.0017 (6)0.0044 (7)
C10.0553 (12)0.0663 (13)0.0683 (13)0.0135 (10)0.0039 (10)0.0063 (10)
C20.0688 (14)0.0782 (14)0.0653 (13)0.0156 (11)0.0142 (11)0.0101 (11)
C30.0744 (14)0.0557 (12)0.0586 (12)0.0086 (10)0.0033 (10)0.0041 (9)
C40.0599 (12)0.0550 (11)0.0689 (13)0.0141 (10)0.0038 (10)0.0007 (10)
C50.0559 (11)0.0547 (11)0.0593 (11)0.0071 (9)0.0044 (9)0.0050 (9)
C60.0511 (10)0.0404 (9)0.0576 (11)0.0002 (8)0.0006 (8)0.0041 (8)
C70.0492 (10)0.0488 (10)0.0576 (11)0.0010 (8)0.0020 (8)0.0052 (8)
C80.0393 (9)0.0444 (9)0.0509 (10)0.0014 (7)0.0019 (7)0.0097 (7)
C90.0380 (9)0.0433 (9)0.0557 (10)0.0023 (7)0.0013 (8)0.0116 (8)
C100.0368 (9)0.0529 (10)0.0545 (10)0.0017 (8)0.0014 (8)0.0084 (8)
C110.0496 (11)0.0704 (13)0.0759 (14)0.0078 (10)0.0144 (10)0.0046 (11)
C120.0396 (10)0.0681 (13)0.0776 (13)0.0080 (9)0.0110 (9)0.0025 (10)
C130.0349 (9)0.0726 (13)0.0442 (10)0.0017 (8)0.0052 (7)0.0052 (9)
C140.0512 (11)0.0716 (13)0.0613 (12)0.0030 (10)0.0033 (9)0.0075 (10)
C150.0619 (13)0.0842 (16)0.0809 (16)0.0115 (12)0.0040 (12)0.0097 (13)
C160.0592 (14)0.123 (2)0.0683 (15)0.0130 (15)0.0059 (11)0.0173 (15)
C170.0527 (13)0.133 (2)0.0507 (12)0.0100 (14)0.0079 (10)0.0072 (13)
C180.0500 (11)0.0891 (15)0.0496 (11)0.0115 (10)0.0022 (9)0.0114 (10)
Geometric parameters (Å, º) top
Cl1—C31.743 (2)C8—C91.369 (2)
O1—C101.230 (2)C8—C101.432 (2)
N1—C71.276 (2)C9—C111.482 (2)
N1—C81.392 (2)C11—H11A0.9600
N2—C91.353 (2)C11—H11B0.9600
N2—N31.4062 (19)C11—H11C0.9600
N2—C121.459 (2)C12—H12A0.9600
N3—C101.405 (2)C12—H12B0.9600
N3—C131.420 (2)C12—H12C0.9600
C1—C21.378 (3)C13—C141.382 (3)
C1—C61.383 (3)C13—C181.385 (3)
C1—H10.9300C14—C151.382 (3)
C2—C31.372 (3)C14—H140.9300
C2—H20.9300C15—C161.369 (3)
C3—C41.367 (3)C15—H150.9300
C4—C51.377 (3)C16—C171.369 (4)
C4—H40.9300C16—H160.9300
C5—C61.386 (3)C17—C181.380 (3)
C5—H50.9300C17—H170.9300
C6—C71.462 (3)C18—H180.9300
C7—H70.9300
C7—N1—C8120.33 (16)O1—C10—N3122.94 (17)
C9—N2—N3107.33 (13)O1—C10—C8131.75 (17)
C9—N2—C12124.78 (15)N3—C10—C8105.26 (14)
N3—N2—C12117.05 (15)C9—C11—H11A109.5
C10—N3—N2108.59 (14)C9—C11—H11B109.5
C10—N3—C13122.39 (14)H11A—C11—H11B109.5
N2—N3—C13119.12 (14)C9—C11—H11C109.5
C2—C1—C6120.84 (19)H11A—C11—H11C109.5
C2—C1—H1119.6H11B—C11—H11C109.5
C6—C1—H1119.6N2—C12—H12A109.5
C3—C2—C1119.1 (2)N2—C12—H12B109.5
C3—C2—H2120.4H12A—C12—H12B109.5
C1—C2—H2120.4N2—C12—H12C109.5
C4—C3—C2121.71 (19)H12A—C12—H12C109.5
C4—C3—Cl1118.99 (17)H12B—C12—H12C109.5
C2—C3—Cl1119.29 (17)C14—C13—C18120.11 (19)
C3—C4—C5118.54 (19)C14—C13—N3121.78 (17)
C3—C4—H4120.7C18—C13—N3118.08 (18)
C5—C4—H4120.7C13—C14—C15119.4 (2)
C4—C5—C6121.50 (19)C13—C14—H14120.3
C4—C5—H5119.2C15—C14—H14120.3
C6—C5—H5119.2C16—C15—C14120.6 (2)
C1—C6—C5118.28 (18)C16—C15—H15119.7
C1—C6—C7122.15 (17)C14—C15—H15119.7
C5—C6—C7119.56 (17)C15—C16—C17119.7 (2)
N1—C7—C6121.61 (17)C15—C16—H16120.2
N1—C7—H7119.2C17—C16—H16120.2
C6—C7—H7119.2C16—C17—C18120.9 (2)
C9—C8—N1122.42 (16)C16—C17—H17119.5
C9—C8—C10107.88 (16)C18—C17—H17119.5
N1—C8—C10129.34 (16)C17—C18—C13119.2 (2)
N2—C9—C8110.38 (15)C17—C18—H18120.4
N2—C9—C11121.85 (16)C13—C18—H18120.4
C8—C9—C11127.76 (18)
C9—N2—N3—C107.73 (18)C10—C8—C9—N23.35 (19)
C12—N2—N3—C10153.86 (16)N1—C8—C9—C119.8 (3)
C9—N2—N3—C13154.27 (15)C10—C8—C9—C11176.47 (17)
C12—N2—N3—C1359.6 (2)N2—N3—C10—O1171.89 (17)
C6—C1—C2—C30.4 (3)C13—N3—C10—O126.7 (3)
C1—C2—C3—C40.2 (4)N2—N3—C10—C85.59 (18)
C1—C2—C3—Cl1179.85 (18)C13—N3—C10—C8150.81 (16)
C2—C3—C4—C50.3 (3)C9—C8—C10—O1175.67 (19)
Cl1—C3—C4—C5179.69 (16)N1—C8—C10—O12.5 (3)
C3—C4—C5—C60.6 (3)C9—C8—C10—N31.50 (19)
C2—C1—C6—C50.1 (3)N1—C8—C10—N3174.66 (16)
C2—C1—C6—C7179.63 (19)C10—N3—C13—C14112.9 (2)
C4—C5—C6—C10.4 (3)N2—N3—C13—C1428.9 (2)
C4—C5—C6—C7179.89 (18)C10—N3—C13—C1865.3 (2)
C8—N1—C7—C6176.68 (15)N2—N3—C13—C18152.91 (16)
C1—C6—C7—N12.7 (3)C18—C13—C14—C150.4 (3)
C5—C6—C7—N1177.04 (17)N3—C13—C14—C15178.59 (18)
C7—N1—C8—C9178.21 (16)C13—C14—C15—C160.8 (3)
C7—N1—C8—C105.9 (3)C14—C15—C16—C170.0 (4)
N3—N2—C9—C86.84 (19)C15—C16—C17—C181.2 (4)
C12—N2—C9—C8149.65 (17)C16—C17—C18—C131.6 (3)
N3—N2—C9—C11173.00 (16)C14—C13—C18—C170.7 (3)
C12—N2—C9—C1130.2 (3)N3—C13—C18—C17177.48 (17)
N1—C8—C9—N2170.39 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.433.219 (2)143
C7—H7···O10.932.333.016 (2)130
C11—H11A···O1ii0.962.473.407 (5)165
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.
(II) 4-(2-chlorobenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C18H16ClN3OF(000) = 680
Mr = 325.79Dx = 1.317 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4187 reflections
a = 6.848 (1) Åθ = 2.3–24.3°
b = 13.654 (2) ŵ = 0.24 mm1
c = 17.567 (2) ÅT = 298 K
V = 1642.6 (4) Å3Prism, yellow
Z = 40.25 × 0.18 × 0.18 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3377 independent reflections
Radiation source: fine-focus sealed tube2979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 87
Tmin = 0.942, Tmax = 0.958k = 1717
11680 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.2996P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.29 e Å3
3377 reflectionsΔρmin = 0.25 e Å3
211 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.043 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1415 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (10)
Crystal data top
C18H16ClN3OV = 1642.6 (4) Å3
Mr = 325.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.848 (1) ŵ = 0.24 mm1
b = 13.654 (2) ÅT = 298 K
c = 17.567 (2) Å0.25 × 0.18 × 0.18 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3377 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2979 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.958Rint = 0.026
11680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.29 e Å3
S = 1.04Δρmin = 0.25 e Å3
3377 reflectionsAbsolute structure: Flack (1983), 1415 Friedel pairs
211 parametersAbsolute structure parameter: 0.01 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51175 (17)0.34774 (7)0.23537 (7)0.1339 (5)
O10.7916 (2)0.09926 (11)0.35265 (10)0.0628 (4)
N11.0447 (3)0.29069 (11)0.36027 (10)0.0499 (4)
N21.2339 (3)0.07475 (13)0.44531 (10)0.0522 (4)
N31.0634 (2)0.03550 (12)0.41396 (10)0.0518 (4)
C10.6710 (4)0.43838 (18)0.26717 (14)0.0643 (6)
C20.6187 (4)0.5352 (2)0.25421 (14)0.0710 (7)
H20.50140.55020.23020.085*
C30.7411 (5)0.60775 (19)0.27698 (14)0.0735 (8)
H30.70780.67290.26850.088*
C40.9136 (5)0.58507 (19)0.31242 (16)0.0759 (8)
H40.99750.63500.32750.091*
C50.9633 (4)0.48913 (16)0.32579 (14)0.0660 (6)
H51.08050.47510.35020.079*
C60.8419 (4)0.41237 (16)0.30363 (12)0.0525 (5)
C70.8915 (4)0.31063 (15)0.32170 (12)0.0548 (5)
H70.81090.26020.30500.066*
C81.0818 (3)0.19456 (14)0.38230 (11)0.0462 (5)
C90.9576 (3)0.11015 (14)0.37798 (11)0.0480 (5)
C101.2474 (3)0.16885 (15)0.42139 (11)0.0481 (5)
C111.4217 (4)0.22941 (18)0.43757 (16)0.0695 (7)
H11A1.45250.22550.49080.104*
H11B1.39550.29630.42410.104*
H11C1.53020.20570.40830.104*
C121.3986 (3)0.00933 (18)0.45745 (15)0.0660 (6)
H12A1.44100.01670.40940.099*
H12B1.35960.04340.49020.099*
H12C1.50380.04490.48070.099*
C130.9699 (3)0.04389 (14)0.45148 (12)0.0484 (5)
C140.9714 (3)0.05216 (16)0.52989 (13)0.0587 (5)
H141.03780.00650.55940.070*
C150.8734 (4)0.12879 (18)0.56389 (15)0.0681 (7)
H150.87450.13510.61660.082*
C160.7742 (4)0.19594 (18)0.52028 (17)0.0722 (7)
H160.70770.24730.54350.087*
C170.7732 (4)0.18725 (17)0.44238 (16)0.0702 (7)
H170.70500.23240.41300.084*
C180.8727 (3)0.11203 (15)0.40760 (14)0.0595 (6)
H180.87430.10710.35480.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1217 (8)0.0993 (6)0.1807 (10)0.0330 (5)0.0983 (8)0.0483 (6)
O10.0423 (9)0.0624 (9)0.0838 (11)0.0041 (7)0.0165 (8)0.0131 (8)
N10.0490 (10)0.0496 (9)0.0512 (9)0.0013 (8)0.0011 (8)0.0005 (7)
N20.0369 (9)0.0575 (10)0.0621 (10)0.0010 (8)0.0053 (8)0.0025 (8)
N30.0394 (9)0.0526 (9)0.0633 (10)0.0017 (8)0.0075 (8)0.0057 (8)
C10.0632 (15)0.0681 (15)0.0616 (13)0.0051 (12)0.0120 (12)0.0163 (11)
C20.0761 (17)0.0809 (17)0.0561 (13)0.0180 (14)0.0031 (13)0.0176 (12)
C30.104 (2)0.0562 (13)0.0606 (14)0.0226 (15)0.0079 (15)0.0048 (11)
C40.093 (2)0.0523 (13)0.0820 (17)0.0015 (14)0.0043 (16)0.0003 (12)
C50.0673 (16)0.0556 (12)0.0753 (14)0.0015 (12)0.0073 (13)0.0005 (11)
C60.0577 (13)0.0513 (11)0.0485 (11)0.0005 (10)0.0021 (10)0.0046 (9)
C70.0571 (13)0.0522 (12)0.0553 (11)0.0049 (10)0.0060 (10)0.0053 (9)
C80.0422 (11)0.0490 (10)0.0472 (10)0.0006 (8)0.0006 (8)0.0033 (8)
C90.0398 (11)0.0518 (11)0.0523 (11)0.0001 (9)0.0015 (9)0.0041 (9)
C100.0425 (11)0.0543 (11)0.0474 (10)0.0015 (9)0.0013 (9)0.0061 (9)
C110.0529 (15)0.0749 (15)0.0807 (16)0.0108 (12)0.0139 (12)0.0040 (13)
C120.0443 (13)0.0746 (15)0.0789 (16)0.0108 (11)0.0096 (11)0.0122 (12)
C130.0346 (10)0.0485 (10)0.0620 (12)0.0066 (9)0.0028 (9)0.0057 (9)
C140.0519 (13)0.0599 (13)0.0645 (13)0.0005 (11)0.0013 (11)0.0011 (10)
C150.0604 (15)0.0753 (15)0.0687 (14)0.0017 (13)0.0056 (12)0.0141 (12)
C160.0526 (14)0.0620 (14)0.102 (2)0.0066 (11)0.0037 (14)0.0226 (13)
C170.0602 (15)0.0563 (13)0.0940 (18)0.0062 (12)0.0120 (14)0.0008 (13)
C180.0527 (13)0.0565 (12)0.0692 (14)0.0004 (11)0.0067 (11)0.0001 (11)
Geometric parameters (Å, º) top
Cl1—C11.742 (3)C8—C101.372 (3)
O1—C91.230 (2)C8—C91.434 (3)
N1—C71.278 (3)C10—C111.480 (3)
N1—C81.392 (2)C11—H11A0.9600
N2—C101.355 (3)C11—H11B0.9600
N2—N31.398 (2)C11—H11C0.9600
N2—C121.454 (3)C12—H12A0.9600
N3—C91.401 (2)C12—H12B0.9600
N3—C131.421 (3)C12—H12C0.9600
C1—C61.381 (3)C13—C181.380 (3)
C1—C21.389 (3)C13—C141.382 (3)
C2—C31.358 (4)C14—C151.379 (3)
C2—H20.9300C14—H140.9300
C3—C41.371 (4)C15—C161.375 (4)
C3—H30.9300C15—H150.9300
C4—C51.374 (3)C16—C171.374 (4)
C4—H40.9300C16—H160.9300
C5—C61.393 (3)C17—C181.376 (3)
C5—H50.9300C17—H170.9300
C6—C71.465 (3)C18—H180.9300
C7—H70.9300
C7—N1—C8119.87 (18)N2—C10—C8109.97 (18)
C10—N2—N3107.36 (16)N2—C10—C11121.7 (2)
C10—N2—C12125.09 (19)C8—C10—C11128.3 (2)
N3—N2—C12118.05 (17)C10—C11—H11A109.5
N2—N3—C9109.31 (15)C10—C11—H11B109.5
N2—N3—C13119.07 (16)H11A—C11—H11B109.5
C9—N3—C13122.11 (16)C10—C11—H11C109.5
C6—C1—C2122.7 (2)H11A—C11—H11C109.5
C6—C1—Cl1119.79 (18)H11B—C11—H11C109.5
C2—C1—Cl1117.6 (2)N2—C12—H12A109.5
C3—C2—C1119.2 (2)N2—C12—H12B109.5
C3—C2—H2120.4H12A—C12—H12B109.5
C1—C2—H2120.4N2—C12—H12C109.5
C2—C3—C4120.1 (2)H12A—C12—H12C109.5
C2—C3—H3120.0H12B—C12—H12C109.5
C4—C3—H3120.0C18—C13—C14120.3 (2)
C3—C4—C5120.4 (3)C18—C13—N3118.21 (19)
C3—C4—H4119.8C14—C13—N3121.43 (19)
C5—C4—H4119.8C15—C14—C13119.4 (2)
C4—C5—C6121.5 (3)C15—C14—H14120.3
C4—C5—H5119.3C13—C14—H14120.3
C6—C5—H5119.3C16—C15—C14120.4 (2)
C1—C6—C5116.2 (2)C16—C15—H15119.8
C1—C6—C7122.8 (2)C14—C15—H15119.8
C5—C6—C7121.0 (2)C17—C16—C15120.0 (2)
N1—C7—C6120.5 (2)C17—C16—H16120.0
N1—C7—H7119.8C15—C16—H16120.0
C6—C7—H7119.8C16—C17—C18120.3 (2)
C10—C8—N1122.10 (18)C16—C17—H17119.8
C10—C8—C9108.13 (17)C18—C17—H17119.8
N1—C8—C9129.41 (18)C17—C18—C13119.6 (2)
O1—C9—N3123.58 (18)C17—C18—H18120.2
O1—C9—C8131.63 (19)C13—C18—H18120.2
N3—C9—C8104.73 (16)
C10—N2—N3—C97.5 (2)C10—C8—C9—O1175.3 (2)
C12—N2—N3—C9155.6 (2)N1—C8—C9—O12.1 (4)
C10—N2—N3—C13154.52 (18)C10—C8—C9—N31.9 (2)
C12—N2—N3—C1357.4 (3)N1—C8—C9—N3175.07 (19)
C6—C1—C2—C31.1 (4)N3—N2—C10—C86.2 (2)
Cl1—C1—C2—C3178.8 (2)C12—N2—C10—C8151.4 (2)
C1—C2—C3—C40.1 (4)N3—N2—C10—C11173.61 (19)
C2—C3—C4—C50.6 (4)C12—N2—C10—C1128.4 (3)
C3—C4—C5—C60.4 (4)N1—C8—C10—N2171.09 (18)
C2—C1—C6—C51.3 (4)C9—C8—C10—N22.7 (2)
Cl1—C1—C6—C5178.63 (19)N1—C8—C10—C119.1 (3)
C2—C1—C6—C7176.0 (2)C9—C8—C10—C11177.1 (2)
Cl1—C1—C6—C74.1 (3)N2—N3—C13—C18147.86 (19)
C4—C5—C6—C10.5 (4)C9—N3—C13—C1869.4 (3)
C4—C5—C6—C7176.8 (2)N2—N3—C13—C1433.7 (3)
C8—N1—C7—C6174.81 (19)C9—N3—C13—C14109.0 (2)
C1—C6—C7—N1175.0 (2)C18—C13—C14—C150.5 (3)
C5—C6—C7—N12.1 (3)N3—C13—C14—C15177.93 (19)
C7—N1—C8—C10177.7 (2)C13—C14—C15—C160.4 (4)
C7—N1—C8—C910.0 (3)C14—C15—C16—C170.4 (4)
N2—N3—C9—O1171.8 (2)C15—C16—C17—C180.6 (4)
C13—N3—C9—O125.9 (3)C16—C17—C18—C131.5 (4)
N2—N3—C9—C85.7 (2)C14—C13—C18—C171.4 (3)
C13—N3—C9—C8151.56 (18)N3—C13—C18—C17177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.573.491 (3)172
C3—H3···Cl1i0.932.823.713 (3)161
C7—H7···Cl10.932.673.053 (3)106
C7—H7···O10.932.353.015 (3)128
C11—H11C···O1ii0.962.503.435 (3)163
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H16ClN3OC18H16ClN3O
Mr325.79325.79
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, P212121
Temperature (K)298298
a, b, c (Å)6.971 (1), 17.508 (1), 26.905 (2)6.848 (1), 13.654 (2), 17.567 (2)
V3)3283.7 (6)1642.6 (4)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.240.24
Crystal size (mm)0.35 × 0.20 × 0.170.25 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Bruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.921, 0.9600.942, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
24843, 3402, 2620 11680, 3377, 2979
Rint0.0370.026
(sin θ/λ)max1)0.6280.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.04 0.042, 0.107, 1.04
No. of reflections34023377
No. of parameters210211
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.280.29, 0.25
Absolute structure?Flack (1983), 1415 Friedel pairs
Absolute structure parameter?0.01 (10)

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2002), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002), SHELXTL.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.433.219 (2)143
C7—H7···O10.932.333.016 (2)130
C11—H11A···O1ii0.962.473.407 (5)165
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.573.491 (3)172
C3—H3···Cl1i0.932.823.713 (3)161
C7—H7···Cl10.932.673.053 (3)106
C7—H7···O10.932.353.015 (3)128
C11—H11C···O1ii0.962.503.435 (3)163
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds