Download citation
Download citation
link to html
The mol­ecular structures of the complexes imidazolium 6,6'-di-tert-butyl-4,4'-dimethyl-2,2'-thio­diphenyl phosphate, C3H5N2+·C22H28O4PS-, (I), and imidazolium 6,6'-di-tert-butyl-4,4'-dimethyl-2,2'-thio­diphenyl phosphate diisopropyl hydrazo­dicarboxyl­ate hemisolvate, C3H5N2+·C22H28O4PS-·0.5C8H16N2O4, (II), have been determined. While (I) forms the expected hydrogen-bonded chain utilizing the two imidazole N-bound H atoms, in (II), the substituted hydrazine solvent mol­ecule inserts itself between the chains. Compound (I) exhibits a strong N-H...O hydrogen bond, with an N...O distance of 2.603 (2) Å. The hydrazine solvent molecule in (II) lies about a twofold axis and the N-bound H atoms are involved in bifurcated hydrogen bonds with phosphate O atoms. A C-bound H atom of the imidazolium cation is involved in a C-H...O inter­action with a carbonyl O atom of the hydrazine solvent mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105031744/sk1869sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105031744/sk1869Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105031744/sk1869IIsup3.hkl
Contains datablock II

CCDC references: 290584; 290585

Comment top

The imidazolium moiety of the hystidine residue plays an important role in the hydrolysis and cyclization of RNA-related biomolecules (Perreault & Anslyn, 1997). In previous reports of the imidazolium salts of diorganophosphates (Holmes et al., 1992; Clark et al., 1984; Blessing & McGandy, 1972), there were no additional guest molecules except in the salt reported by Kumara Swamy et al. (2001). In the latter salt, a hydrogen-bonded methanol molecule exhibiting C—H···O interactions with the imidazolyl CH located in between the two N atoms was included as a guest. We report here the X-ray structures of two imidazolyl compounds, imidazolium 6,6'-di-tert-butyl-4,4'-dimethyl-2,2'-thiodiphenylphosphate, [{S(6 - tBu-4-Me—C6H2O)2}P(O)(O)][C3N2H5], (I), and imidazolium 6,6'-di-tert-butyl-4,4'-dimethyl-2,2'-thiodiphenylphosphate diisopropyl hydrazodicarboxylate hemisolvate, [{S(6 - tBu-4-Me—C6H2O)2}P(O)(O)] [C3N2H5][(CH3)2CHO(O)CN(H)—N(H)(C(O)O(CH(CH3)2)], (II), the latter containing the carboxylate-substituted hydrazine as a hydrogen-bonded guest. Compounds (I) and (II) were obtained in the reaction of [{S(6 - tBu-4-Me—C6H2O)2}PCl[N(C(O)O(CH(CH3)2)N—C(OCH(CH3)2O–] with imidazole in the presence of adventitious moisture. Compound (I) was also obtained by the direct route by treating the in situ prepared phosphate with imidazole.

The structures of (I) and (II) are shown in Figs. 1 and 2, respectively. The P—O bond distances in both compounds are in the expected range (Kumara Swamy et al., 2001, Kumaraswamy & Kumara Swamy, 2002). The eight-membered phosphocin ring has a boat–chair conformation. This situation is similar to that in the salts and methanol/ethanol solvates of [{CH2(6 - tBu-4-Me—C6H2O)2}P(O)(OH)] (Kumara Swamy et al., 2001), but unlike the tub conformation observed by Holmes et al. (1992) for the phosphate salt [{S(6- tBu-4-Me—C6H2O)2}P(O)(O)][{HOC6H2-2,4-(CH3)2-6- CH2}2N(CH3)H], (III) (Chandrasekaran et al., 1999). Perhaps as a consequence, the P···S distance of 3.58 Å in (I) and (II) is close to the sum of van der Waals radii (3.65 Å), with essentially no sulfur-to-phosphorus interaction. In (III), by contrast, the P···S distance was 3.281 (2) Å. This feature shows that the sulfur donor action in these phosphate salts is case sensitive and could depend on the nature of hydrogen-bonding interactions involving the cation.

In (I), hydrogen bonding (Fig. 1b) leads to the formation of a chain utilizing the H atoms on the two imidazolyl N atoms and the two phosphate O atoms. This type of chain appears to be common for the imidazolyl salts of diorganophosphates (Holmes et al., 1992, Clark et al., 1984, Blessing & McGandy, 1972, Kumara Swamy et al., 2001). The same type of chain is also present in (II), but in addition, one of the phosphoryl O atoms is involved in `bifurcated' hydrogen bonding, with additional interaction from the N-bound H atoms of the substituted hydrazine residue. These interactions lead to a `ladder' type of structure, as shown in Fig. 2(b). The hydrogen-bond angles involving the phosphoryl O atom in the bifurcated hydrogen bonds in (II) are less linear than that at the corresponding O atom (O3) in (I), as expected. Accordingly, the O···N(imidazolyl) distance in (II) is also lower than that in (I). We made an attempt to incorporate dimethyl maleate (MeO2CCHCHCO2Me) in place of the substituted hydrazine, but no insertion took place.

Among the imidazolium salts of diorganophosphates, the N(—H)···O distances in (I) are the shortest; the N2···O3 distance of 2.603 (2) Å is at the lower end for such hydrogen bonds (Kumara Swamy et al., 2001) and hence comes under the category of very stong N—H···O hydrogen bonds. Since such strong hydrogen bonds were also observed by us in the salts of the analogous organophosphate, [{CH2(6 - tBu-4-Me—C6H2O)2}P(O)(OH)] (Kumara Swamy et al., 2001), we think that this feature is the result of the 1,3,2-dioxaphosphocin ring present in these compounds.

Although there is no significant interaction of the NCHN H atom with acceptor sites in I, there is one such interaction in (II), involving the carbonyl O atom of the substituted hydrazine and the NCHN H atom in (II). The C···O distance is short [2.980 (3) Å] and is comparable to that known for strong C—H···O hydrogen bonds (Kumara Swamy et al., 2001; Kariuki et al., 1997); the angle at the H atom, however, is quite far from linearity and the H···O distance is 2.30 Å. This `non-innocent' behaviour of the imidazolyl NCHN H atom has been reported previously (Steiner, 1997; Kumara Swamy et al., 2001). Such a feature may have some implications as regards the hydrolysis of RNA where the hystidine residue comes close to the active phosphorus site, perhaps with the NCHN H atom interacting with the ribosolyl O atom as pointed out previously by us (Kumara Swamy et al., 2001). This could `lock' the imidazolyl residue until the hydrolysis is complete. Substantiation of this hypothesis would require more structural studies, preferably containing hystidine itself.

Experimental top

For the preparation of (I), the phosphate S{(6 - tBu-4-Me—C6H2O)2}P(O)OH (m.p. > 523 K; Chandrasekaran et al., 1999) was prepared by a procedure similar to that used to prepare CH2{(6 - tBu-4-Me—C6H2O)2}P(O)OH (Kumara Swamy et al., 2001). The phosphate (0.2 g, 0.4 mmol) was dissolved in chloroform (5 ml), and imidazole (0.032 g, 0.4 mmol) in chloroform (2 ml) was added slowly to obtain a clear solution followed by (immediate) crystallization of (I). A small amount (ca 5%) of the same compound also crystallized along with (II). M.p. > 543 K. IR (Nujol mull, cm−1): 3158 (sharp), 1460, 1253. 1H NMR (400 MHz, DMSO-d6, p.p.m.): 1.35 (s, 18H, tBu—H), 2.19 (s, 6H, Ar—CH3), 7.08, 7.29, 7.46 (s each, 6H, Ar—H + imidazolyl-H), 8.71 (s, 1H, imidazolyl-H). The signals for imidazolyl N-bound H atoms were very broad. The solubility was too low for recording a satisfactory 13C NMR spectrum. 31P NMR (160 MHz, DMSO-d6, p.p.m.): −10.6. For the preparation of (II), to a stirred solution S{(6 - tBu-4-Me—C6H2O)2}PCl (0.92 g, 2.2 mmol) in toluene, diisopropyl azodicarboxylate (0.45 g, 2.2 mmol) was added dropwise at 195 K and the contents were stirred overnight. Imidazole (0.15 g, 2.2 mmol) and triethylamine (0.22 g, 2.2 mmol) in toluene (5 ml) were then added. The mixture was stirred for a further 12 h and then filtered, and the solvent was evaporated in vacuo. The residue upon crystallization from dichloromethane–hexane mixture in air yielded compound (II) [0.3 g, 21.4%; a small quantity of (I) also crystallized, which could be separated by hand-picking]. M.p. 464–466 K (charring). IR (Nujol mull, cm−1): 3223 (br), 3152, 1732, 1711, 1464, 1256. 1H NMR (400 MHz, DMSO-d6, p.p.m.): 1.15 {d, 3J(HH) = 5.2 Hz, 12H, [CH(CH3)2]}, 1.34 (s, 18H, tBu—H), 2.18 (s, 6H, Ar—CH3), 2.48 (s, 2H, N—H), 4.74 [m, 2H, CH(CH3)2], 7.07 and 7.45 (s each, 5H, Ar—H + imidazolyl-H), 8.65 and 8.84 (s each, 2H, imidazolyl-H). The signals for imidazolyl N-bound H atoms were very broad. The solubility was too low for recording a satisfactory 13C NMR spectrum. 31P NMR (160 MHz, DMSO-d6, p.p.m.): −10.5.

Refinement top

The N-bound H atom of the hydrazine residue in (II) was located in a difference Fourier map and refined isotropically. All other H atoms were placed geometrically and refined using a riding model, with C—H distances constrained to 0.98 Å (methine), 0.96 Å (CH3) and 0.93 Å (aromatic), N—H distances constrained to 0.86 Å (imidazolyl), and Uiso(H) values of 1.5Ueq(C) for methyl groups and 1.2Ueq(C,N) otherwise. Compound (I) is not chiral but crystallized in a non-centrosymmetric space group and hence the absolute configuration for this structure is not relevant.

Computing details top

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Sheldrick, 1999); software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. (a) The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 35% probability level. (b) The hydrogen-bonding scheme.
[Figure 2] Fig. 2. (a) The molecular structure of (II), showing the atom-numbering scheme and displacement ellipsoids at the 35% probability level. (b) The hydrogen-bonding scheme.
(I) 6,6'-di-tert-butyl-4,4'-dimethyl-2,2'-thiodiphenylphosphate top
Crystal data top
C3H5N2+·C22H28O4PSF(000) = 1040
Mr = 488.56Dx = 1.271 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C-2ycCell parameters from 3061 reflections
a = 7.6466 (6) Åθ = 2.5–24.6°
b = 17.0714 (12) ŵ = 0.22 mm1
c = 19.7596 (14) ÅT = 295 K
β = 98.060 (1)°Needle, colorless
V = 2553.9 (3) Å30.44 × 0.30 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5940 independent reflections
Radiation source: fine-focus sealed tube4683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.762, Tmax = 0.953k = 2121
14692 measured reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.032
5940 reflectionsΔρmax = 0.29 e Å3
306 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 2760 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (5)
Crystal data top
C3H5N2+·C22H28O4PSV = 2553.9 (3) Å3
Mr = 488.56Z = 4
Monoclinic, CcMo Kα radiation
a = 7.6466 (6) ŵ = 0.22 mm1
b = 17.0714 (12) ÅT = 295 K
c = 19.7596 (14) Å0.44 × 0.30 × 0.22 mm
β = 98.060 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5940 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4683 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.953Rint = 0.035
14692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.29 e Å3
S = 0.93Δρmin = 0.22 e Å3
5940 reflectionsAbsolute structure: Flack (1983), 2760 Friedel pairs
306 parametersAbsolute structure parameter: 0.00 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.54345 (7)0.37182 (3)0.37566 (3)0.03995 (14)
S10.74489 (7)0.54321 (4)0.45742 (3)0.05102 (16)
O10.5406 (2)0.39253 (9)0.45487 (7)0.0433 (4)
O20.71946 (19)0.41194 (8)0.35522 (8)0.0446 (4)
O30.3879 (2)0.40643 (8)0.33437 (8)0.0458 (4)
O40.5756 (2)0.28704 (8)0.37459 (9)0.0558 (4)
C10.4506 (3)0.45625 (12)0.47710 (10)0.0390 (5)
C20.2920 (3)0.44438 (13)0.50417 (11)0.0400 (5)
C30.2108 (3)0.51174 (13)0.52571 (11)0.0440 (5)
H30.10450.50600.54300.053*
C40.2800 (3)0.58665 (13)0.52265 (12)0.0473 (6)
C50.4402 (3)0.59468 (13)0.49905 (12)0.0448 (5)
H50.49180.64400.49840.054*
C60.5254 (3)0.53035 (13)0.47624 (10)0.0406 (5)
C70.2108 (4)0.36348 (14)0.51318 (13)0.0513 (6)
C80.0495 (4)0.36733 (15)0.55093 (16)0.0656 (8)
H8A0.04140.39780.52480.098*
H8B0.08230.39130.59480.098*
H8C0.00650.31530.55690.098*
C90.3492 (4)0.31146 (19)0.55626 (19)0.0916 (12)
H9A0.29730.26170.56440.137*
H9B0.38820.33670.59920.137*
H9C0.44820.30360.53210.137*
C100.1470 (5)0.32512 (19)0.44296 (16)0.0885 (11)
H10A0.08460.27760.44970.133*
H10B0.24720.31340.42040.133*
H10C0.06990.36060.41540.133*
C110.1837 (4)0.65727 (15)0.54510 (17)0.0682 (8)
H11A0.23920.70420.53190.102*
H11B0.18770.65640.59390.102*
H11C0.06290.65610.52380.102*
C120.7244 (3)0.55170 (13)0.36694 (11)0.0418 (5)
C130.7307 (3)0.62591 (14)0.33836 (14)0.0494 (6)
H130.72930.66980.36620.059*
C140.7390 (3)0.63567 (14)0.27041 (13)0.0501 (6)
C150.7475 (3)0.56845 (14)0.23111 (13)0.0489 (6)
H150.75760.57480.18510.059*
C160.7419 (3)0.49255 (13)0.25613 (11)0.0423 (5)
C170.7243 (3)0.48561 (12)0.32548 (11)0.0391 (5)
C180.7612 (3)0.42223 (13)0.20911 (12)0.0468 (6)
C190.5869 (4)0.37666 (17)0.19470 (14)0.0664 (7)
H19A0.60130.33320.16510.100*
H19B0.49580.41060.17300.100*
H19C0.55450.35760.23690.100*
C200.9089 (4)0.36765 (17)0.24109 (15)0.0686 (8)
H20A1.01680.39680.25120.103*
H20B0.92480.32630.20960.103*
H20C0.87780.34560.28250.103*
C210.8091 (5)0.44871 (18)0.13963 (15)0.0773 (9)
H21A0.92080.47530.14640.116*
H21B0.71960.48360.11810.116*
H21C0.81670.40380.11100.116*
C220.7438 (4)0.71533 (15)0.23820 (16)0.0699 (8)
H22A0.63260.72560.21060.105*
H22B0.83650.71690.21010.105*
H22C0.76550.75440.27340.105*
N10.6800 (3)0.16290 (12)0.31256 (11)0.0562 (5)
H1N0.64160.20450.33010.067*
N20.7631 (3)0.04499 (11)0.30055 (11)0.0521 (5)
H2N0.78820.00340.30900.063*
C230.7004 (3)0.09434 (16)0.34190 (13)0.0581 (7)
H230.67450.08240.38530.070*
C240.7295 (4)0.15700 (16)0.25018 (15)0.0676 (8)
H240.72790.19690.21810.081*
C250.7813 (4)0.08324 (16)0.24281 (15)0.0623 (7)
H250.82240.06220.20460.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0516 (3)0.0315 (3)0.0386 (3)0.0089 (3)0.0128 (2)0.0005 (2)
S10.0421 (3)0.0654 (4)0.0461 (3)0.0048 (3)0.0080 (2)0.0148 (3)
O10.0521 (9)0.0392 (8)0.0405 (9)0.0136 (7)0.0129 (7)0.0015 (6)
O20.0494 (9)0.0400 (9)0.0467 (9)0.0102 (7)0.0143 (7)0.0009 (7)
O30.0539 (10)0.0391 (8)0.0451 (9)0.0034 (7)0.0090 (7)0.0027 (7)
O40.0789 (12)0.0356 (8)0.0577 (10)0.0134 (8)0.0261 (9)0.0029 (8)
C10.0448 (12)0.0416 (12)0.0308 (11)0.0113 (10)0.0058 (9)0.0046 (9)
C20.0449 (12)0.0389 (12)0.0370 (11)0.0058 (9)0.0080 (9)0.0003 (9)
C30.0431 (13)0.0440 (13)0.0467 (13)0.0044 (10)0.0132 (10)0.0052 (10)
C40.0500 (14)0.0418 (13)0.0511 (14)0.0046 (10)0.0098 (11)0.0115 (10)
C50.0500 (13)0.0375 (12)0.0481 (13)0.0028 (10)0.0104 (10)0.0094 (10)
C60.0382 (11)0.0472 (13)0.0370 (12)0.0016 (10)0.0077 (9)0.0073 (10)
C70.0633 (15)0.0414 (13)0.0544 (14)0.0046 (11)0.0260 (12)0.0014 (11)
C80.0722 (19)0.0532 (16)0.0766 (19)0.0003 (13)0.0286 (15)0.0053 (14)
C90.097 (3)0.068 (2)0.120 (3)0.0305 (18)0.051 (2)0.0466 (19)
C100.121 (3)0.073 (2)0.080 (2)0.047 (2)0.044 (2)0.0231 (17)
C110.0605 (17)0.0520 (15)0.096 (2)0.0081 (13)0.0245 (16)0.0220 (15)
C120.0366 (12)0.0474 (13)0.0427 (13)0.0007 (10)0.0106 (9)0.0065 (10)
C130.0429 (13)0.0397 (13)0.0662 (16)0.0009 (10)0.0106 (11)0.0116 (11)
C140.0444 (13)0.0423 (13)0.0627 (16)0.0004 (10)0.0038 (11)0.0011 (11)
C150.0489 (14)0.0485 (14)0.0491 (14)0.0012 (10)0.0060 (11)0.0054 (11)
C160.0405 (12)0.0427 (13)0.0449 (13)0.0032 (10)0.0100 (10)0.0028 (10)
C170.0346 (11)0.0385 (11)0.0453 (13)0.0041 (9)0.0095 (9)0.0006 (9)
C180.0565 (14)0.0440 (13)0.0424 (13)0.0002 (11)0.0156 (11)0.0048 (10)
C190.0734 (18)0.0698 (18)0.0586 (17)0.0136 (15)0.0178 (14)0.0209 (13)
C200.0727 (19)0.0664 (19)0.0684 (18)0.0209 (15)0.0166 (15)0.0147 (14)
C210.114 (3)0.0676 (19)0.0580 (17)0.0056 (17)0.0398 (17)0.0084 (14)
C220.079 (2)0.0424 (15)0.086 (2)0.0007 (13)0.0037 (15)0.0074 (14)
N10.0596 (13)0.0456 (12)0.0624 (14)0.0178 (10)0.0051 (11)0.0119 (10)
N20.0560 (13)0.0370 (11)0.0603 (13)0.0115 (9)0.0025 (10)0.0022 (9)
C230.0669 (17)0.0590 (16)0.0471 (14)0.0184 (13)0.0034 (12)0.0003 (13)
C240.085 (2)0.0488 (15)0.0744 (19)0.0150 (14)0.0312 (16)0.0095 (13)
C250.0752 (18)0.0525 (16)0.0628 (17)0.0160 (13)0.0217 (14)0.0048 (13)
Geometric parameters (Å, º) top
P1—O31.4687 (16)C12—C171.394 (3)
P1—O41.4688 (15)C13—C141.363 (3)
P1—O11.6077 (15)C13—H130.9300
P1—O21.6112 (16)C14—C151.392 (3)
S1—C121.779 (2)C14—C221.504 (3)
S1—C61.783 (2)C15—C161.390 (3)
O1—C11.391 (2)C15—H150.9300
O2—C171.391 (2)C16—C171.401 (3)
C1—C61.389 (3)C16—C181.538 (3)
C1—C21.407 (3)C18—C201.531 (4)
C2—C31.401 (3)C18—C191.535 (4)
C2—C71.535 (3)C18—C211.537 (4)
C3—C41.389 (3)C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.377 (3)C19—H19C0.9600
C4—C111.512 (3)C20—H20A0.9600
C5—C61.384 (3)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
C7—C81.529 (4)C21—H21A0.9600
C7—C91.543 (4)C21—H21B0.9600
C7—C101.550 (4)C21—H21C0.9600
C8—H8A0.9600C22—H22A0.9600
C8—H8B0.9600C22—H22B0.9600
C8—H8C0.9600C22—H22C0.9600
C9—H9A0.9600N1—C231.306 (3)
C9—H9B0.9600N1—C241.343 (3)
C9—H9C0.9600N1—H1N0.8600
C10—H10A0.9600N2—C231.310 (3)
C10—H10B0.9600N2—C251.339 (3)
C10—H10C0.9600N2—H2N0.8600
C11—H11A0.9600C23—H230.9300
C11—H11B0.9600C24—C251.334 (4)
C11—H11C0.9600C24—H240.9300
C12—C131.391 (3)C25—H250.9300
O3—P1—O4120.85 (10)C14—C13—C12121.4 (2)
O3—P1—O1109.38 (9)C14—C13—H13119.3
O4—P1—O1104.82 (9)C12—C13—H13119.3
O3—P1—O2109.24 (9)C13—C14—C15117.5 (2)
O4—P1—O2105.53 (9)C13—C14—C22122.3 (2)
O1—P1—O2106.03 (9)C15—C14—C22120.2 (2)
C12—S1—C6105.47 (10)C16—C15—C14124.3 (2)
C1—O1—P1123.66 (13)C16—C15—H15117.8
C17—O2—P1124.25 (13)C14—C15—H15117.8
C6—C1—O1119.03 (19)C15—C16—C17116.0 (2)
C6—C1—C2120.93 (19)C15—C16—C18120.2 (2)
O1—C1—C2119.91 (19)C17—C16—C18123.8 (2)
C3—C2—C1116.1 (2)O2—C17—C12118.77 (19)
C3—C2—C7119.96 (19)O2—C17—C16120.11 (19)
C1—C2—C7123.92 (19)C12—C17—C16120.9 (2)
C4—C3—C2123.7 (2)C20—C18—C19109.8 (2)
C4—C3—H3118.2C20—C18—C21107.1 (2)
C2—C3—H3118.2C19—C18—C21107.0 (2)
C5—C4—C3118.0 (2)C20—C18—C16110.7 (2)
C5—C4—C11120.9 (2)C19—C18—C16110.68 (19)
C3—C4—C11121.1 (2)C21—C18—C16111.42 (19)
C4—C5—C6120.8 (2)C18—C19—H19A109.5
C4—C5—H5119.6C18—C19—H19B109.5
C6—C5—H5119.6H19A—C19—H19B109.5
C5—C6—C1120.3 (2)C18—C19—H19C109.5
C5—C6—S1118.03 (17)H19A—C19—H19C109.5
C1—C6—S1121.06 (16)H19B—C19—H19C109.5
C8—C7—C2112.64 (19)C18—C20—H20A109.5
C8—C7—C9107.0 (2)C18—C20—H20B109.5
C2—C7—C9108.9 (2)H20A—C20—H20B109.5
C8—C7—C10106.3 (2)C18—C20—H20C109.5
C2—C7—C10111.0 (2)H20A—C20—H20C109.5
C9—C7—C10110.8 (2)H20B—C20—H20C109.5
C7—C8—H8A109.5C18—C21—H21A109.5
C7—C8—H8B109.5C18—C21—H21B109.5
H8A—C8—H8B109.5H21A—C21—H21B109.5
C7—C8—H8C109.5C18—C21—H21C109.5
H8A—C8—H8C109.5H21A—C21—H21C109.5
H8B—C8—H8C109.5H21B—C21—H21C109.5
C7—C9—H9A109.5C14—C22—H22A109.5
C7—C9—H9B109.5C14—C22—H22B109.5
H9A—C9—H9B109.5H22A—C22—H22B109.5
C7—C9—H9C109.5C14—C22—H22C109.5
H9A—C9—H9C109.5H22A—C22—H22C109.5
H9B—C9—H9C109.5H22B—C22—H22C109.5
C7—C10—H10A109.5C23—N1—C24108.0 (2)
C7—C10—H10B109.5C23—N1—H1N126.0
H10A—C10—H10B109.5C24—N1—H1N126.0
C7—C10—H10C109.5C23—N2—C25108.0 (2)
H10A—C10—H10C109.5C23—N2—H2N126.0
H10B—C10—H10C109.5C25—N2—H2N126.0
C4—C11—H11A109.5N1—C23—N2109.3 (2)
C4—C11—H11B109.5N1—C23—H23125.3
H11A—C11—H11B109.5N2—C23—H23125.3
C4—C11—H11C109.5C25—C24—N1107.3 (2)
H11A—C11—H11C109.5C25—C24—H24126.4
H11B—C11—H11C109.5N1—C24—H24126.4
C13—C12—C17119.7 (2)C24—C25—N2107.4 (2)
C13—C12—S1118.64 (17)C24—C25—H25126.3
C17—C12—S1121.16 (17)N2—C25—H25126.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.861.772.628 (2)174
N2—H2N···O3i0.861.762.603 (2)167
Symmetry code: (i) x+1/2, y1/2, z.
(II) imidazolium 6,6'-di-tert-butyl-4,4'-dimethyl-2,2'-thiodiphenylphosphate diisopropyl hydrazodicarboxylate hemisolvate top
Crystal data top
C3H5N2+·C22H28O4PS·0.5C8H16N2O4F(000) = 2520
Mr = 590.68Dx = 1.248 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 7692 reflections
a = 29.333 (2) Åθ = 2.5–24.6°
b = 9.9415 (7) ŵ = 0.20 mm1
c = 23.3483 (17) ÅT = 295 K
β = 112.542 (1)°Needle, colorless
V = 6288.5 (8) Å30.44 × 0.30 × 0.22 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
7424 independent reflections
Radiation source: fine-focus sealed tube4746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 3737
Tmin = 0.796, Tmax = 0.958k = 1313
35617 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0778P)2]
where P = (Fo2 + 2Fc2)/3
7424 reflections(Δ/σ)max < 0.001
375 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C3H5N2+·C22H28O4PS·0.5C8H16N2O4V = 6288.5 (8) Å3
Mr = 590.68Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.333 (2) ŵ = 0.20 mm1
b = 9.9415 (7) ÅT = 295 K
c = 23.3483 (17) Å0.44 × 0.30 × 0.22 mm
β = 112.542 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7424 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4746 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.958Rint = 0.065
35617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.39 e Å3
7424 reflectionsΔρmin = 0.24 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.130053 (18)0.03372 (5)0.26349 (2)0.03602 (14)
S10.214948 (18)0.18642 (5)0.20616 (2)0.04206 (15)
O10.18893 (5)0.01164 (12)0.29554 (6)0.0382 (3)
O20.11911 (5)0.05899 (12)0.19132 (6)0.0404 (3)
O30.10864 (5)0.09917 (12)0.26609 (7)0.0476 (4)
O40.11579 (5)0.15417 (13)0.28965 (6)0.0443 (3)
C10.22317 (7)0.11147 (18)0.32462 (9)0.0361 (4)
C20.24602 (7)0.11358 (18)0.38934 (9)0.0391 (4)
C30.28189 (7)0.2126 (2)0.41460 (9)0.0436 (5)
H30.29750.21690.45760.052*
C40.29581 (7)0.30490 (19)0.37990 (9)0.0433 (5)
C50.27336 (7)0.29728 (19)0.31618 (9)0.0411 (5)
H50.28260.35660.29170.049*
C60.23722 (6)0.20185 (18)0.28843 (8)0.0352 (4)
C70.23487 (9)0.0121 (2)0.43197 (10)0.0529 (6)
C80.26739 (10)0.0334 (2)0.50001 (10)0.0685 (7)
H8A0.30130.02010.50600.103*
H8B0.25840.02980.52490.103*
H8C0.26300.12330.51200.103*
C90.24525 (16)0.1304 (2)0.41559 (13)0.1141 (14)
H9A0.22360.15080.37380.171*
H9B0.23980.19330.44350.171*
H9C0.27890.13640.41920.171*
C250.17028 (13)0.5969 (3)0.31586 (18)0.1003 (12)
H250.19630.65730.33240.120*
C100.18173 (11)0.0268 (4)0.42690 (13)0.1065 (13)
H10A0.17510.11950.43230.160*
H10B0.17690.02650.45840.160*
H10C0.15960.00330.38680.160*
C110.33514 (8)0.4084 (2)0.41126 (10)0.0596 (6)
H11A0.35400.42490.38630.089*
H11B0.35660.37550.45120.089*
H11C0.31990.49050.41630.089*
C120.15581 (7)0.26397 (19)0.17661 (8)0.0378 (4)
C130.15136 (8)0.3968 (2)0.15664 (9)0.0438 (5)
H130.17960.44770.16350.053*
C140.10550 (8)0.4536 (2)0.12676 (10)0.0490 (5)
C150.06428 (8)0.3725 (2)0.11450 (10)0.0513 (5)
H150.03340.40990.09260.062*
C160.06619 (7)0.2389 (2)0.13281 (9)0.0441 (5)
C170.11339 (7)0.18841 (18)0.16726 (8)0.0376 (4)
C180.01847 (8)0.1550 (3)0.11564 (11)0.0601 (6)
C190.00099 (11)0.1597 (4)0.16928 (15)0.1106 (13)
H19A0.02560.12040.20550.166*
H19B0.02930.11020.15830.166*
H19C0.00440.25160.17780.166*
C200.02562 (11)0.0089 (3)0.09967 (16)0.0990 (11)
H20A0.04250.00750.07160.148*
H20B0.00600.03370.08050.148*
H20C0.04490.03860.13690.148*
C210.02257 (10)0.2129 (3)0.05740 (14)0.0916 (10)
H21A0.03120.30150.06630.137*
H21B0.05110.15580.04550.137*
H21C0.01100.21760.02410.137*
C220.09953 (10)0.5998 (2)0.10678 (13)0.0717 (7)
H22A0.12370.65340.13800.107*
H22B0.06700.63010.10130.107*
H22C0.10410.60860.06840.107*
N10.12714 (7)0.41688 (17)0.29291 (8)0.0487 (4)
H1N0.11870.33370.29140.058*
N20.12334 (10)0.62712 (19)0.27852 (12)0.0779 (7)
H2N0.11210.70630.26600.093*
C230.09822 (9)0.5163 (2)0.26484 (11)0.0571 (6)
H230.06500.50880.23920.068*
C240.17225 (10)0.4664 (3)0.32440 (13)0.0747 (8)
H240.20000.41710.34810.090*
O50.01256 (6)0.66754 (19)0.32395 (8)0.0721 (5)
O60.06252 (5)0.76214 (16)0.37407 (7)0.0568 (4)
N30.02036 (7)0.8174 (2)0.27774 (8)0.0536 (5)
H3N0.0463 (8)0.860 (2)0.2797 (10)0.050 (6)*
C260.02040 (7)0.7407 (2)0.32473 (10)0.0481 (5)
C270.06903 (9)0.6887 (3)0.43031 (11)0.0682 (7)
H270.03720.67990.43450.082*
C280.10329 (11)0.7710 (4)0.48272 (13)0.0967 (10)
H28A0.13470.77800.47900.145*
H28B0.10750.72850.52140.145*
H28C0.08970.85920.48140.145*
C290.08856 (16)0.5530 (4)0.42555 (18)0.1249 (14)
H29A0.06650.50890.38880.187*
H29B0.09130.50070.46130.187*
H29C0.12050.56160.42350.187*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0378 (3)0.0256 (2)0.0463 (3)0.0014 (2)0.0180 (2)0.0017 (2)
S10.0392 (3)0.0503 (3)0.0397 (3)0.0015 (2)0.0185 (2)0.0019 (2)
O10.0383 (7)0.0311 (7)0.0446 (8)0.0012 (5)0.0151 (6)0.0004 (6)
O20.0435 (8)0.0329 (7)0.0435 (8)0.0016 (6)0.0152 (6)0.0007 (6)
O30.0452 (8)0.0286 (7)0.0668 (10)0.0049 (6)0.0191 (7)0.0049 (6)
O40.0539 (8)0.0322 (7)0.0535 (8)0.0028 (6)0.0280 (7)0.0014 (6)
C10.0344 (10)0.0321 (10)0.0428 (11)0.0007 (8)0.0161 (8)0.0002 (8)
C20.0431 (11)0.0342 (10)0.0421 (11)0.0015 (8)0.0188 (9)0.0033 (8)
C30.0438 (11)0.0448 (11)0.0390 (11)0.0008 (9)0.0126 (9)0.0005 (9)
C40.0395 (11)0.0393 (11)0.0490 (12)0.0021 (8)0.0146 (9)0.0004 (9)
C50.0389 (11)0.0395 (11)0.0458 (11)0.0015 (8)0.0173 (9)0.0068 (9)
C60.0330 (9)0.0362 (10)0.0366 (10)0.0039 (8)0.0138 (8)0.0036 (8)
C70.0687 (15)0.0510 (13)0.0395 (12)0.0117 (11)0.0213 (11)0.0034 (10)
C80.0873 (19)0.0688 (16)0.0442 (13)0.0052 (14)0.0193 (13)0.0136 (12)
C90.239 (4)0.0401 (14)0.0689 (19)0.013 (2)0.066 (2)0.0069 (13)
C250.087 (2)0.066 (2)0.169 (4)0.0321 (17)0.073 (2)0.055 (2)
C100.074 (2)0.190 (4)0.0601 (18)0.034 (2)0.0309 (15)0.031 (2)
C110.0580 (14)0.0578 (14)0.0561 (14)0.0191 (11)0.0144 (11)0.0032 (11)
C120.0407 (10)0.0416 (11)0.0317 (9)0.0005 (8)0.0146 (8)0.0007 (8)
C130.0479 (12)0.0461 (12)0.0393 (11)0.0045 (9)0.0190 (9)0.0043 (9)
C140.0560 (13)0.0469 (12)0.0481 (12)0.0040 (10)0.0244 (10)0.0086 (10)
C150.0453 (12)0.0564 (13)0.0508 (13)0.0102 (10)0.0168 (10)0.0143 (10)
C160.0423 (11)0.0506 (12)0.0388 (11)0.0015 (9)0.0148 (9)0.0033 (9)
C170.0437 (11)0.0341 (10)0.0356 (10)0.0009 (8)0.0159 (8)0.0007 (8)
C180.0388 (12)0.0731 (16)0.0574 (14)0.0050 (11)0.0061 (11)0.0089 (12)
C190.0563 (17)0.190 (4)0.091 (2)0.031 (2)0.0345 (16)0.010 (2)
C200.0682 (19)0.0683 (19)0.124 (3)0.0246 (15)0.0042 (18)0.0039 (18)
C210.0580 (17)0.093 (2)0.088 (2)0.0046 (15)0.0116 (15)0.0133 (17)
C220.0751 (18)0.0569 (15)0.0854 (19)0.0074 (13)0.0335 (15)0.0285 (13)
N10.0606 (12)0.0303 (9)0.0554 (11)0.0006 (8)0.0224 (9)0.0031 (8)
N20.120 (2)0.0319 (11)0.1134 (19)0.0190 (12)0.0800 (17)0.0128 (11)
C230.0541 (14)0.0603 (15)0.0556 (14)0.0161 (12)0.0197 (11)0.0073 (11)
C240.0507 (15)0.0714 (18)0.0878 (19)0.0120 (13)0.0107 (14)0.0272 (15)
O50.0516 (10)0.0908 (13)0.0681 (11)0.0296 (9)0.0167 (8)0.0014 (9)
O60.0419 (8)0.0712 (11)0.0484 (9)0.0128 (7)0.0073 (7)0.0102 (8)
N30.0340 (10)0.0725 (13)0.0479 (11)0.0076 (9)0.0086 (8)0.0035 (9)
C260.0355 (11)0.0572 (13)0.0504 (13)0.0049 (10)0.0150 (10)0.0040 (10)
C270.0576 (15)0.0847 (19)0.0563 (15)0.0131 (13)0.0154 (12)0.0179 (13)
C280.088 (2)0.121 (3)0.0585 (18)0.026 (2)0.0042 (15)0.0140 (17)
C290.148 (4)0.095 (3)0.109 (3)0.008 (3)0.024 (3)0.039 (2)
Geometric parameters (Å, º) top
P1—O31.4741 (13)C15—C161.390 (3)
P1—O41.4759 (13)C15—H150.9300
P1—O21.6095 (14)C16—C171.401 (3)
P1—O11.6125 (14)C16—C181.544 (3)
S1—C121.7782 (19)C18—C191.525 (4)
S1—C61.7827 (19)C18—C201.534 (4)
O1—C11.390 (2)C18—C211.541 (3)
O2—C171.388 (2)C19—H19A0.9600
C1—C21.399 (3)C19—H19B0.9600
C1—C61.399 (3)C19—H19C0.9600
C2—C31.396 (3)C20—H20A0.9600
C2—C71.538 (3)C20—H20B0.9600
C3—C41.385 (3)C20—H20C0.9600
C3—H30.9300C21—H21A0.9600
C4—C51.379 (3)C21—H21B0.9600
C4—C111.509 (3)C21—H21C0.9600
C5—C61.385 (2)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C7—C81.522 (3)C22—H22C0.9600
C7—C101.524 (4)N1—C231.303 (3)
C7—C91.528 (3)N1—C241.337 (3)
C8—H8A0.9600N1—H1N0.8600
C8—H8B0.9600N2—C231.296 (3)
C8—H8C0.9600N2—H2N0.8600
C9—H9A0.9600C23—H230.9300
C9—H9B0.9600C24—H240.9300
C9—H9C0.9600O5—C261.205 (2)
C25—C241.311 (4)O6—C261.344 (2)
C25—N21.351 (4)O6—C271.449 (3)
C25—H250.9300N3—C261.335 (3)
C10—H10A0.9600N3—N3i1.385 (3)
C10—H10B0.9600N3—H3N0.86 (2)
C10—H10C0.9600C27—C291.487 (4)
C11—H11A0.9600C27—C281.495 (4)
C11—H11B0.9600C27—H270.9800
C11—H11C0.9600C28—H28A0.9600
C12—C131.390 (3)C28—H28B0.9600
C12—C171.397 (3)C28—H28C0.9600
C13—C141.377 (3)C29—H29A0.9600
C13—H130.9300C29—H29B0.9600
C14—C151.389 (3)C29—H29C0.9600
C14—C221.516 (3)
O3—P1—O4121.15 (8)C15—C16—C18120.71 (19)
O3—P1—O2105.42 (8)C17—C16—C18123.62 (19)
O4—P1—O2109.41 (7)O2—C17—C12118.22 (16)
O3—P1—O1104.86 (7)O2—C17—C16120.26 (17)
O4—P1—O1109.97 (8)C12—C17—C16121.49 (17)
O2—P1—O1104.79 (7)C19—C18—C20110.4 (3)
C12—S1—C6106.31 (8)C19—C18—C21108.5 (2)
C1—O1—P1125.05 (11)C20—C18—C21105.8 (2)
C17—O2—P1120.87 (11)C19—C18—C16109.1 (2)
O1—C1—C2119.72 (16)C20—C18—C16112.3 (2)
O1—C1—C6119.23 (16)C21—C18—C16110.5 (2)
C2—C1—C6120.84 (17)C18—C19—H19A109.5
C3—C2—C1116.01 (17)C18—C19—H19B109.5
C3—C2—C7120.13 (18)H19A—C19—H19B109.5
C1—C2—C7123.83 (17)C18—C19—H19C109.5
C4—C3—C2124.29 (19)H19A—C19—H19C109.5
C4—C3—H3117.9H19B—C19—H19C109.5
C2—C3—H3117.9C18—C20—H20A109.5
C5—C4—C3117.96 (18)C18—C20—H20B109.5
C5—C4—C11121.40 (18)H20A—C20—H20B109.5
C3—C4—C11120.63 (19)C18—C20—H20C109.5
C4—C5—C6120.38 (18)H20A—C20—H20C109.5
C4—C5—H5119.8H20B—C20—H20C109.5
C6—C5—H5119.8C18—C21—H21A109.5
C5—C6—C1120.49 (17)C18—C21—H21B109.5
C5—C6—S1117.49 (14)H21A—C21—H21B109.5
C1—C6—S1121.62 (14)C18—C21—H21C109.5
C8—C7—C10106.3 (2)H21A—C21—H21C109.5
C8—C7—C9106.6 (2)H21B—C21—H21C109.5
C10—C7—C9111.4 (3)C14—C22—H22A109.5
C8—C7—C2112.37 (18)C14—C22—H22B109.5
C10—C7—C2110.6 (2)H22A—C22—H22B109.5
C9—C7—C2109.49 (19)C14—C22—H22C109.5
C7—C8—H8A109.5H22A—C22—H22C109.5
C7—C8—H8B109.5H22B—C22—H22C109.5
H8A—C8—H8B109.5C23—N1—C24108.3 (2)
C7—C8—H8C109.5C23—N1—H1N125.9
H8A—C8—H8C109.5C24—N1—H1N125.9
H8B—C8—H8C109.5C23—N2—C25108.2 (2)
C7—C9—H9A109.5C23—N2—H2N125.9
C7—C9—H9B109.5C25—N2—H2N125.9
H9A—C9—H9B109.5N2—C23—N1108.8 (2)
C7—C9—H9C109.5N2—C23—H23125.6
H9A—C9—H9C109.5N1—C23—H23125.6
H9B—C9—H9C109.5C25—C24—N1107.7 (3)
C24—C25—N2107.0 (2)C25—C24—H24126.1
C24—C25—H25126.5N1—C24—H24126.1
N2—C25—H25126.5C26—O6—C27117.08 (17)
C7—C10—H10A109.5C26—N3—N3i119.81 (19)
C7—C10—H10B109.5C26—N3—H3N121.2 (14)
H10A—C10—H10B109.5N3i—N3—H3N118.6 (14)
C7—C10—H10C109.5O5—C26—N3125.8 (2)
H10A—C10—H10C109.5O5—C26—O6125.2 (2)
H10B—C10—H10C109.5N3—C26—O6108.96 (18)
C4—C11—H11A109.5O6—C27—C29108.1 (2)
C4—C11—H11B109.5O6—C27—C28106.3 (2)
H11A—C11—H11B109.5C29—C27—C28113.6 (3)
C4—C11—H11C109.5O6—C27—H27109.6
H11A—C11—H11C109.5C29—C27—H27109.6
H11B—C11—H11C109.5C28—C27—H27109.6
C13—C12—C17119.67 (17)C27—C28—H28A109.5
C13—C12—S1119.61 (15)C27—C28—H28B109.5
C17—C12—S1120.36 (14)H28A—C28—H28B109.5
C14—C13—C12120.51 (19)C27—C28—H28C109.5
C14—C13—H13119.7H28A—C28—H28C109.5
C12—C13—H13119.7H28B—C28—H28C109.5
C13—C14—C15118.03 (19)C27—C29—H29A109.5
C13—C14—C22121.6 (2)C27—C29—H29B109.5
C15—C14—C22120.3 (2)H29A—C29—H29B109.5
C14—C15—C16124.24 (19)C27—C29—H29C109.5
C14—C15—H15117.9H29A—C29—H29C109.5
C16—C15—H15117.9H29B—C29—H29C109.5
C15—C16—C17115.67 (18)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.861.792.630 (2)166
N2—H2N···O3ii0.861.942.753 (2)158
N3—H3N···O3ii0.86 (2)2.01 (2)2.830 (2)159 (2)
C23—H23···O5i0.932.302.980 (3)130
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC3H5N2+·C22H28O4PSC3H5N2+·C22H28O4PS·0.5C8H16N2O4
Mr488.56590.68
Crystal system, space groupMonoclinic, CcMonoclinic, C2/c
Temperature (K)295295
a, b, c (Å)7.6466 (6), 17.0714 (12), 19.7596 (14)29.333 (2), 9.9415 (7), 23.3483 (17)
β (°) 98.060 (1) 112.542 (1)
V3)2553.9 (3)6288.5 (8)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.220.20
Crystal size (mm)0.44 × 0.30 × 0.220.44 × 0.30 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.762, 0.9530.796, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
14692, 5940, 4683 35617, 7424, 4746
Rint0.0350.065
(sin θ/λ)max1)0.6670.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.087, 0.93 0.048, 0.135, 0.95
No. of reflections59407424
No. of parameters306375
No. of restraints20
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.220.39, 0.24
Absolute structureFlack (1983), 2760 Friedel pairs?
Absolute structure parameter0.00 (5)?

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Sheldrick, 1999), SHELXTL-NT.

Selected geometric parameters (Å, º) for (I) top
P1—O31.4687 (16)P1—O11.6077 (15)
P1—O41.4688 (15)P1—O21.6112 (16)
O3—P1—O4120.85 (10)O3—P1—O2109.24 (9)
O3—P1—O1109.38 (9)O4—P1—O2105.53 (9)
O4—P1—O1104.82 (9)O1—P1—O2106.03 (9)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.861.772.628 (2)174
N2—H2N···O3i0.861.762.603 (2)167
Symmetry code: (i) x+1/2, y1/2, z.
Selected geometric parameters (Å, º) for (II) top
P1—O31.4741 (13)P1—O21.6095 (14)
P1—O41.4759 (13)P1—O11.6125 (14)
O3—P1—O4121.15 (8)O3—P1—O1104.86 (7)
O3—P1—O2105.42 (8)O4—P1—O1109.97 (8)
O4—P1—O2109.41 (7)O2—P1—O1104.79 (7)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.861.792.630 (2)166
N2—H2N···O3i0.861.942.753 (2)158
N3—H3N···O3i0.86 (2)2.01 (2)2.830 (2)159 (2)
C23—H23···O5ii0.932.302.980 (3)130
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds