Download citation
Download citation
link to html
The two title complexes, [ZnCl2(C11H15N3O3)], (I), and [ZnCl2(C11H15N3O3)]·0.5H2O, (II), are mononuclear zinc(II) compounds. In both structures, the ZnII atom is four-coordinated in a tetra­hedral configuration by one imine N atom and one phenolate O atom of a Schiff base, and by two Cl atoms. The structure of each of the two zinc(II) complex molecules of (II) is similar to that of (I). In (I), the mol­ecules are linked through inter­molecular hydrogen bonds, forming a three-dimensional framework. In (II), the solvent water mol­ecules are linked to the zinc(II) moieties through inter­molecular O-H...O and O-H...Cl hydrogen bonds. The mol­ecules in (II) are further linked via other inter­molecular hydrogen bonds, forming a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105020767/sk1856sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105020767/sk1856Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105020767/sk1856IIsup3.hkl
Contains datablock II

CCDC references: 282176; 282177

Comment top

Transition metal complexes containing Schiff base ligands have been of great interest for many years (Yamada, 1999). These complexes play an important role in coordination chemistry related to catalysis and enzymatic reactions, magnetism, and molecular architectures (Lacroix, 1996; Goswami & Eichhorn, 1999; Rybak-Akimova et al., 1998). The study of the variety of products in self-assembly processes between labile metal ions and flexible multidentate ligands is an interesting topic in supramolecular chemistry. The balance between the formation of different structures is often subtle. Factors that affect the coordination topology include not only the highly influential factors of metal and ligand coordination preferences, but also solvent-based influences, which have been extensively studied for silver(I) complexes (Smith et al., 1996; Kristiansson, 2001; Nomiya et al., 2000; Wei et al., 1998). However, for zinc(II) complexes, solvent-based influences on the structures have seldom been reported. Thus, more work needs to be performed in order to understand better the controlling effect of solvents on Schiff base zinc(II) complexes, which is now becoming an interesting topic in supramolecular chemistry.

We have focused our attention on the assembly of transition metal ions with flexible ligands, since they can adopt diverse coordination modes according to the geometric needs of the metal ion (You, 2005a,b). In order to investigate the relationship between the solvents used in the syntheses of the complexes and the resulting structures, we report here two novel mononuclear zinc(II) complexes, which have been synthesized in different solvents with the same starting materials.

The two title complexes, (I) and (II), are mononuclear zinc(II) compounds (Fig. 1 and 2). The major difference between the complexes is in the components of the molecules: complex (I), synthesized and crystallized in MeOH solution, has no MeOH molecules in the crystal, while complex (II), synthesized and crystallized in MeOH–H2O (2:1 v/v) mixed solution, has solvent water molecules in the crystal.

In both structures, the ZnII atom is four-coordinated in a tetrahedral configuration, by one imine N atom and one phenolate O atom of a Schiff base, and by two Cl atoms. The structure of each zinc moiety of (II) is similar to that of (I). For the two complexes, each ZnONCl2 coordination forms a slightly distorted tetrahedral geometry, as usually observed in the structures of ZnII complexes (McCleverty et al., 1980; You et al., 2003), with angles subtended at the ZnII atom in the range 108.16 (9)–115.52 (9)° for Zn1 in (I), 95.35 (10)–117.09 (8)° for Zn1 in (II), and 95.37 (10)–115.79 (8)° for Zn2 in (II) (Table 1). The average Zn—O bond lengths [1.940 (3) Å in (I) and 1.936 (2) Å in (II)] are comparable with the corresponding values observed in other Schiff base ZnII complexes (Usman et al., 2003; Erxleben 2001; Chisholm et al., 2001). The mean Zn—N bond lengths [2.031 (3) Å in (I) and 2.016 (3) Å in (II)] are also comparable with the values observed in the above-mentioned complexes.

The dihedral angle between the O1—N1—O2 plane and the phenyl ring in (I) is 8.8 (3)°, which is much bigger than the corresponding values of 6.4 (3)° [for the Zn1 moiety of (II)] and 5.0 (3)° [for the Zn2 moiety of (II)]. This is probably caused by intermolecular hydrogen bonds, which pull the two O atoms of each nitryl in opposite directions with different intensity.

In (I), the molecules are linked via intermolecular N—H···Cl, C—H···O and C—H···Cl hydrogen bonds (Table 2), forming a three-dimensional framework. In (II), the solvent water molecules are linked to the zinc(II) moieties through intermolecular O—H···O and O—H···Cl hydrogen bonds. The molecules in (II) are further linked via intermolecular N—H···Cl, N—H···O, C—H···Cl and C—H···O hydrogen bonds, forming a three-dimensional framework.

In conclusion, the solvents used in the preparation and crystallization of complexes can influence the crystal structures.

Experimental top

For the preparation of complex (I), 5-nitrylsalicylaldehyde (0.1 mmol, 20.1 mg) and N,N'-dimethylethane-1,2-diamine (0.1 mmol, 8.8 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a yellow solution, to which was added a MeOH solution (5 ml) of ZnCl2·6H2O (0.1 mmol, 24.4 mg) with stirring. The mixture was stirred for another 10 min at room temperature. After keeping the filtrate in air for 8 d, colourless needle-shaped crystals of (I) were formed. Complex (II) was prepared by a procedure similar to that described for (I), with ZnCl2·6H2O dissolved in distilled water (5 ml), rather than in MeOH. Colourless block-shaped crystals of (II) were obtained after evaporating the solvents from the filtrate in air for 11 days.

Refinement top

Atom H3A in (I), and atoms H3A, H6A, H7A and H7B in (II), were located in difference Fourier maps and refined isotropically, with the O—H distance restrained to 0.84 (1) Å, the H···H distance restrained to 1.37 (2) Å, and the N—H distances restrained to 0.90 (1) Å. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). In (I), an unassigned maximum residual density was observed 0.02 Å from atom Zn1. The minimum residual density was observed 1.64 Å from atom H6. In (II), an unassigned maximum residual density was observed 0.98 Å from atom O6. The minimum residual density was observed 1.64 Å from atom Zn1. There are 1463 Friedel pairs in (I).

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(I) Dichloro{2-[2-(dimethylammonio)ethyliminomethyl]-4-nitrophenolato}zinc(II) top
Crystal data top
[ZnCl2(C11H15N3O3)]F(000) = 760
Mr = 373.53Dx = 1.608 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2733 reflections
a = 7.668 (2) Åθ = 2.8–23.7°
b = 13.691 (3) ŵ = 1.95 mm1
c = 14.698 (3) ÅT = 298 K
V = 1543.0 (6) Å3Needle, colourless
Z = 40.20 × 0.08 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3496 independent reflections
Radiation source: fine-focus sealed tube3088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.697, Tmax = 0.909k = 1712
9727 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3496 reflectionsΔρmax = 0.44 e Å3
186 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.035 (15)
Crystal data top
[ZnCl2(C11H15N3O3)]V = 1543.0 (6) Å3
Mr = 373.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.668 (2) ŵ = 1.95 mm1
b = 13.691 (3) ÅT = 298 K
c = 14.698 (3) Å0.20 × 0.08 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3496 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3088 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.909Rint = 0.036
9727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.44 e Å3
S = 1.05Δρmin = 0.21 e Å3
3496 reflectionsAbsolute structure: Flack (1983)
186 parametersAbsolute structure parameter: 0.035 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.07025 (5)0.09039 (3)0.42041 (3)0.04076 (12)
Cl10.11380 (13)0.03407 (8)0.41124 (10)0.0703 (4)
Cl20.00176 (14)0.20374 (8)0.52497 (7)0.0564 (3)
O10.7470 (5)0.2500 (2)0.0560 (2)0.0861 (12)
O20.8629 (4)0.1371 (2)0.1368 (2)0.0645 (9)
O30.1193 (3)0.1567 (2)0.30663 (17)0.0477 (7)
N10.7403 (5)0.1892 (2)0.1160 (2)0.0493 (8)
N20.3164 (3)0.0379 (2)0.43501 (19)0.0331 (6)
N30.4102 (4)0.11341 (19)0.61814 (19)0.0385 (7)
C10.4213 (5)0.1139 (2)0.2947 (2)0.0321 (7)
C20.2677 (5)0.1634 (2)0.2655 (2)0.0355 (8)
C30.2792 (5)0.2218 (3)0.1862 (2)0.0436 (9)
H30.18060.25500.16610.052*
C40.4314 (6)0.2308 (3)0.1384 (2)0.0437 (9)
H40.43660.27060.08720.052*
C50.5771 (5)0.1802 (3)0.1667 (2)0.0388 (8)
C60.5740 (5)0.1227 (2)0.2435 (2)0.0371 (8)
H60.67410.08950.26140.045*
C70.4361 (5)0.0540 (2)0.3750 (2)0.0358 (7)
H70.54310.02380.38470.043*
C80.3617 (5)0.0275 (3)0.5106 (2)0.0418 (9)
H8A0.48540.04220.50840.050*
H8B0.29820.08840.50420.050*
C90.3182 (5)0.0186 (2)0.6008 (2)0.0408 (9)
H9A0.19340.02970.60360.049*
H9B0.34800.02690.64890.049*
C100.3394 (6)0.1607 (3)0.7017 (3)0.0583 (12)
H10A0.35380.11760.75260.087*
H10B0.21780.17460.69320.087*
H10C0.40120.22050.71290.087*
C110.6038 (5)0.1014 (3)0.6256 (3)0.0597 (12)
H11A0.65690.16410.63510.090*
H11B0.64810.07310.57050.090*
H11C0.63050.05940.67600.090*
H3A0.393 (6)0.154 (3)0.571 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0344 (2)0.0444 (2)0.0435 (2)0.0021 (2)0.0015 (2)0.0011 (2)
Cl10.0454 (6)0.0522 (6)0.1132 (10)0.0086 (5)0.0074 (6)0.0034 (7)
Cl20.0651 (7)0.0509 (6)0.0533 (6)0.0099 (5)0.0117 (5)0.0046 (5)
O10.092 (3)0.086 (2)0.080 (3)0.014 (2)0.037 (2)0.044 (2)
O20.0505 (19)0.074 (2)0.069 (2)0.0095 (17)0.0214 (16)0.0046 (17)
O30.0390 (15)0.0623 (17)0.0419 (15)0.0106 (13)0.0018 (12)0.0098 (13)
N10.058 (2)0.048 (2)0.0418 (19)0.0002 (18)0.0128 (16)0.0046 (16)
N20.0349 (15)0.0347 (15)0.0297 (16)0.0022 (12)0.0012 (12)0.0002 (12)
N30.0473 (19)0.0326 (17)0.0355 (16)0.0029 (14)0.0030 (15)0.0023 (12)
C10.0350 (17)0.0337 (18)0.0275 (17)0.0002 (16)0.0040 (15)0.0031 (12)
C20.040 (2)0.038 (2)0.0284 (18)0.0022 (16)0.0014 (16)0.0035 (15)
C30.048 (2)0.046 (2)0.037 (2)0.0122 (19)0.0073 (18)0.0041 (17)
C40.061 (2)0.042 (2)0.0289 (18)0.003 (2)0.002 (2)0.0042 (15)
C50.044 (2)0.0397 (19)0.0322 (19)0.0040 (18)0.0039 (18)0.0044 (14)
C60.0401 (19)0.0374 (18)0.0339 (19)0.0031 (16)0.0006 (17)0.0036 (14)
C70.0348 (18)0.0358 (18)0.0367 (19)0.0072 (16)0.0050 (17)0.0027 (14)
C80.049 (2)0.038 (2)0.037 (2)0.0037 (18)0.0003 (17)0.0069 (16)
C90.050 (2)0.037 (2)0.035 (2)0.0093 (17)0.0042 (16)0.0051 (16)
C100.072 (3)0.063 (3)0.040 (2)0.006 (2)0.007 (2)0.014 (2)
C110.048 (3)0.052 (2)0.080 (3)0.007 (2)0.003 (2)0.006 (2)
Geometric parameters (Å, º) top
Zn1—O31.940 (3)C3—C41.368 (5)
Zn1—N22.031 (3)C3—H30.9300
Zn1—Cl12.217 (2)C4—C51.379 (5)
Zn1—Cl22.246 (2)C4—H40.9300
O1—N11.214 (4)C5—C61.376 (5)
O2—N11.218 (4)C6—H60.9300
O3—C21.292 (4)C7—H70.9300
N1—C51.462 (5)C8—C91.506 (5)
N2—C71.291 (4)C8—H8A0.9700
N2—C81.468 (4)C8—H8B0.9700
N3—C101.490 (5)C9—H9A0.9700
N3—C111.498 (5)C9—H9B0.9700
N3—C91.500 (4)C10—H10A0.9600
N3—H3A0.90 (3)C10—H10B0.9600
C1—C61.396 (5)C10—H10C0.9600
C1—C21.425 (5)C11—H11A0.9600
C1—C71.442 (4)C11—H11B0.9600
C2—C31.417 (5)C11—H11C0.9600
O3—Zn1—N294.39 (11)C6—C5—N1118.7 (4)
O3—Zn1—Cl1115.52 (9)C4—C5—N1119.8 (3)
N2—Zn1—Cl1109.03 (8)C5—C6—C1120.3 (3)
O3—Zn1—Cl2108.16 (9)C5—C6—H6119.8
N2—Zn1—Cl2112.92 (9)C1—C6—H6119.8
Cl1—Zn1—Cl2115.08 (5)N2—C7—C1126.9 (3)
C2—O3—Zn1127.4 (2)N2—C7—H7116.5
O1—N1—O2123.4 (4)C1—C7—H7116.5
O1—N1—C5117.7 (4)N2—C8—C9111.0 (3)
O2—N1—C5118.9 (3)N2—C8—H8A109.4
C7—N2—C8116.9 (3)C9—C8—H8A109.4
C7—N2—Zn1121.8 (2)N2—C8—H8B109.4
C8—N2—Zn1121.0 (2)C9—C8—H8B109.4
C10—N3—C11110.4 (3)H8A—C8—H8B108.0
C10—N3—C9110.2 (3)N3—C9—C8114.1 (3)
C11—N3—C9112.6 (3)N3—C9—H9A108.7
C10—N3—H3A109 (3)C8—C9—H9A108.7
C11—N3—H3A106 (3)N3—C9—H9B108.7
C9—N3—H3A109 (3)C8—C9—H9B108.7
C6—C1—C2119.3 (3)H9A—C9—H9B107.6
C6—C1—C7115.1 (3)N3—C10—H10A109.5
C2—C1—C7125.5 (3)N3—C10—H10B109.5
O3—C2—C3118.7 (3)H10A—C10—H10B109.5
O3—C2—C1123.6 (3)N3—C10—H10C109.5
C3—C2—C1117.7 (3)H10A—C10—H10C109.5
C4—C3—C2121.8 (3)H10B—C10—H10C109.5
C4—C3—H3119.1N3—C11—H11A109.5
C2—C3—H3119.1N3—C11—H11B109.5
C3—C4—C5119.4 (3)H11A—C11—H11B109.5
C3—C4—H4120.3N3—C11—H11C109.5
C5—C4—H4120.3H11A—C11—H11C109.5
C6—C5—C4121.4 (4)H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl2i0.90 (3)2.55 (3)3.344 (3)148 (4)
C4—H4···O1ii0.932.573.199 (3)125
C7—H7···Cl1iii0.932.783.695 (3)170
C8—H8A···O2iv0.972.573.186 (3)121
C8—H8B···O1v0.972.413.306 (3)154
C10—H10C···O3i0.962.393.297 (3)158
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z; (iii) x+1, y, z; (iv) x+3/2, y, z+1/2; (v) x+1, y1/2, z+1/2.
(II) Dichloro{2-[2-(dimethylammonio)ethyliminomethyl]-4-nitrophenolato}zinc(II) hemihydrate top
Crystal data top
[ZnCl2(C11H15N3O3)]·0.5H2OZ = 4
Mr = 382.54F(000) = 780
Triclinic, P1Dx = 1.608 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.181 (2) ÅCell parameters from 4057 reflections
b = 12.312 (2) Åθ = 2.3–25.8°
c = 12.596 (2) ŵ = 1.90 mm1
α = 66.673 (1)°T = 298 K
β = 70.632 (1)°Block, colourless
γ = 69.149 (1)°0.26 × 0.19 × 0.17 mm
V = 1580.5 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6985 independent reflections
Radiation source: fine-focus sealed tube5088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.637, Tmax = 0.738k = 1515
13545 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0743P)2]
where P = (Fo2 + 2Fc2)/3
6985 reflections(Δ/σ)max < 0.001
386 parametersΔρmax = 0.86 e Å3
5 restraintsΔρmin = 0.28 e Å3
Crystal data top
[ZnCl2(C11H15N3O3)]·0.5H2Oγ = 69.149 (1)°
Mr = 382.54V = 1580.5 (4) Å3
Triclinic, P1Z = 4
a = 12.181 (2) ÅMo Kα radiation
b = 12.312 (2) ŵ = 1.90 mm1
c = 12.596 (2) ÅT = 298 K
α = 66.673 (1)°0.26 × 0.19 × 0.17 mm
β = 70.632 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6985 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5088 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.738Rint = 0.026
13545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0445 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.86 e Å3
6985 reflectionsΔρmin = 0.28 e Å3
386 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn20.70710 (3)0.78645 (3)0.57835 (3)0.03952 (12)
Zn10.76514 (3)0.13805 (3)0.90574 (3)0.04175 (12)
Cl10.79980 (10)0.18238 (9)1.04419 (9)0.0617 (3)
Cl20.57239 (8)0.20603 (10)0.89548 (9)0.0587 (2)
Cl30.66807 (10)0.96400 (9)0.43463 (9)0.0616 (3)
Cl40.89771 (7)0.72313 (8)0.59603 (8)0.0493 (2)
O11.1889 (3)0.3795 (3)0.6410 (3)0.0851 (10)
O21.2074 (3)0.2053 (3)0.5101 (3)0.0840 (10)
O30.8297 (2)0.0360 (2)0.9267 (2)0.0522 (6)
O40.2547 (4)0.4501 (4)0.9789 (5)0.151 (2)
O50.2706 (3)0.3674 (3)0.8499 (4)0.1084 (14)
O60.6557 (2)0.6587 (2)0.5712 (2)0.0484 (6)
O70.1041 (3)0.1264 (2)0.8502 (3)0.0704 (8)
N11.1664 (3)0.2670 (4)0.6094 (4)0.0656 (10)
N20.8636 (2)0.1924 (2)0.7394 (2)0.0381 (6)
N30.9726 (3)0.3622 (2)0.7624 (3)0.0436 (6)
N40.2976 (3)0.4354 (3)0.8828 (5)0.0893 (14)
N50.6072 (2)0.7839 (2)0.7423 (2)0.0399 (6)
N60.5125 (3)1.0528 (3)0.7008 (3)0.0453 (7)
C10.9653 (3)0.0166 (3)0.7353 (3)0.0395 (7)
C20.9092 (3)0.0846 (3)0.8485 (3)0.0429 (8)
C30.9423 (3)0.2133 (3)0.8779 (3)0.0499 (9)
H30.90470.25930.95060.060*
C41.0275 (3)0.2721 (3)0.8030 (4)0.0536 (9)
H41.04930.35720.82520.064*
C51.0813 (3)0.2045 (3)0.6940 (4)0.0499 (9)
C61.0518 (3)0.0795 (3)0.6588 (3)0.0463 (8)
H61.08890.03610.58420.056*
C70.9377 (3)0.1151 (3)0.6869 (3)0.0420 (7)
H70.97790.14760.60940.050*
C80.8436 (3)0.3222 (3)0.6700 (3)0.0456 (8)
H8A0.76440.35220.65210.055*
H8B0.90300.33210.59550.055*
C90.8522 (3)0.3971 (3)0.7360 (3)0.0432 (8)
H9A0.83380.48290.68910.052*
H9B0.79200.38740.81000.052*
C100.9672 (4)0.4234 (4)0.8457 (4)0.0625 (11)
H10A0.93610.51020.81340.094*
H10B1.04670.40630.85670.094*
H10C0.91550.39300.92060.094*
C111.0698 (3)0.3908 (4)0.6539 (4)0.0632 (11)
H11A1.07240.35160.60030.095*
H11B1.14600.36130.67590.095*
H11C1.05340.47780.61580.095*
C120.5087 (3)0.6361 (3)0.7566 (3)0.0458 (8)
C130.5696 (3)0.6118 (3)0.6469 (3)0.0416 (7)
C140.5345 (3)0.5306 (3)0.6197 (4)0.0543 (9)
H140.57310.51400.54850.065*
C150.4455 (4)0.4753 (3)0.6944 (4)0.0604 (11)
H150.42370.42240.67380.073*
C160.3887 (3)0.4984 (3)0.8000 (4)0.0627 (12)
C170.4185 (3)0.5759 (3)0.8322 (4)0.0621 (11)
H170.37890.58920.90470.075*
C180.5349 (3)0.7149 (3)0.7993 (3)0.0477 (8)
H180.49530.71570.87620.057*
C190.6312 (3)0.8462 (3)0.8073 (3)0.0480 (8)
H19A0.70920.80350.82720.058*
H19B0.57070.84360.88070.058*
C200.6296 (3)0.9782 (3)0.7348 (3)0.0448 (8)
H20A0.64761.01530.78000.054*
H20B0.69280.97990.66330.054*
C210.4105 (3)1.0587 (4)0.8041 (4)0.0680 (11)
H21A0.39890.97820.84790.102*
H21B0.33871.11220.77730.102*
H21C0.42751.08970.85430.102*
C220.5220 (4)1.1783 (3)0.6219 (4)0.0647 (11)
H22A0.54551.21590.66170.097*
H22B0.44541.22660.60310.097*
H22C0.58131.17310.55020.097*
H3A1.000 (4)0.2802 (11)0.794 (4)0.080*
H6A0.501 (4)1.015 (4)0.659 (3)0.080*
H7A0.127 (4)0.101 (3)0.913 (2)0.080*
H7B0.110 (4)0.068 (2)0.830 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn20.0382 (2)0.0435 (2)0.0382 (2)0.01468 (16)0.00427 (16)0.01403 (17)
Zn10.0451 (2)0.0406 (2)0.0368 (2)0.01392 (17)0.00631 (17)0.00914 (17)
Cl10.0752 (7)0.0669 (6)0.0550 (6)0.0232 (5)0.0197 (5)0.0228 (5)
Cl20.0464 (5)0.0739 (6)0.0502 (5)0.0099 (4)0.0126 (4)0.0174 (5)
Cl30.0739 (6)0.0537 (5)0.0613 (6)0.0242 (5)0.0318 (5)0.0017 (5)
Cl40.0387 (4)0.0583 (5)0.0479 (5)0.0151 (4)0.0088 (4)0.0121 (4)
O10.074 (2)0.066 (2)0.125 (3)0.0144 (16)0.037 (2)0.056 (2)
O20.071 (2)0.097 (2)0.093 (3)0.0217 (18)0.0039 (19)0.058 (2)
O30.0641 (16)0.0378 (12)0.0418 (13)0.0159 (11)0.0014 (12)0.0059 (11)
O40.131 (4)0.096 (3)0.183 (5)0.071 (3)0.093 (4)0.068 (3)
O50.082 (2)0.081 (2)0.161 (4)0.052 (2)0.034 (2)0.004 (2)
O60.0564 (14)0.0536 (14)0.0428 (13)0.0268 (12)0.0013 (11)0.0197 (11)
O70.076 (2)0.0551 (17)0.071 (2)0.0035 (15)0.0346 (17)0.0140 (15)
N10.0456 (19)0.076 (3)0.093 (3)0.0034 (18)0.0214 (19)0.050 (2)
N20.0411 (14)0.0335 (13)0.0378 (14)0.0144 (11)0.0092 (12)0.0046 (11)
N30.0501 (16)0.0331 (14)0.0449 (16)0.0112 (12)0.0143 (13)0.0060 (13)
N40.057 (2)0.046 (2)0.140 (4)0.0207 (18)0.002 (3)0.017 (2)
N50.0371 (14)0.0397 (15)0.0412 (15)0.0066 (11)0.0054 (12)0.0168 (12)
N60.0467 (16)0.0465 (16)0.0500 (17)0.0146 (13)0.0153 (13)0.0164 (14)
C10.0400 (17)0.0372 (17)0.0427 (18)0.0144 (13)0.0072 (14)0.0118 (14)
C20.0464 (19)0.0404 (18)0.0458 (19)0.0154 (15)0.0162 (16)0.0091 (15)
C30.067 (2)0.0372 (18)0.048 (2)0.0198 (17)0.0240 (18)0.0017 (16)
C40.062 (2)0.0373 (19)0.072 (3)0.0057 (17)0.035 (2)0.0175 (18)
C50.0390 (18)0.051 (2)0.073 (3)0.0047 (16)0.0200 (18)0.033 (2)
C60.0422 (18)0.051 (2)0.052 (2)0.0178 (16)0.0077 (16)0.0200 (17)
C70.0455 (19)0.0452 (18)0.0357 (17)0.0204 (15)0.0038 (14)0.0096 (15)
C80.051 (2)0.0360 (17)0.0460 (19)0.0132 (15)0.0190 (16)0.0014 (15)
C90.0448 (19)0.0298 (16)0.049 (2)0.0059 (14)0.0125 (15)0.0079 (14)
C100.085 (3)0.053 (2)0.058 (2)0.022 (2)0.024 (2)0.0153 (19)
C110.052 (2)0.063 (3)0.065 (3)0.0176 (19)0.005 (2)0.015 (2)
C120.0366 (17)0.0378 (17)0.055 (2)0.0094 (14)0.0013 (15)0.0140 (16)
C130.0385 (17)0.0381 (17)0.0478 (19)0.0109 (14)0.0160 (15)0.0072 (15)
C140.062 (2)0.044 (2)0.061 (2)0.0149 (17)0.025 (2)0.0101 (18)
C150.057 (2)0.040 (2)0.087 (3)0.0185 (17)0.030 (2)0.006 (2)
C160.0382 (19)0.0357 (19)0.098 (3)0.0114 (15)0.010 (2)0.007 (2)
C170.048 (2)0.044 (2)0.074 (3)0.0102 (17)0.0080 (19)0.018 (2)
C180.0459 (19)0.0434 (19)0.0419 (19)0.0096 (15)0.0048 (15)0.0151 (16)
C190.052 (2)0.048 (2)0.047 (2)0.0050 (16)0.0144 (16)0.0217 (16)
C200.0407 (18)0.0500 (19)0.052 (2)0.0124 (15)0.0088 (15)0.0253 (17)
C210.044 (2)0.081 (3)0.074 (3)0.011 (2)0.007 (2)0.029 (2)
C220.083 (3)0.048 (2)0.069 (3)0.025 (2)0.028 (2)0.0085 (19)
Geometric parameters (Å, º) top
Zn1—O31.942 (2)C4—H40.9300
Zn1—N22.018 (3)C5—C61.366 (5)
Zn1—Cl12.219 (2)C6—H60.9300
Zn1—Cl22.224 (2)C7—H70.9300
Zn2—O61.930 (2)C8—C91.512 (4)
Zn2—N52.013 (3)C8—H8A0.9700
Zn2—Cl42.228 (2)C8—H8B0.9700
Zn2—Cl32.231 (2)C9—H9A0.9700
O1—N11.232 (5)C9—H9B0.9700
O2—N11.222 (5)C10—H10A0.9600
O3—C21.299 (4)C10—H10B0.9600
O4—N41.208 (6)C10—H10C0.9600
O5—N41.242 (5)C11—H11A0.9600
O6—C131.294 (4)C11—H11B0.9600
O7—H7A0.83 (3)C11—H11C0.9600
O7—H7B0.83 (3)C12—C171.411 (5)
N1—C51.466 (5)C12—C131.428 (5)
N2—C71.284 (4)C12—C181.443 (5)
N2—C81.462 (4)C13—C141.404 (4)
N3—C91.486 (4)C14—C151.366 (5)
N3—C101.489 (4)C14—H140.9300
N3—C111.495 (5)C15—C161.370 (6)
N3—H3A0.91 (3)C15—H150.9300
N4—C161.458 (5)C16—C171.363 (5)
N5—C181.282 (4)C17—H170.9300
N5—C191.470 (4)C18—H180.9300
N6—C211.477 (5)C19—C201.513 (5)
N6—C221.491 (4)C19—H19A0.9700
N6—C201.491 (4)C19—H19B0.9700
N6—H6A0.90 (4)C20—H20A0.9700
C1—C61.405 (4)C20—H20B0.9700
C1—C21.420 (5)C21—H21A0.9600
C1—C71.442 (4)C21—H21B0.9600
C2—C31.412 (4)C21—H21C0.9600
C3—C41.359 (5)C22—H22A0.9600
C3—H30.9300C22—H22B0.9600
C4—C51.376 (5)C22—H22C0.9600
O3—Zn1—N295.35 (10)H8A—C8—H8B108.0
O3—Zn1—Cl1110.05 (8)N3—C9—C8113.5 (3)
N2—Zn1—Cl1117.09 (8)N3—C9—H9A108.9
O3—Zn1—Cl2113.05 (8)C8—C9—H9A108.9
N2—Zn1—Cl2107.32 (8)N3—C9—H9B108.9
Cl1—Zn1—Cl2112.85 (4)C8—C9—H9B108.9
O6—Zn2—N595.37 (10)H9A—C9—H9B107.7
O6—Zn2—Cl4111.84 (8)N3—C10—H10A109.5
N5—Zn2—Cl4105.10 (8)N3—C10—H10B109.5
O6—Zn2—Cl3114.12 (8)H10A—C10—H10B109.5
N5—Zn2—Cl3115.79 (8)N3—C10—H10C109.5
Cl4—Zn2—Cl3113.09 (4)H10A—C10—H10C109.5
C2—O3—Zn1125.9 (2)H10B—C10—H10C109.5
C13—O6—Zn2125.6 (2)N3—C11—H11A109.5
H7A—O7—H7B110 (2)N3—C11—H11B109.5
O2—N1—O1123.3 (4)H11A—C11—H11B109.5
O2—N1—C5118.8 (4)N3—C11—H11C109.5
O1—N1—C5117.8 (4)H11A—C11—H11C109.5
C7—N2—C8117.4 (3)H11B—C11—H11C109.5
C7—N2—Zn1121.8 (2)C17—C12—C13118.4 (3)
C8—N2—Zn1120.5 (2)C17—C12—C18116.5 (3)
C9—N3—C10110.0 (3)C13—C12—C18125.0 (3)
C9—N3—C11113.3 (3)O6—C13—C14117.7 (3)
C10—N3—C11109.9 (3)O6—C13—C12124.5 (3)
C9—N3—H3A112 (3)C14—C13—C12117.8 (3)
C10—N3—H3A109 (3)C15—C14—C13122.2 (4)
C11—N3—H3A102 (3)C15—C14—H14118.9
O4—N4—O5124.0 (4)C13—C14—H14118.9
O4—N4—C16118.9 (5)C14—C15—C16119.4 (4)
O5—N4—C16117.1 (5)C14—C15—H15120.3
C18—N5—C19117.7 (3)C16—C15—H15120.3
C18—N5—Zn2121.9 (2)C17—C16—C15121.6 (4)
C19—N5—Zn2119.6 (2)C17—C16—N4118.6 (5)
C21—N6—C22110.7 (3)C15—C16—N4119.8 (4)
C21—N6—C20113.0 (3)C16—C17—C12120.7 (4)
C22—N6—C20110.1 (3)C16—C17—H17119.7
C21—N6—H6A110 (3)C12—C17—H17119.7
C22—N6—H6A108 (3)N5—C18—C12126.7 (3)
C20—N6—H6A105 (3)N5—C18—H18116.6
C6—C1—C2119.2 (3)C12—C18—H18116.6
C6—C1—C7115.1 (3)N5—C19—C20111.4 (3)
C2—C1—C7125.6 (3)N5—C19—H19A109.3
O3—C2—C3118.0 (3)C20—C19—H19A109.3
O3—C2—C1124.3 (3)N5—C19—H19B109.3
C3—C2—C1117.7 (3)C20—C19—H19B109.3
C4—C3—C2121.9 (3)H19A—C19—H19B108.0
C4—C3—H3119.0N6—C20—C19113.7 (3)
C2—C3—H3119.0N6—C20—H20A108.8
C3—C4—C5119.4 (3)C19—C20—H20A108.8
C3—C4—H4120.3N6—C20—H20B108.8
C5—C4—H4120.3C19—C20—H20B108.8
C6—C5—C4121.8 (3)H20A—C20—H20B107.7
C6—C5—N1118.6 (4)N6—C21—H21A109.5
C4—C5—N1119.5 (3)N6—C21—H21B109.5
C5—C6—C1119.9 (3)H21A—C21—H21B109.5
C5—C6—H6120.0N6—C21—H21C109.5
C1—C6—H6120.0H21A—C21—H21C109.5
N2—C7—C1127.0 (3)H21B—C21—H21C109.5
N2—C7—H7116.5N6—C22—H22A109.5
C1—C7—H7116.5N6—C22—H22B109.5
N2—C8—C9111.5 (3)H22A—C22—H22B109.5
N2—C8—H8A109.3N6—C22—H22C109.5
C9—C8—H8A109.3H22A—C22—H22C109.5
N2—C8—H8B109.3H22B—C22—H22C109.5
C9—C8—H8B109.3
N2—Zn1—O3—C20.5 (3)C8—N2—C7—C1175.8 (3)
Cl1—Zn1—O3—C2122.0 (3)Zn1—N2—C7—C11.9 (5)
Cl2—Zn1—O3—C2110.8 (3)C6—C1—C7—N2179.0 (3)
N5—Zn2—O6—C139.4 (3)C2—C1—C7—N24.0 (5)
Cl4—Zn2—O6—C13118.1 (2)C7—N2—C8—C9132.0 (3)
Cl3—Zn2—O6—C13112.0 (3)Zn1—N2—C8—C954.1 (3)
O3—Zn1—N2—C70.3 (3)C10—N3—C9—C8169.7 (3)
Cl1—Zn1—N2—C7116.0 (2)C11—N3—C9—C866.9 (4)
Cl2—Zn1—N2—C7115.9 (2)N2—C8—C9—N361.9 (4)
O3—Zn1—N2—C8173.9 (2)Zn2—O6—C13—C14172.1 (2)
Cl1—Zn1—N2—C870.3 (2)Zn2—O6—C13—C128.5 (5)
Cl2—Zn1—N2—C857.7 (2)C17—C12—C13—O6178.3 (3)
O6—Zn2—N5—C183.5 (3)C18—C12—C13—O60.6 (5)
Cl4—Zn2—N5—C18117.9 (3)C17—C12—C13—C141.0 (5)
Cl3—Zn2—N5—C18116.6 (3)C18—C12—C13—C14178.7 (3)
O6—Zn2—N5—C19166.1 (2)O6—C13—C14—C15179.2 (3)
Cl4—Zn2—N5—C1951.7 (2)C12—C13—C14—C150.2 (5)
Cl3—Zn2—N5—C1973.8 (2)C13—C14—C15—C160.5 (6)
Zn1—O3—C2—C3177.7 (2)C14—C15—C16—C170.3 (6)
Zn1—O3—C2—C12.4 (5)C14—C15—C16—N4177.1 (4)
C6—C1—C2—O3178.9 (3)O4—N4—C16—C172.8 (7)
C7—C1—C2—O34.2 (5)O5—N4—C16—C17178.5 (4)
C6—C1—C2—C31.0 (5)O4—N4—C16—C15174.7 (5)
C7—C1—C2—C3175.9 (3)O5—N4—C16—C154.0 (6)
O3—C2—C3—C4177.9 (3)C15—C16—C17—C120.6 (6)
C1—C2—C3—C42.0 (5)N4—C16—C17—C12178.1 (4)
C2—C3—C4—C51.7 (5)C13—C12—C17—C161.3 (6)
C3—C4—C5—C60.3 (5)C18—C12—C17—C16179.1 (4)
C3—C4—C5—N1175.3 (3)C19—N5—C18—C12173.2 (3)
O2—N1—C5—C60.6 (5)Zn2—N5—C18—C123.4 (5)
O1—N1—C5—C6177.5 (3)C17—C12—C18—N5175.1 (4)
O2—N1—C5—C4175.2 (4)C13—C12—C18—N57.2 (6)
O1—N1—C5—C41.7 (5)C18—N5—C19—C20136.7 (3)
C4—C5—C6—C10.7 (5)Zn2—N5—C19—C2053.3 (3)
N1—C5—C6—C1176.4 (3)C21—N6—C20—C1960.1 (4)
C2—C1—C6—C50.3 (5)C22—N6—C20—C19175.6 (3)
C7—C1—C6—C5177.5 (3)N5—C19—C20—N659.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···Cl3i0.90 (4)2.59 (3)3.299 (3)137 (3)
N3—H3A···O7ii0.91 (3)1.88 (2)2.746 (4)160 (4)
O7—H7A···O3iii0.83 (3)2.03 (3)2.859 (4)175 (4)
O7—H7B···Cl1iii0.83 (3)2.85 (3)3.384 (3)124 (3)
C7—H7···Cl4iv0.932.723.629 (3)167
C10—H10B···O5ii0.962.573.525 (7)171
C19—H19B···Cl2v0.972.743.695 (3)169
C22—H22B···O6i0.962.543.341 (3)142
C22—H22C···O2iv0.962.563.232 (7)127
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y, z+2; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formula[ZnCl2(C11H15N3O3)][ZnCl2(C11H15N3O3)]·0.5H2O
Mr373.53382.54
Crystal system, space groupOrthorhombic, P212121Triclinic, P1
Temperature (K)298298
a, b, c (Å)7.668 (2), 13.691 (3), 14.698 (3)12.181 (2), 12.312 (2), 12.596 (2)
α, β, γ (°)90, 90, 9066.673 (1), 70.632 (1), 69.149 (1)
V3)1543.0 (6)1580.5 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.951.90
Crystal size (mm)0.20 × 0.08 × 0.050.26 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.697, 0.9090.637, 0.738
No. of measured, independent and
observed [I > 2σ(I)] reflections
9727, 3496, 3088 13545, 6985, 5088
Rint0.0360.026
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.084, 1.05 0.044, 0.128, 0.99
No. of reflections34966985
No. of parameters186386
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.210.86, 0.28
Absolute structureFlack (1983)?
Absolute structure parameter0.035 (15)?

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Zn1—O31.940 (3)Zn1—Cl12.217 (2)
Zn1—N22.031 (3)Zn1—Cl22.246 (2)
O3—Zn1—N294.39 (11)O3—Zn1—Cl2108.16 (9)
O3—Zn1—Cl1115.52 (9)N2—Zn1—Cl2112.92 (9)
N2—Zn1—Cl1109.03 (8)Cl1—Zn1—Cl2115.08 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl2i0.90 (3)2.55 (3)3.344 (3)148 (4)
C4—H4···O1ii0.932.573.199 (3)125
C7—H7···Cl1iii0.932.783.695 (3)170
C8—H8A···O2iv0.972.573.186 (3)121
C8—H8B···O1v0.972.413.306 (3)154
C10—H10C···O3i0.962.393.297 (3)158
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z; (iii) x+1, y, z; (iv) x+3/2, y, z+1/2; (v) x+1, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Zn1—O31.942 (2)Zn2—O61.930 (2)
Zn1—N22.018 (3)Zn2—N52.013 (3)
Zn1—Cl12.219 (2)Zn2—Cl42.228 (2)
Zn1—Cl22.224 (2)Zn2—Cl32.231 (2)
O3—Zn1—N295.35 (10)O6—Zn2—N595.37 (10)
O3—Zn1—Cl1110.05 (8)O6—Zn2—Cl4111.84 (8)
N2—Zn1—Cl1117.09 (8)N5—Zn2—Cl4105.10 (8)
O3—Zn1—Cl2113.05 (8)O6—Zn2—Cl3114.12 (8)
N2—Zn1—Cl2107.32 (8)N5—Zn2—Cl3115.79 (8)
Cl1—Zn1—Cl2112.85 (4)Cl4—Zn2—Cl3113.09 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···Cl3i0.90 (4)2.59 (3)3.299 (3)137 (3)
N3—H3A···O7ii0.91 (3)1.877 (18)2.746 (4)160 (4)
O7—H7A···O3iii0.83 (3)2.03 (3)2.859 (4)175 (4)
O7—H7B···Cl1iii0.83 (3)2.85 (3)3.384 (3)124 (3)
C7—H7···Cl4iv0.932.723.629 (3)167
C10—H10B···O5ii0.962.573.525 (7)171
C19—H19B···Cl2v0.972.743.695 (3)169
C22—H22B···O6i0.962.543.341 (3)142
C22—H22C···O2iv0.962.563.232 (7)127
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y, z+2; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds